CN110436516A - 一种阳离子缺陷b相二氧化钛镁离子电极材料的合成方法 - Google Patents

一种阳离子缺陷b相二氧化钛镁离子电极材料的合成方法 Download PDF

Info

Publication number
CN110436516A
CN110436516A CN201910723280.1A CN201910723280A CN110436516A CN 110436516 A CN110436516 A CN 110436516A CN 201910723280 A CN201910723280 A CN 201910723280A CN 110436516 A CN110436516 A CN 110436516A
Authority
CN
China
Prior art keywords
magnesium ion
cation defect
presoma
defect
cation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910723280.1A
Other languages
English (en)
Other versions
CN110436516B (zh
Inventor
洪振生
罗兰
卢熖忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201910723280.1A priority Critical patent/CN110436516B/zh
Publication of CN110436516A publication Critical patent/CN110436516A/zh
Application granted granted Critical
Publication of CN110436516B publication Critical patent/CN110436516B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于镁离子电池技术领域,具体涉及一种阳离子缺陷Ti0.91O2(B)镁离子电极材料的合成方法。首先将TiOSO4溶解在NaOH和H2O的混合溶液中,将溶液搅拌,水浴加热;将沉淀物酸洗水洗至中性,然后干燥过夜收集得到H型钛酸盐前驱体;在空气中高温退火后得到最终的纳米线TiO2(B);将得到的前驱体至于石英管中,通20‑30 min氩气排除氧气,在氩气流下每秒2‑4个气泡,以2‑5℃ min‑1的升温速率升温到320‑380℃恒温1‑3个小时后让其自然降到室温,得到阳离子缺陷Ti0.91O2(B)。本发明材料显著改进了B相二氧化钛的储镁性能,Ti空位提供额外镁离子嵌入位点以获得更大的容量。

Description

一种阳离子缺陷B相二氧化钛镁离子电极材料的合成方法
技术领域
本发明属于镁离子电池技术领域,具体涉及一种阳离子缺陷Ti0.91O2(B)镁离子电极材料的合成方法。
背景技术
多价离子电池技术如Mg,Ca和Al ,由于成本低,安全,高能量密度有希望为新能源提供新的能源存储系统及其在混合电动汽车(HEV)或电动车(EV)中的应用。其中,镁离子电池最显著的优势来自于使用Mg金属作为负极,除了其低成本外,还提供高体积容量(3833mAh cm-3)并且在充电过程中无枝晶沉积。然而,镁离子电池的实际应用在不久的将来仍然不切实际,一个很大的瓶颈是缺乏合适的储镁电极材料。Mg2+离子的高电荷/半径比导致离子与主体之间的强相互作用,这对电极材料提出了更高的要求。
发明内容
本发明的目的在于提供一种阳离子缺陷Ti0.91O2(B)镁离子电极材料的合成方法。
将其作为镁离子电池电极材料,发现显著改进了B相二氧化钛的储镁性能,Ti空位提供额外的镁离子嵌入位点以获得更大的容量。
为实现上述目的,本发明采用如下技术方案:
所述阳离子缺陷Ti0.91O2(B)材料的制备方法,具体包括以下步骤:
(1)先制备钛酸盐纳米线前驱体,首先将3-5 g TiOSO4溶解在30-50 ml 15 M NaOH和18-30 ml H2O的混合溶液中,将溶液搅拌5-10分钟后,将上述溶液转移到容量为100 ml 的内衬中,并在130 -160℃下加热45-48个小时;
(2)将沉淀物用0.1 M HCl洗涤至酸洗,在用去离子水洗涤至中性,离心得到沉淀物,然后在60 ℃下干燥过夜收集得到H型钛酸盐前驱体;
(3)在空气中320-380℃高温退火1-3小时后得到最终的纳米线TiO2(B);
(4)将步骤(3)得到的前驱体至于石英管中,通20-30 min氩气排除氧气,以2-5℃ min-1的升温速率升温到320-380℃恒温1-3个小时后让其自然降到室温,得到阳离子缺陷Ti0.91O2(B)。
镁离子电池组装:按质量比Ti0.91O2(B):乙炔黑:PTFE=70-75:15-20:5-10搅拌混合通过碾压机压碾压成厚度为70-100 mm的电极膜,将此电极膜压在泡沫镍上作为工作电极,金属镁作为对电极,电解质是0.4 M 2PhMgCl–AlCl3 (APC)/THF溶液。所有组装均在充满氩气的手套箱里进行(氧气和水分含量均低于1 ppm)。
本发明的显著优点在于:
本发明提供了一种阳离子缺陷Ti0.91O2(B)的制备方法,并首次发现其在镁离子电池方面的良好应用前景。其操作简便、成本低、性能优异,可以大量合成。
附图说明
图1阳离子缺陷Ti0.91O2(B)和TiO2(B)的XRD图;
图2阳离子缺陷Ti0.91O2(B)的SEM图;
图3阳离子缺陷Ti0.91O2(B)、TiO2(B)在0.02 A g-1电流密度下充放电曲线;a)阳离子缺陷Ti0.91O2(B);(b)为TiO2(B);
图4 阳离子缺陷Ti0.91O2(B)、TiO2(B)的倍率图。
具体实施方式
为进一步公开而不是限制本发明,以下结合实例对本发明作进一步的详细说明。
实施例1
(1)先制备钛酸盐纳米线前驱体,首先将4 g TiOSO4溶解在40 ml 15 M NaOH和18-30ml H2O的混合溶液中,将溶液搅拌7分钟后,将上述溶液转移到容量为100 ml 的内衬中,并在140℃下加热46个小时;
(2)将沉淀物用0.1 M HCl洗涤至酸洗,在用去离子水洗涤至中性,然后在60 ℃下干燥过夜收集得到H型钛酸盐前驱体;
(3)在空气中320-380℃高温退火2小时后得到最终的纳米线TiO2(B);
(4)将步骤(3)得到的前驱体至于石英管中,通25 min氩气排除氧气,在氩气流下每秒2-4个气泡,以3℃ min-1的升温速率升温到330℃恒温2个小时后让其自然降到室温,得到阳离子缺陷Ti0.91O2(B)。
镁离子电池组装:按质量比Ti0.91O2(B):乙炔黑:PTFE=75:15:10搅拌混合通过碾压机压碾压成厚度为70-100 mm的电极膜,将此电极膜压在泡沫镍上作为工作电极,金属镁作为对电极,电解质是0.4 M 2PhMgCl–AlCl3 (APC)/THF溶液。所有组装均在充满氩气的手套箱里进行(氧气和水分含量均低于1 ppm)。
实施例2
所述阳离子缺陷Ti0.91O2(B)材料的制备方法,具体包括以下步骤:
(1)先制备钛酸盐纳米线前驱体,首先将3 g TiOSO4溶解在50 ml 15 M NaOH和18mlH2O的混合溶液中,将溶液搅拌10分钟后,将上述溶液转移到容量为100 ml 的内衬中,并在130℃下加热45-48个小时;
(2)将沉淀物用0.1 M HCl洗涤至酸洗,在用去离子水洗涤至中性,离心得到沉淀物,然后在60 ℃下干燥过夜收集得到H型钛酸盐前驱体;
(3)在空气中320℃高温退火1小时后得到最终的纳米线TiO2(B);
(4)将步骤(3)得到的前驱体至于石英管中,通20 min氩气排除氧气,以2-5℃ min-1的升温速率升温到320℃恒温1个小时后让其自然降到室温,得到阳离子缺陷Ti0.91O2(B)。
镁离子电池组装:按质量比Ti0.91O2(B):乙炔黑:PTFE=72:18:5搅拌混合通过碾压机压碾压成厚度为70-100 mm的电极膜,将此电极膜压在泡沫镍上作为工作电极,金属镁作为对电极,电解质是0.4 M 2PhMgCl–AlCl3 (APC)/THF溶液。所有组装均在充满氩气的手套箱里进行(氧气和水分含量均低于1 ppm)。
实施例3
所述阳离子缺陷Ti0.91O2(B)材料的制备方法,具体包括以下步骤:
(1)先制备钛酸盐纳米线前驱体,首先将5 g TiOSO4溶解在50 ml 15 M NaOH和30 mlH2O的混合溶液中,将溶液搅拌10分钟后,将上述溶液转移到容量为100 ml 的内衬中,并在160℃下加热48个小时;
(2)将沉淀物用0.1 M HCl洗涤至酸洗,在用去离子水洗涤至中性,离心得到沉淀物,然后在60 ℃下干燥过夜收集得到H型钛酸盐前驱体;
(3)在空气中340℃高温退火3小时后得到最终的纳米线TiO2(B);
(4)将步骤(3)得到的前驱体至于石英管中,通20-30 min氩气排除氧气,以2-5℃ min-1的升温速率升温到320-380℃恒温1-3个小时后让其自然降到室温,得到阳离子缺陷Ti0.91O2(B)。
镁离子电池组装:按质量比Ti0.91O2(B):乙炔黑:PTFE=75:20:10搅拌混合通过碾压机压碾压成厚度为70-100 mm的电极膜,将此电极膜压在泡沫镍上作为工作电极,金属镁作为对电极,电解质是0.4 M 2PhMgCl–AlCl3 (APC)/THF溶液。所有组装均在充满氩气的手套箱里进行(氧气和水分含量均低于1 ppm)。
从图1 X-射线粉末衍射分析图可看出所制备的样品TiO2和阳离子缺陷Ti0.91O2(B)的衍射峰均与JCPDS标准卡片(46-1238)的衍射峰一致,说明所制备的样品均为B相结构的二氧化钛。进一步利用电感耦合等离子体(ICP)测试Ti元素含量,确定阳离子缺陷钛氧化物的化学式为Ti0.91O2。从图2的SEM图可清楚地看出材料为纳米线结构,从插图可以看出具有阳离子缺陷的二氧化钛颜色变为灰黑色,说明材料存在离子缺陷。如图3所示,在0.01-2.0V的电压窗口下,在电流密度为0.02 A g-1下进行充放电,首次放电比容量可达214.3 mA hg-1,而TiO2(B)首次放电比容量只有175.8 mAh g-1。如图4所示,阳离子缺陷Ti0.91O2(B)具有优异的倍率性能,在不同电流密度下,Ti0.91O2(B)的充/放电容量均大于纯TiO2(B)。可以看到Ti0.91O2(B)1 A g-1的大电流密度下,可逆容量有43.6 mAh g-1。而相同的电流密度下纯TiO2可逆容量容量只有25.2 mAh g-1
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.阳离子缺陷Ti0.91O2(B)材料的制备方法,其特征在于:具体包括以下步骤:
(1)先制备钛酸盐纳米线前驱体,首先将3-5 g TiOSO4溶解在30-50 ml 15 M NaOH和18-30 ml H2O的混合溶液中,将溶液搅拌5-10分钟后,将上述溶液转移到容量为100 ml 的内衬中,进行水浴加热;
(2)将沉淀物用0.1 M HCl洗涤至酸洗,在用去离子水洗涤至中性,离心后在60 ℃下干燥过夜收集得到H型钛酸盐前驱体;
(3)在空气中高温退火后得到最终的纳米线TiO2(B);
(4)将步骤(3)得到的前驱体至于石英管中,通20-30 min氩气排除氧气,以2-5℃ min-1的升温速率升温到320-380℃恒温1-3个小时后让其自然降到室温,得到阳离子缺陷Ti0.91O2(B)。
2.根据权利要求1所述的阳离子缺陷Ti0.91O2(B)材料的制备方法,其特征在于:步骤(1)所述水浴加热具体条件为:在130 -160℃下加热45-48个小时。
3.根据权利要求1所述的阳离子缺陷Ti0.91O2(B)材料的制备方法,其特征在于:步骤(3)所述高温退火具体为:320-380℃高温退火1-3小时。
4.如权利要求1所述方法制备的阳离子缺陷Ti0.91O2(B)材料在镁离子电池上的应用,其特征在于:镁离子电池组装:按质量比Ti0.91O2(B):乙炔黑:PTFE=70-75:15-20:5-10搅拌混合通过碾压机压碾压成厚度为70-100 mm的电极膜,将此电极膜压在泡沫镍上作为工作电极,金属镁作为对电极,电解质是0.4 M 2PhMgCl–AlCl3 (APC)/THF溶液。
CN201910723280.1A 2019-08-06 2019-08-06 一种阳离子缺陷b相二氧化钛镁离子电极材料的合成方法 Expired - Fee Related CN110436516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910723280.1A CN110436516B (zh) 2019-08-06 2019-08-06 一种阳离子缺陷b相二氧化钛镁离子电极材料的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910723280.1A CN110436516B (zh) 2019-08-06 2019-08-06 一种阳离子缺陷b相二氧化钛镁离子电极材料的合成方法

Publications (2)

Publication Number Publication Date
CN110436516A true CN110436516A (zh) 2019-11-12
CN110436516B CN110436516B (zh) 2022-04-01

Family

ID=68433571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910723280.1A Expired - Fee Related CN110436516B (zh) 2019-08-06 2019-08-06 一种阳离子缺陷b相二氧化钛镁离子电极材料的合成方法

Country Status (1)

Country Link
CN (1) CN110436516B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628174A (zh) * 2020-06-05 2020-09-04 桂林电子科技大学 卤素离子掺杂钛空位二氧化钛的合成方法及其应用
CN114204849A (zh) * 2021-11-25 2022-03-18 南京理工大学 用于水蒸发产电的二维金属氧化物单层纳米片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766331A (zh) * 2011-05-04 2012-11-07 北京化工大学 一种聚苯胺/二氧化钛纳米片插层复合材料及其制备方法
CN104628031A (zh) * 2015-01-23 2015-05-20 济南大学 一种一维自掺杂二氧化钛纳米材料的制备方法及所得产品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766331A (zh) * 2011-05-04 2012-11-07 北京化工大学 一种聚苯胺/二氧化钛纳米片插层复合材料及其制备方法
CN104628031A (zh) * 2015-01-23 2015-05-20 济南大学 一种一维自掺杂二氧化钛纳米材料的制备方法及所得产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEILING KANG等: "An interlayer defect promoting the doping of the phosphate group into TiO2(B) nanowires with unusual structure properties towards ultra-fast and ultra-stable sodium storage", 《J. MATER. CHEM. A》 *
YUAN MENG等: "Ultrathin TiO2-B nanowires as an anode material for Mg-ion batteries based on a surface Mg storage mechanism", 《NANOSCALE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628174A (zh) * 2020-06-05 2020-09-04 桂林电子科技大学 卤素离子掺杂钛空位二氧化钛的合成方法及其应用
CN111628174B (zh) * 2020-06-05 2021-03-26 桂林电子科技大学 卤素离子掺杂钛空位二氧化钛的合成方法及其应用
CN114204849A (zh) * 2021-11-25 2022-03-18 南京理工大学 用于水蒸发产电的二维金属氧化物单层纳米片
CN114204849B (zh) * 2021-11-25 2024-04-23 南京理工大学 用于水蒸发产电的二维金属氧化物单层纳米片

Also Published As

Publication number Publication date
CN110436516B (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
Hou et al. Oxygen vacancy derived local build-in electric field in mesoporous hollow Co 3 O 4 microspheres promotes high-performance Li-ion batteries
Yi et al. Sub-micrometric Li4− xNaxTi5O12 (0≤ x≤ 0.2) spinel as anode material exhibiting high rate capability
CN102969492B (zh) 一种碳包覆掺杂改性钛酸锂及其制备方法
AU2011236100A1 (en) Electrode (anode and cathode) performance enhancement by composite formation with graphene oxide
CN106006715B (zh) 利用液相隔膜放电等离子体制备纳米氧化锌的方法
CN109301207B (zh) 一种表层掺杂Ce3+且表层包覆CeO2的NCM三元正极材料及其制备方法
CN108448057B (zh) CoO/CoMoO4复合材料的制备及其在锂离子电池中的应用
CN1280397A (zh) 用于锂二次电池的正极活性材料及其制备方法
CN103367719A (zh) 蛋黄-壳结构二氧化锡-氮掺杂碳材料及其制备方法
CN107180968A (zh) 一种提高COFs材料作为电极活性材料性能的方法
Yan et al. 3D hierarchical porous ZnFe2O4 nano/micro structure as a high-performance anode material for lithium-ion batteries
CN105977460A (zh) 一种石墨烯复合材料、其制备方法及应用
CN105470572B (zh) 一种钛酸锂电池及其化成方法
CN106328914A (zh) 利用碳纳米微球为模板制备多壳层中空二氧化锡材料的方法及应用
KR20140042874A (ko) 표면 불소화 b형 산화 티타늄 분말을 포함하는 리튬 이온 전지용 부극 재료와 그 제조 방법 및 그것을 사용한 리튬 이온 전지
CN110436516A (zh) 一种阳离子缺陷b相二氧化钛镁离子电极材料的合成方法
CN107500355A (zh) 一种分层纤铁矿型纳米条状二氧化钒的制备方法
CN107104002B (zh) 一种还原态氧化石墨烯/锰氧化物复合物及其制备方法
Sun et al. Advanced single-crystal layered Ni-rich cathode materials for next-generation high-energy-density and long-life Li-ion batteries
Guo et al. NaTi2 (PO4) 3/C‖ carbon package asymmetric flexible supercapacitors with the positive material recycled from spent Zn‒Mn dry batteries
Matsuda et al. Preparation of LiNi1/3Mn1/3Co1/3O2/Li3PS4 cathode composite particles using a new liquid-phase process and application to all-solid-state lithium batteries
Sasirekha et al. Electrochemical performance of zinchydroxide Zn (OH) 2 nanosheet for supercapacitor application
Le et al. Effect of la doping on the structure and lithium storage performance of V2O5
Chen et al. Effects of citric acid on the preparation of a LiFePO4@ C cathode material assisted by biomineralization
CN109686961A (zh) 一种富氧缺陷钛酸钠/石墨烯复合负极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220401