CN110433840A - 一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法 - Google Patents
一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法 Download PDFInfo
- Publication number
- CN110433840A CN110433840A CN201910660218.2A CN201910660218A CN110433840A CN 110433840 A CN110433840 A CN 110433840A CN 201910660218 A CN201910660218 A CN 201910660218A CN 110433840 A CN110433840 A CN 110433840A
- Authority
- CN
- China
- Prior art keywords
- ethyl imidazol
- preparation
- catalysis material
- high activity
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 230000000694 effects Effects 0.000 title claims abstract description 21
- 239000000463 material Substances 0.000 title claims abstract description 21
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 18
- 238000005336 cracking Methods 0.000 title claims abstract description 17
- -1 2- ethyl imidazol Chemical compound 0.000 claims abstract description 38
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000004202 carbamide Substances 0.000 claims abstract description 18
- 238000000227 grinding Methods 0.000 claims abstract description 14
- 238000001354 calcination Methods 0.000 claims abstract description 8
- 238000010792 warming Methods 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000004570 mortar (masonry) Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 5
- 230000001699 photocatalysis Effects 0.000 abstract description 25
- 238000000034 method Methods 0.000 abstract description 14
- 238000010521 absorption reaction Methods 0.000 abstract description 9
- 230000003287 optical effect Effects 0.000 abstract description 5
- 230000008569 process Effects 0.000 abstract description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 abstract description 3
- 230000005012 migration Effects 0.000 abstract description 3
- 238000013508 migration Methods 0.000 abstract description 3
- 230000004044 response Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 238000003786 synthesis reaction Methods 0.000 abstract description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 16
- 239000013078 crystal Substances 0.000 description 14
- 239000003054 catalyst Substances 0.000 description 9
- 230000005855 radiation Effects 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 238000007146 photocatalysis Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000003837 high-temperature calcination Methods 0.000 description 4
- 239000011229 interlayer Substances 0.000 description 4
- 229910052755 nonmetal Inorganic materials 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 238000002336 sorption--desorption measurement Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910021392 nanocarbon Inorganic materials 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 229910052571 earthenware Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000007306 functionalization reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/22—Chromium or chromium compounds, e.g. chromates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种具有层状开裂微结构的高活性g‑C3N4光催化材料的制备方法,将尿素和2‑乙基咪唑混合研磨后,放入坩埚中盖上盖子,再将坩埚置于马弗炉中升温至520~580℃煅烧,然后,冷却至室温,即得改性后的具有层状开裂微结构的高活性g‑C3N4光催化材料;本发明在合成g‑C3N4的过程中,加入2‑乙基咪唑,利用2‑乙基咪唑在高温煅烧过程中燃烧释放的NO和CO等还原性气体对g‑C3N4的微观结构进行修饰和改性,从而调控g‑C3N4的能带结构以拓宽光响应范围促进可见光吸收,并促进光生电子的迁移速率;g‑C3N4具有层状开裂微结构,导致其比表面积增大。在拓宽光学吸收范围、促进光生电子迁移速率以及增大比表面积的共同作用下,光催化活性大大增强。
Description
技术领域
本发明属于光催化材料技术领域,特别涉及一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法。
背景技术
随着全球化石能源的快速消耗,环境逐渐恶化。现在生活废水中最常见的污染物就有六价铬(Cr6+),所以人类研究用光催化技术还原Cr6+。石墨相氮化碳(g-C3N4)是近年来迅速发展起来的一种新型可见光催化剂,受到了人类的广泛关注。g-C3N4是一种富电子有机半导体的非金属光催化剂,在紫外和可见光下能够产生氢气和氧气。在分别存在适当的牺牲电子受体或供体的情况下,g-C3N4催化剂不需要金属促进剂,并且对于减少的析氢反应或氧化水氧释放反应具有催化活性。福州大学的付贤智院士研究所与德国马克斯普朗克研究所合作,对g-C3N4光催化研究进行了大量有益的研究。
近年来,g-C3N4因为其具有合适的带隙、低成本、稳定性高等独特的特性受到了广泛的关注。主要包括:光催化制氢、降解有机污染物和光催化还原。然而,g-C3N4光催化剂仍然存在一些问题,比如它只能吸收波长小于460nm的可见光,而对于460nm以上的可见光却没有吸收,因此,需要进一步拓宽其光谱吸收范围;另外,g-C3N4光催化剂的电子迁移及分离效率也比较低,有所进一步提高,进而提高其光催化活性。为了更好地发挥g-C3N4光催化剂的作用,研究人员通过一些常用的方法,包括贵金属改性、非金属掺杂、表面复合半导体等以提高g-C3N4的光催化性能。
人们在提高g-C3N4光催化活性方面进行了大量的研究,比如采用非金属掺杂提高其光催化活性:专利号为CN201711182393.2的中国专利公开了一种氮掺杂环状空心纳米炭材料的制备方法。该方法首先将含氮聚合物包覆在环状g-C3N4模板上,随后对其进行高温煅烧,高温使g-C3N4分解,产生大量含氮气体,可作为造孔剂和氮源,同时聚合物碳化得到氮掺杂环状空心纳米炭材料。该材料结构独特、具有高氮含量,在超级电容器、锂离子电池、电化学催化剂等方面具有广阔的应用前景。该方法具有操作简便、容易工业化生产、且对环境污染小的特点,是一种重要的氮掺杂环状空心纳米炭材料的制备方法。另外,也可以通过贵金属改性,例如专利号CN201710535288.6的中国专利公开了一种改性g-C3N4光催化剂及其制备方法。其表面具有-NH2,-NH-及酚羟基等功能化基团,对水体中Cr(VI)具有较高的富集能力,从而提升了催化剂光催化还原水体Cr(VI)的效率。
综上所述,现有技术有以下问题。
(1)传统方法制备的g-C3N4光生载流子复合速率高,导致其光催化活性仍然较低。
(2)以前文献及专利公开的方法大多数是通过贵金属改性、非金属掺杂、表面复合半导体等方式提高g-C3N4的光催化活性,这些方法往往为多步骤的合成反应,制备工艺较复杂,成本较高。
(3)传统方法制备的g-C3N4比表面积较小,这不利于光催化反应。
(4)传统方法制备的g-C3N4只能吸收波长小于460nm的可见光,而对于460nm以上的可见光却没有吸收,需通过调整g-C3N4的能带隙,从而拓宽可见光吸收利用范围。
本发明专利的出发点是采用一种新的思路以提高g-C3N4的光催化活性。
发明内容
本发明提供一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,以解决现有技术中的问题。
为实现上述目的,本发明采用的技术方案为:
一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,将尿素和2-乙基咪唑混合研磨后,放入坩埚中盖上盖子,再将坩埚置于马弗炉中升温至520~580℃煅烧,然后,冷却至室温,即得改性后的具有层状开裂微结构的高活性g-C3N4光催化材料。
优选地,尿素与2-乙基咪唑的用量比为9~12:0.8~2.5。
优选地,将尿素和2-乙基咪唑放入研钵中混合研磨15~30min。
优选地,研磨后的尿素和2-乙基咪唑混合物放入100ml的坩埚中。
优选地,以2~8℃/min的升温速率升温至520~580 ℃。
优选地,520~580 ℃煅烧1~3 h。
与现有技术相比,本发明具有以下有益效果:
(1)本发明在合成g-C3N4的过程中,加入2-乙基咪唑,利用2-乙基咪唑在高温煅烧过程中燃烧释放的NO和CO等还原性气体对g-C3N4的微观结构进行修饰和改性,从而调控g-C3N4的能带结构以拓宽光响应范围促进可见光吸收,并促进光生电子的转移速率;另外,本发明提供的技术方案中,由于2-乙基咪唑在高温煅烧过程中燃烧释放的NO和CO等气体会导致得到的g-C3N4具有层状开裂微结构这一独特的形貌,从而增大比表面积。在拓宽光学吸收范围、促进光生电子迁移速率以及增大比表面积这三重因素的共同作用下,最终达到光催化活性大大增强的目的。
(2)跟现有文献及专利公开的改善g-C3N4光催化活性的方法相比,本发明提供的方法既不需要添加额外的、昂贵的贵金属助催化剂,也不需要与其他半导体材料复合,具有生产成本低、工艺简单的优点。
附图说明
图1是对比例1、实施例1、实施例2、实施例3、实施例4、实施例5和实施例6中加入不同量的2-乙基咪唑所制得的g-C3N4样品的XRD谱图;
图2是对比例1和实施例2中制得的g-C3N4的SEM照片,其中:(a)和(b)是对比例1制得的纯g-C3N4的SEM照片,(c)、(d)、(e)和(f)是实施例2制得的g-C3N4的SEM照片;
图3是对比例1和实施例2中制得的g-C3N4的紫外-可见漫反射吸收光谱谱图;
图4是对比例1和实施例2中制得的g-C3N4的N2吸附脱附曲线;
图5是对比例1、实施例1、实施例2、实施例3、实施例4、实施例5和实施例6制得g-C3N4样品在λ>420nm的可见光照射下的光催化还原Cr6+图;
图6是对比例1和实施例2中制得的g-C3N4的光电流响应曲线(I-t)图;
图7是对比例1和实施例2中制得的g-C3N4的电化学交流阻抗谱(EIS)图。
具体实施方式
下面结合实施例对本发明作更进一步的说明。
对比例1(不加入2-乙基咪唑)
首先,用电子分析天平称取10g尿素,放入研钵中研磨20min后,再把它放入100ml的坩埚中,盖上盖子,于马弗炉中以5℃/min的升温速率,550 ℃的高温煅烧 2 h,自然冷却至室温,得到样品1。XRD谱图表明,不加入2-乙基咪唑的样品1,在13.2°的衍射峰归属于g-C3N4的(100)晶面;27.4°衍射峰归属于g-C3N4的(002)晶面,对应于芳香环体系中的层间叠加和平面结构填充。SEM图表明纯g-C3N4呈现出块体形貌特征。紫外-可见漫反射光谱谱图表明纯g-C3N4的吸收边为465nm(相应的能带隙值为2.67eV)。依赖于图4的N2吸附脱附曲线,得到样品的BET比表面积数值,如表1所示,可以看出纯g-C3N4的BET比表面积为50 m2/g。光催化还原Cr6+图5表明在可见光照射280min后,光催化还原Cr6+去除率为24%。
实施例1
用电子分析天平称取10g尿素,再称取1.0g的2-乙基咪唑,放入研钵中研磨20min后,再把它放入100ml的坩埚中,盖上盖子,于马弗炉中以5℃/min的升温速率,550 ℃的高温煅烧2 h,自然冷却至室温,得到样品2。XRD谱图表明,样品2在13.2°的衍射峰归属于g-C3N4的(100)晶面;27.4°衍射峰归属于g-C3N4的(002)晶面,对应于芳香环体系中的层间叠加和平面结构填充。与对比例1纯的 g-C3N4 衍射峰比较,它们衍射特征相似,并没有其他的衍射峰出现,但改性后它的衍射峰的强度明显降低,半峰宽增加,说明微结构有变化。光催化还原Cr6+图5表明在可见光照射280min后,光催化还原Cr6+去除率为80%。
实施例2
用电子分析天平称取10g尿素,再称取1.6g的2-乙基咪唑,放入研钵中研磨20min后,再把它放入100ml的坩埚中,盖上盖子,于马弗炉中以5℃/min的升温速率,550 ℃的高温煅烧2 h,自然冷却至室温,得到样品3。XRD谱图表明,加入1.6g的2-乙基咪唑g-C3N4的样品3,在13.2°(100)晶面和27.4°(002)晶面处都出现了两个特征峰,对应于芳香环体系中的层间叠加和平面结构填充。与对比例1制备的纯的 g-C3N4 衍射峰比较,样品3的XRD衍射特征相似,并没有其他的衍射峰出现,说明改性后仍为g-C3N4晶相。与实施例1制备的样品相比,随着2-乙基咪唑量的增加,XRD衍射峰强度会逐渐减小。SEM图表明2-乙基咪唑改性后的g-C3N4呈现出层状形貌特征,并且层的截面出现了裂缝,这应当是由于2-乙基咪唑在高温煅烧过程中燃烧释放的NO和CO等还原性气体穿过g-C3N4的晶体微结构导致截面开裂的。紫外-可见漫反射光谱谱图表明2-乙基咪唑改性后的g-C3N4的吸收边为477nm(相应的能带隙值为2.60eV),比纯g-C3N4的吸收边(465nm)拓宽了12nm,能带隙缩短了0.07eV,这表明2-乙基咪唑改性后的g-C3N4对可见光的吸收利用范围得到拓宽。依赖于图4的N2吸附脱附曲线,得到样品的BET比表面积数值,如表1所示,可以看出纯g-C3N4的BET比表面积为65m2/g,这表明添加2-乙基咪唑制备的样品BET比表面积明显增大。光催化还原Cr6+图5表明在可见光照射280min后,光催化还原Cr6+去除率为98%,这是所有同系列样品中光催化还原Cr6+性能最高的样品。图6表明,与对比例1制备的纯g-C3N4相比,实施例2通过添加1.6g的2-乙基咪唑制备的样品光电流密度值提高了大约1.3倍,表明改性后的g-C3N4光生电子-空穴对分离效率得到增强,光生电子迁移效率得到提高;图7表明,电化学交流阻抗图谱中,相比于对比例1制备的纯g-C3N4,实施例2通过添加1.6g的2-乙基咪唑制备的样品圆弧半径减小,说明改性后的g-C3N4材料能够有效地降低界面阻力,提高了电荷转移速率。总之,图6和图7结果都说明,添加2-乙基咪唑制备的样品光生载流子分离和迁移效率得到明显增强。
实施例3
用电子分析天平称取10g尿素,再称取2g的2-乙基咪唑,放入研钵中研磨20min后,再把它放入100ml的坩埚中,盖上盖子,于马弗炉中以5℃/min的升温速率,550 ℃的高温煅烧 2h,自然冷却至室温,得到样品4。XRD谱图表明加入2.0g的2-乙基咪唑的样品4,在13.2°(100)晶面和27.4°(002)晶面处都出现了两个特征峰,对应于芳香环体系中的层间叠加和平面结构填充。与对比例1制备的纯的 g-C3N4 衍射峰比较,样品4的XRD衍射特征相似,并没有其他的衍射峰出现,说明改性后仍为g-C3N4晶相。与实施例2制备的样品相比,随着2-乙基咪唑量的增加,峰强度会逐渐减小。光催化还原Cr6+图5表明在可见光照射280min后,光催化还原Cr6+去除率为88%。
表1 对比例1和实施例2中制得的样品的BET比表面积数值
实施例4
用电子分析天平称取9g尿素,再称取0.8g的2-乙基咪唑,将尿素和2-乙基咪唑均放入研钵中研磨15min后,将研磨后的混合物放入100ml的坩埚中盖上盖子,于马弗炉中以2℃/min的升温速率升温至520℃,再保持该温度煅烧1h,自然冷却至室温,得到样品5。与对比例1制备的纯的 g-C3N4 衍射峰比较,样品5的XRD衍射特征相似,并没有其他的衍射峰出现,说明改性后仍为g-C3N4晶相。光催化还原Cr6+图5表明在可见光照射280min后,光催化还原Cr6+去除率为70%。
实施例5
用电子分析天平称取10g尿素,再称取1.5g的2-乙基咪唑,将尿素和2-乙基咪唑均放入研钵中研磨20min后,将研磨后的混合物放入100ml的坩埚中盖上盖子,于马弗炉中以5℃/min的升温速率升温至560 ℃,再保持该温度煅烧2h,自然冷却至室温,得到样品6。与对比例1制备的纯的 g-C3N4 衍射峰比较,样品6的XRD衍射特征相似,并没有其他的衍射峰出现,说明改性后仍为g-C3N4晶相。光催化还原Cr6+图5表明在可见光照射280min后,光催化还原Cr6+去除率为64%。
实施例6
用电子分析天平称取12g尿素,再称取2.5g的2-乙基咪唑,将尿素和2-乙基咪唑均放入研钵中研磨30min后,将研磨后的混合物放入100ml的坩埚中盖上盖子,于马弗炉中以8℃/min的升温速率升温至580 ℃,再保持该温度煅烧3h,自然冷却至室温,得到样品7。与对比例1制备的纯的 g-C3N4 衍射峰比较,样品7的XRD衍射特征相似,并没有其他的衍射峰出现,说明改性后仍为g-C3N4晶相。光催化还原Cr6+图5表明在可见光照射280min后,光催化还原Cr6+去除率为48%。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (6)
1.一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,其特征在于:将尿素和2-乙基咪唑混合研磨后,放入坩埚中盖上盖子,再将坩埚置于马弗炉中升温至520~580℃煅烧,然后,冷却至室温,即得改性后的具有层状开裂微结构的高活性g-C3N4光催化材料。
2.根据权利要求1所述的具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,其特征在于:尿素与2-乙基咪唑的用量比为9~12:0.8~2.5。
3.根据权利要求1所述的具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,其特征在于:将尿素和2-乙基咪唑放入研钵中混合研磨15~30min。
4.根据权利要求1所述的具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,其特征在于:研磨后的尿素和2-乙基咪唑混合物放入100ml的坩埚中。
5.根据权利要求1所述的具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,其特征在于:以2~8℃/min的升温速率升温至520~580 ℃。
6.根据权利要求1所述的具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法,其特征在于:520~580 ℃煅烧1~3 h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910660218.2A CN110433840A (zh) | 2019-07-22 | 2019-07-22 | 一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910660218.2A CN110433840A (zh) | 2019-07-22 | 2019-07-22 | 一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110433840A true CN110433840A (zh) | 2019-11-12 |
Family
ID=68430988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910660218.2A Pending CN110433840A (zh) | 2019-07-22 | 2019-07-22 | 一种具有层状开裂微结构的高活性g-C3N4光催化材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110433840A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108906111A (zh) * | 2018-07-26 | 2018-11-30 | 湖南大学 | 自组装共聚氮化碳光催化复合材料及其制备方法和应用 |
CN109529904A (zh) * | 2018-12-19 | 2019-03-29 | 江苏大学 | 一种表面无定形碳掺杂的氮化碳光催化剂的制备方法 |
CN109622003A (zh) * | 2018-11-02 | 2019-04-16 | 昆山桑莱特新能源科技有限公司 | 一种g-C3N4@g-C4N3复合光催化剂及其制备方法和应用 |
-
2019
- 2019-07-22 CN CN201910660218.2A patent/CN110433840A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108906111A (zh) * | 2018-07-26 | 2018-11-30 | 湖南大学 | 自组装共聚氮化碳光催化复合材料及其制备方法和应用 |
CN109622003A (zh) * | 2018-11-02 | 2019-04-16 | 昆山桑莱特新能源科技有限公司 | 一种g-C3N4@g-C4N3复合光催化剂及其制备方法和应用 |
CN109529904A (zh) * | 2018-12-19 | 2019-03-29 | 江苏大学 | 一种表面无定形碳掺杂的氮化碳光催化剂的制备方法 |
Non-Patent Citations (7)
Title |
---|
DANLIAN HUANG ET AL: "《Megamerger in photocatalytic field: 2D g-C3N4 nanosheets serve as support of 0D nanomaterials for improving photocatalytic performance》", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 * |
LU ZHANG ET AL: "《Imidazole modified g-C3N4 photocatalyst: Structural characterization and versatile energy applications》", 《APPLIED SURFACE SCIENCE》 * |
PING NIU ET AL: "《Increasing the Visible Light Absorption of Graphitic Carbon Nitride (Melon) Photocatalysts by Homogeneous Self-Modification with Nitrogen Vacancies》", 《ADVANCED MATERIALS》 * |
ZEHAO LI ET AL: "《Enhanced photocatalytic performance of polymeric C3N4 doped with theobromine composed of an imidazole ring and a pyrimidine ring》", 《CHINESE JOURNAL OF CATALYSIS 》 * |
崔玉民 编著: "《氮化碳光催化材料合成及应用》", 31 March 2018, 中国书籍出版社 * |
方威 等: "《石墨相氮化碳的改性及应用》", 《中国资源综合利用》 * |
熊威 等: "《g-C3N4光催化还原Cr(Ⅵ)研究进展》", 《广州化工》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hou et al. | Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties | |
Raziq et al. | Synthesis of S-Doped porous g-C3N4 by using ionic liquids and subsequently coupled with Au-TiO2 for exceptional cocatalyst-free visible-light catalytic activities | |
Wang et al. | Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance | |
CN107297217B (zh) | 一种多孔薄层石墨相氮化碳载铂光催化剂及其制备方法和应用 | |
Shinde et al. | Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension | |
Xiong et al. | Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition | |
CN103736513B (zh) | 一种TiO2(B)@g-C3N4复合纳米片光催化剂的制备方法 | |
CN106669759B (zh) | 磷硫共掺杂石墨相氮化碳光催化剂及其制备方法和应用 | |
CN103990485B (zh) | 氮化碳纳米粒子修饰钒酸铋复合光催化剂及其制备方法 | |
CN101629300B (zh) | 一种光催化燃料电池分解水直接分离制氢的方法 | |
CN103170358B (zh) | 一种多孔g-C3N4光催化剂及其制备方法 | |
CN103225097A (zh) | Cu2O/TNTs异质结构纳米复合材料制备及光还原CO2方法 | |
CN106582765A (zh) | 一种一步合成制备的钠掺杂石墨相氮化碳及其应用 | |
CN105396606A (zh) | 一种氧化铈/石墨烯量子点/类石墨烯相氮化碳复合光催化材料及其制备方法 | |
Liu et al. | Codoped rutile TiO2 as a new photocatalyst for visible light irradiation | |
Feng et al. | A microfluidic all-vanadium photoelectrochemical cell with the N-doped TiO2 photoanode for enhancing the solar energy storage | |
CN110127635B (zh) | 石墨相氮化碳及其制备方法、产氢光催化剂及其应用 | |
Hu et al. | Ultrathin graphitic carbon nitride modified PbBiO2Cl microspheres with accelerating interfacial charge transfer for the photodegradation of organic contaminants | |
Zhao et al. | Preparation of g-C3N4/TiO2/BiVO4 composite and its application in photocatalytic degradation of pollutant from TATB production under visible light irradiation | |
CN111437824A (zh) | 3D层状微花结构CoWO4@Bi2WO6 Z型异质结复合催化剂及其制备方法和应用 | |
CN110127636B (zh) | 石墨相氮化碳及其制备方法、产氢光催化剂及其应用 | |
CN112090448A (zh) | 一种沸石结构的ZIF-8@g-C3N4催化剂的制备方法 | |
Zhou et al. | Synergistic effect of ZnO QDs and Sn4+ ions to control anatase-rutile phase of three-dimensional ordered hollow sphere TiO2 with enhanced photodegradation and hydrogen evolution | |
Shouqiang et al. | Photocatalytic degradation of methyl orange over ITO/CdS/ZnO interface composite films | |
CN113289659B (zh) | 磺酸基官能团改性氮化碳光催化材料的制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191112 |