CN110433776A - β-环糊精功能化磁性碳微球及制备方法 - Google Patents

β-环糊精功能化磁性碳微球及制备方法 Download PDF

Info

Publication number
CN110433776A
CN110433776A CN201910675960.0A CN201910675960A CN110433776A CN 110433776 A CN110433776 A CN 110433776A CN 201910675960 A CN201910675960 A CN 201910675960A CN 110433776 A CN110433776 A CN 110433776A
Authority
CN
China
Prior art keywords
beta
cyclodextrin
carbosphere
functional magnetic
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910675960.0A
Other languages
English (en)
Inventor
陈怀侠
罗晗
余小芳
张珊珊
冯帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University
Original Assignee
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University filed Critical Hubei University
Priority to CN201910675960.0A priority Critical patent/CN110433776A/zh
Publication of CN110433776A publication Critical patent/CN110433776A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties

Abstract

本发明涉及磁微粒领域,尤其涉及一种β‑环糊精功能化磁性碳微球及制备方法。本发明的β‑环糊精功能化磁性碳微球为卵黄壳结构,壳层为碳层,中间空心层为刻蚀层,内核为纳米Fe3O4,所述碳层上接枝有β‑环糊精分子,所述β‑环糊精分子具有主客识别多环芳烃分子的空腔。β‑环糊精功能化磁性碳微球对多环芳烃分子具有较好的吸附性能。

Description

β-环糊精功能化磁性碳微球及制备方法
技术领域
本发明涉及磁微粒领域,尤其涉及一种β-环糊精功能化磁性碳微球及制备方法。
背景技术
磁固相萃取(MSPE)是以磁性或可磁化的材料作为吸附剂基质的一种分散固相萃取技术,其具有非常高的萃取能力和萃取效率。磁微粒广泛应用于细胞分离、药物转运、酶的固定化和目标有机物吸附分离,而MSPE技术在环境科学、食品科学、基因组学和蛋白组学等诸多领域中都展示了极高的应用前景。其中,磁微粒结构的吸附性能是MSPE应用的关键。
Yolk-shell结构材料具有较大的比表面积,而碳材料具有良好的生物相容性、热稳定性以及机械强度,在许多应用领域都有着广泛的发展前景。但是,仅采用碳层作为壳层使用时,往往会因为缺乏对目标物分子识别的选择性而导致萃取效果不理想。
发明内容
为了解决以上问题,本发明的目的是提供一种β-环糊精功能化磁性碳微球及制备方法,制备得到的β-环糊精功能化磁性碳微球对多环芳烃(PAHs)具有较好的吸附性能。
为实现上述目的,本发明所设计的β-环糊精功能化磁性碳微球的制备方法,包括步骤:
(1)制备Fe3O4@void@C磁性碳微球:
(1.1)前驱体微球:
向纳米Fe3O4分散液中依次加入间二苯酚、氨水、甲醛和正硅酸乙酯(TEOS),发生聚合反应,再经过洗涤和干燥后得到前驱体微球;
(1.2)前驱体微球的碳化和刻蚀处理:将前驱体微球置于管式炉内进行碳化处理得到碳化产物,将碳化产物置于碳酸钠溶液中进行刻蚀处理得到Fe3O4@void@C磁性碳微球;
(2)氧化Fe3O4@void@C磁性碳微球:将Fe3O4@void@C磁性碳微球置于双氧水溶液中氧化处理得到氧化产物;
(3)β-环糊精修饰:将氧化产物分散在N,N-二甲基甲酰胺(DMF)溶剂中,并向溶剂中加入β-环糊精(β-CD)和六亚甲基二异氰酸酯(HDI)进行接枝反应得到β-环糊精功能化磁性碳微球(Fe3O4@void@C-β-CD微球)。
本发明首先通过氧化处理Fe3O4@void@C磁性碳微球引入官能团,利用HDI将β-环糊精分子接枝在碳层,制得β-环糊精功能化磁性碳微球。本发明的制备方法简单,得到的Fe3O4@void@C-β-CD微球不仅对多环芳烃分子具有较好的选择吸附性能,而且具有较好的循环吸附使用性能。
作为优选方案,所述步骤(3),按质量比,氧化产物:β-CD:HDI为1~2:1~2:2~4。
一种β-环糊精功能化磁性碳微球,其特征在于,所述β-环糊精功能化磁性碳微球为卵黄壳结构,壳层为碳层,中间空心层为刻蚀层,内核为纳米Fe3O4,所述碳层上接枝有β-环糊精分子,所述β-环糊精分子具有主客识别多环芳烃分子(PAHs)的空腔。
作为优选方案,所述β-环糊精功能化磁性碳微球的直径为50~200nm,所述刻蚀层的厚度为10~30nm。
作为优选方案,所述β-环糊精功能化磁性碳微球的碳层为多孔碳结构,碳层上的孔径为2~5nm。
作为优选方案,所述β-环糊精分子的接枝方法是,首先通过氧化碳层在碳层上引入官能团,然后利用六亚甲基二异氰酸酯将β-环糊精分子接枝在碳层。
一种利用β-环糊精功能化磁性碳微球分离富集和检测痕量多环芳烃分子的方法,其特征在于,包括步骤:向样品中加入β-环糊精功能化磁性碳微球和NaCl,震荡吸附后,将吸附有多环芳烃分子的β-环糊精功能化磁性碳微球磁性分离,移去上清液,将吸附有多环芳烃分子的β-环糊精功能化磁性碳微球浸入乙腈溶剂中,超声解吸处理后,得到解吸液,最后利用HPLC技术检测解吸液的中多环芳烃含量。
与现有的HPLC检测痕量物质技术相比,本发明首先通过Fe3O4@void@C-β-CD微球富集PAHs,然后将吸附有PAHs的Fe3O4@void@C-β-CD微球浸入适量的乙腈溶剂中,超声解吸得到含有PAHs的乙腈溶液,乙腈溶液中PAHs的浓度高于原始的样品中PAHs的浓度,然后再利用HPLC即可检测出乙腈溶液中PAHs。本发明利用Fe3O4@void@C-β-CD微球分离富集和检测痕量PAHs,提高了PAHs分析的灵敏度。
作为优选方案,所述样品为10~20ml,所述β-环糊精功能化磁性碳微球为5~15mg,所述氯化钠为2~4g,所述乙腈溶剂为1~2ml。
附图说明
图1为β-环糊精功能化磁性碳微球的制备流程图;
其中1为纳米Fe3O4,2为刻蚀层,3为碳层,4为β-环糊精分子;
图2为β-环糊精分子的接枝原理示意图;
图3为β-环糊精分子与PAHs分子的主客体识别示意图;
图4为Fe3O4@SiO2@C(a)、Fe3O4@void@C(b)、Fe3O4@void@C-COOH(c)和Fe3O4@void@C-β-CD(d)的红外光谱图;
图5为Fe3O4@void@C-β-CD的热重分析曲线;
图6为Fe3O4@void@C-β-CD的透射电镜图;
图7为Fe3O4@void@C-β-CD的孔径分布图;
图8为6次循环使用Fe3O4@void@C-β-CD的回收率柱形图;
图9为Fe3O4@void@C-β-CD对不同种类目标物的回收率柱形图;
图10为利用Fe3O4@void@C-β-CD微球分离富集和检测茶叶样品中痕量PAHs的流程示意图;
图11为茶叶样品和经过Fe3O4@void@C-β-CD微球处理的茶叶样品的HPLC色谱图。
具体实施方式
为更好地理解本发明,以下将结合附图和具体实例对发明进行详细的说明。
为解决现有磁性碳微球对目标物分子的选择性识别性能差的问题,本发明提供一种β-环糊精功能化磁性碳微球及制备方法,本发明首先通过一锅法制备出磁性前驱体微球,经过高温碳化和刻蚀,得到yolk-shell结构(卵黄壳结构)磁性碳微球,并以壳层的碳层作为载体,经过氧化引入官能团后,进行β-CD修饰,得到了β-CD功能化磁性碳微球磁性碳微球。以下将通过具体的实施例来对本发明的β-环糊精功能化磁性碳微球的制备方法的优选方式以及利用Fe3O4@void@C-β-CD微球分离富集和检测痕量PAHs的方法作详细地说明。
实施例
β-环糊精功能化磁性碳微球的制备方法,结合图1所示,包括步骤:
(1)制备Fe3O4@void@C磁性碳微球:
(1.1)前驱体微球:
称取0.25g的纳米Fe3O4置于装有150mL乙醇和50mL超纯水的三颈烧瓶中,超声10min分散得到纳米Fe3O4分散液,向纳米Fe3O4分散液中加入0.4g间二苯酚和5mL氨水、在30℃条件下搅拌1h,加入0.6mL甲醛和1.8mL TEOS,继续搅拌6h后,升温至80℃,搅拌反应8h,利用磁分离技术,将磁性微球分离出来,并用乙醇和水分别洗涤三次,真空干燥箱中60℃干燥得到前驱体微球;
(1.2)前驱体微球碳化和刻蚀处理:将前驱体微球置于管式炉内,在N2保护下,以1℃/min的速率升温至600℃,保持3h,取出得到碳化产物,再将碳化产物置于0.6mol/L碳酸钠溶液中,80℃水浴中搅拌反应1h进行刻蚀处理得到Fe3O4@void@C磁性碳微球;
(2)氧化Fe3O4@void@C磁性碳微球:取0.15g Fe3O4@void@C磁性碳微球置于15mL浓度为20%的双氧水溶液中,在40℃下搅拌氧化处理3h,利用磁分离技术分离出微球,用超纯水洗涤3次,真空干燥箱60℃干燥得到氧化后的Fe3O4@void@C磁性碳微球;
(3)β-环糊精修饰:取0.1g氧化后的Fe3O4@void@C磁性碳微球分散在50mL DMF溶剂中,并向溶剂中加入0.2gβ-CD,搅拌1h后加入0.4mL HDI,90℃搅拌反应12h,利用磁分离技术分离出微球,用超纯水洗涤3次,真空干燥箱60℃干燥得到β-环糊精功能化磁性碳微球(Fe3O4@void@C-β-CD),β-环糊精接枝的反应原理结合图2所示。
本实施例得到的Fe3O4@void@C-β-CD微球的结构如图1所示,Fe3O4@void@C-β-CD为卵黄壳结构,壳层为碳层3,中间为空心层2,内核为Fe3O4分子1,碳层3上接枝有β-环糊精分子4,β-环糊精分子4具有主客识别PAHs的空腔,β-环糊精分子4与PAHs的主客识别机理结合图3所示。
将本实施例得到的Fe3O4@void@C-β-CD微球以及Fe3O4@SiO2@C微球、Fe3O4@void@C微球、Fe3O4@void@C-COOH微球进行红外光谱检测,结果如图4所示,Fe3O4@SiO2@C(a)、Fe3O4@void@C(b)、Fe3O4@void@C-COOH(c)和Fe3O4@void@C-β-CD(d),由图4可以看出,4种材料在575cm-1均有一个明显Fe-O的特征吸收峰,与图4(a)相比较,图4(b)中Si-O-Si的伸缩振动峰1099cm-1消失,说明模板SiO2的刻蚀过程成功,图4(c)中,出现了-COOH振动峰1725cm-1,说明,材料被氧化成功,而图4(d)中,1042cm-1为C-O-C的对称伸缩振动峰,1630cm-1处为C=O的吸收峰,2925cm-1处为C-H的振动峰,均说明了β-CD被成功修饰。图5为Fe3O4@void@C-β-CD的热重分析曲线,从图5可以看出,Fe3O4@void@C-β-CD分别在300℃和650℃失重,表明,材料具有良好的热稳定性,其中,300℃的失重归属于磁微粒表面修饰材料的热分解,而600℃的失重归属于碳层在高温下碳化的程度加大。所以,该磁材料具有良好的热稳定性,适用于磁固相萃取过程。图6为Fe3O4@void@C-β-CD的透射电镜图,从图6可以看出Fe3O4@void@C-β-CD具有明显的yolk-shell结构,微粒的直径均为100nm左右,刻蚀层约20nm。Fe3O4@void@C-β-CD的孔径分布图如图7所示,由图可知Fe3O4@void@C-β-CD的孔径主要分布在2~5nm之间,属于一类介孔材料。将10mg的Fe3O4@void@C-β-CD作为吸附材料重复使用,对每一次的结果做出记录,验证该Fe3O4@void@C-β-CD的可重复使用性,结果如图8所示,在循环使用6次后,回收率下降在5%以下,Fe3O4@void@C-β-CD采用碳材料作为载体,因此具有良好的物理稳定性,能多次重复利用并保证萃取效率。另外,从常见的污染物中选取了邻苯二甲酸二丁酯、对氨基苯酚、2-萘酚、甲萘威作为目标物,与菲和芘两种多环芳烃一起配制混合标准水溶液,并利用Fe3O4@void@C-β-CD作为磁萃取介质进行磁固相萃取,结果如图9所示,相较于邻苯二甲酸二丁酯、对氨基苯酚、2-萘酚、甲萘威,Fe3O4@void@C-β-CD对菲和芘具有更为良好的回收率,说明Fe3O4@void@C-β-CD对多环芳烃具有较好的吸附选择性。
结合图10所示,将上述得到的Fe3O4@void@C-β-CD微球检测茶叶样品中痕量PAHs的方法,包括步骤:向20ml茶叶样品中加入10mg的Fe3O4@void@C-β-CD微球和3g的NaCl,震荡吸附30min后,将吸附有PAHs的Fe3O4@void@C-β-CD微球磁性分离,移去上清液,将吸附有PAHs的Fe3O4@void@C-β-CD微球浸入1ml乙腈溶剂中,超声解吸15min处理后经0.22μL滤膜过滤后得到解吸液,最后利用HPLC技术检测分析解吸液的成分。
结合如图11所示,a表示HPLC直接检测茶叶样品的色谱图,b表示将茶叶样品经过Fe3O4@void@C-β-CD微球处理后再进行HPLC检测的色谱图,从图11中可以看出,Fe3O4@void@C-β-CD微球对PAHs有很好的分离富集效果,说明本发明Fe3O4@void@C-β-CD微球分离富集和检测茶叶样品中痕量PAHs的方法有效提高了茶叶中PAHs液相色谱分析的灵敏度。
实施例2
为了探究实施例1步骤(3)β-环糊精修饰中选取合适的HDI添加量,将HDI添加量分别设定为0.2ml、0.4ml以及0.6ml。将得到的Fe3O4@void@C-β-CD进行性状和回收率的考察,结果如下表1所示:
表1 HDI加入量对磁微粒的影响
从表1可见,当加入的HDI量为0.2~0.4mL时,聚合物具有较好的吸附性能和磁性,加入0.4mL为最优。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种β-环糊精功能化磁性碳微球的制备方法,包括步骤:
(1)制备Fe3O4@void@C磁性碳微球:
(1.1)前驱体微球:
向纳米Fe3O4分散液中依次加入间二苯酚、氨水、甲醛和正硅酸乙酯,发生聚合反应,再经过洗涤和干燥后得到前驱体微球;
(1.2)前驱体微球的碳化和刻蚀处理:将前驱体微球置于管式炉内进行碳化处理得到碳化产物,将碳化产物置于碳酸钠溶液中进行刻蚀处理得到Fe3O4@void@C磁性碳微球;
(2)氧化Fe3O4@void@C磁性碳微球:将Fe3O4@void@C磁性碳微球置于双氧水溶液中氧化处理得到氧化产物;
(3)β-环糊精修饰:将氧化产物分散在N,N-二甲基甲酰胺溶剂中,并向溶剂中加入β-环糊精和六亚甲基二异氰酸酯进行接枝反应,得到β-环糊精功能化磁性碳微球。
2.根据权利要求1所述的β-环糊精功能化磁性碳微球的制备方法,其特征在于,所述步骤(3)中,按质量比,氧化产物:β-环糊精:六亚甲基二异氰酸酯为1~2:1~2:2~4。
3.一种β-环糊精功能化磁性碳微球,其特征在于,所述β-环糊精功能化磁性碳微球为卵黄壳结构,壳层为碳层,中间空心层为刻蚀层,内核为纳米Fe3O4,所述碳层上接枝有β-环糊精分子,所述β-环糊精分子具有主客识别多环芳烃分子的空腔。
4.根据权利要求3所述的β-环糊精功能化磁性碳微球,其特征在于,所述β-环糊精功能化磁性碳微球的直径为50~200nm,所述刻蚀层的厚度为10~30nm。
5.根据权利要求3所述的β-环糊精功能化磁性碳微球,其特征在于,所述β-环糊精功能化磁性碳微球的碳层为多孔碳结构,碳层上的孔径为2~5nm。
6.根据权利要求3所述的β-环糊精功能化磁性碳微球,其特征在于,所述β-环糊精分子的接枝方法是,首先通过氧化碳层在碳层上引入官能团,然后利用六亚甲基二异氰酸酯将β-环糊精分子接枝在碳层。
7.一种利用权利要求3~6中任一项所述的β-环糊精功能化磁性碳微球分离富集和检测痕量多环芳烃分子的方法,其特征在于,包括步骤:向样品中加入β-环糊精功能化磁性碳微球和氯化钠,震荡吸附后,将吸附有多环芳烃分子的β-环糊精功能化磁性碳微球磁性分离,移去上清液后将吸附有多环芳烃分子的β-环糊精功能化磁性碳微球浸入乙腈溶剂中,超声解吸处理后得到解吸液,最后利用高效液相色谱技术检测解吸液中多环芳烃含量。
8.根据权利要求7所述的利用β-环糊精功能化磁性碳微球分离富集和检测痕量多环芳烃分子的方法,所述样品为10~20ml,所述β-环糊精功能化磁性碳微球为5~15mg,所述氯化钠为2~4g,所述乙腈溶剂为1~2ml。
CN201910675960.0A 2019-07-25 2019-07-25 β-环糊精功能化磁性碳微球及制备方法 Pending CN110433776A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910675960.0A CN110433776A (zh) 2019-07-25 2019-07-25 β-环糊精功能化磁性碳微球及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910675960.0A CN110433776A (zh) 2019-07-25 2019-07-25 β-环糊精功能化磁性碳微球及制备方法

Publications (1)

Publication Number Publication Date
CN110433776A true CN110433776A (zh) 2019-11-12

Family

ID=68429839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910675960.0A Pending CN110433776A (zh) 2019-07-25 2019-07-25 β-环糊精功能化磁性碳微球及制备方法

Country Status (1)

Country Link
CN (1) CN110433776A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111117564A (zh) * 2019-12-03 2020-05-08 安徽理工大学 蛋黄-蛋壳型磁性碳复合材料、制备方法及应用
CN111175422A (zh) * 2020-03-30 2020-05-19 南通市疾病预防控制中心 一种用于多环芳烃固相萃取的环糊精聚合物及其固相萃取管柱和固相萃取方法
CN111413422A (zh) * 2020-03-05 2020-07-14 扬州大学 胆碱脯氨酸离子液体修饰磁性纳米材料及其结合hplc对爱普列特的检测方法
CN112229991A (zh) * 2020-10-16 2021-01-15 厦门圣科环保科技股份有限公司 一种纳米捕获器件及其制备方法和用途
CN112794437A (zh) * 2020-12-30 2021-05-14 山东大学 一种通过环糊精修饰好氧颗粒污泥来强化修复多环芳烃污染水体的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302428A1 (en) * 2010-09-11 2013-11-14 Dalian University Of Technology Process for preparing carbon protected superparamagnetic or magnetic nanospheres
US20140231352A1 (en) * 2011-10-17 2014-08-21 Temple University - Of The Commonwealth System Of Higher Education Silica particles coated with beta-cyclodextrin for the removal of emerging contaminants from wastewater
CN104826598A (zh) * 2015-04-14 2015-08-12 中山大学 一种新型分离介质磁性羟基葫芦[8]脲的制备及应用
CN107224753A (zh) * 2017-07-17 2017-10-03 江苏理工学院 一种利用磁性固相萃取吸附材料富集检测喜树碱的方法
CN108452781A (zh) * 2018-04-02 2018-08-28 福州大学 核壳磁性γ-环糊精聚合物复合材料的制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130302428A1 (en) * 2010-09-11 2013-11-14 Dalian University Of Technology Process for preparing carbon protected superparamagnetic or magnetic nanospheres
US20140231352A1 (en) * 2011-10-17 2014-08-21 Temple University - Of The Commonwealth System Of Higher Education Silica particles coated with beta-cyclodextrin for the removal of emerging contaminants from wastewater
CN104826598A (zh) * 2015-04-14 2015-08-12 中山大学 一种新型分离介质磁性羟基葫芦[8]脲的制备及应用
CN107224753A (zh) * 2017-07-17 2017-10-03 江苏理工学院 一种利用磁性固相萃取吸附材料富集检测喜树碱的方法
CN108452781A (zh) * 2018-04-02 2018-08-28 福州大学 核壳磁性γ-环糊精聚合物复合材料的制备方法与应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MINA YAZDANPANAH等: "Micro-solid phase extraction of some polycyclic aromatic hydrocarbons from environmental water samples using magnetic β-cyclodextrin-carbon nano-tube composite as a sorbent", 《JOURNAL OF CHROMATOGRAPHY A》 *
WEN-JING LIU等: "One-pot synthesis of yolk-shell mesoporous carbon spheres with high magnetisation", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
中国环境科学学会编: "《中国环境科学学会学术年会论文集(2012)第3卷》", 30 June 2012, 北京:中国农业大学出版社 *
朱虹等: "二醋酸纤维素与β-环糊精接枝共聚物膜的制备与表征", 《化学反应工程与工艺》 *
林孔勇等主编: "《橡胶工业手册 第6分册 工业橡胶制品》", 30 June 1993, 北京:化学工业出版社 *
王宇嘉: "磁性吸附剂β-环糊精/Fe3O4@C微球的制备及应用", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111117564A (zh) * 2019-12-03 2020-05-08 安徽理工大学 蛋黄-蛋壳型磁性碳复合材料、制备方法及应用
CN111413422A (zh) * 2020-03-05 2020-07-14 扬州大学 胆碱脯氨酸离子液体修饰磁性纳米材料及其结合hplc对爱普列特的检测方法
CN111175422A (zh) * 2020-03-30 2020-05-19 南通市疾病预防控制中心 一种用于多环芳烃固相萃取的环糊精聚合物及其固相萃取管柱和固相萃取方法
CN112229991A (zh) * 2020-10-16 2021-01-15 厦门圣科环保科技股份有限公司 一种纳米捕获器件及其制备方法和用途
CN112229991B (zh) * 2020-10-16 2022-08-16 厦门圣科环保科技股份有限公司 一种纳米捕获器件及其制备方法和用途
CN112794437A (zh) * 2020-12-30 2021-05-14 山东大学 一种通过环糊精修饰好氧颗粒污泥来强化修复多环芳烃污染水体的方法

Similar Documents

Publication Publication Date Title
CN110433776A (zh) β-环糊精功能化磁性碳微球及制备方法
Rocío-Bautista et al. Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches
Li et al. In situ hydrothermal growth of ytterbium-based metal–organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples
Zhang et al. Polydopamine-reinforced magnetization of zeolitic imidazolate framework ZIF-7 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from the air-water environment
CN109342613B (zh) 一种用于分析饮料中酚类内分泌干扰物的方法
Gholivand et al. Polypyrrole/hexagonally ordered silica nanocomposite as a novel fiber coating for solid-phase microextraction
Wu et al. Single-walled carbon nanotubes coated fibers for solid-phase microextraction and gas chromatography–mass spectrometric determination of pesticides in Tea samples
Yazdanpanah et al. Micro-solid phase extraction of some polycyclic aromatic hydrocarbons from environmental water samples using magnetic β-cyclodextrin-carbon nano-tube composite as a sorbent
Liu et al. Pipette‐tip solid‐phase extraction based on deep eutectic solvent modified graphene for the determination of sulfamerazine in river water
Ansari et al. A multi-walled carbon nanotube-based magnetic molecularly imprinted polymer as a highly selective sorbent for ultrasonic-assisted dispersive solid-phase microextraction of sotalol in biological fluids
Abolghasemi et al. Periodic mesoporous organosilica with ionic liquid framework as a novel fiber coating for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons
He et al. Fabrication of enrofloxacin imprinted organic–inorganic hybrid mesoporous sorbent from nanomagnetic polyhedral oligomeric silsesquioxanes for the selective extraction of fluoroquinolones in milk samples
CN103933929B (zh) 一种吸附疏水性有机物的介孔氧化硅吸附剂及其制备方法和应用
CN109201019B (zh) 一种磁性聚酰亚胺复合材料及其制备方法和应用
Yang et al. Evaluation of metal‐organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters
Li et al. Purification of antibiotics from the millet extract using hybrid molecularly imprinted polymers based on deep eutectic solvents
Feng et al. Graphitic carbon nitride derivative with large mesopores as sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons
Gholivand et al. Inside needle capillary adsorption trap device for headspace solid‐phase dynamic extraction based on polyaniline/hexagonally ordered silica nanocomposite
Wu et al. Synthesis of cobalt-based magnetic nanoporous carbon core-shell molecularly imprinted polymers for the solid-phase extraction of phthalate plasticizers in edible oil
Samanidou et al. Sol–gel‐graphene‐based fabric‐phase sorptive extraction for cow and human breast milk sample cleanup for screening bisphenol A and residual dental restorative material before analysis by HPLC with diode array detection
Feng et al. Chemical bonding of oxygenated carbon nitride nanosheets onto stainless steel fiber for solid-phase microextraction of phthalic acid esters
Ho et al. Development of molecular imprinted polymer for selective adsorption of benz [a] pyrene among airborne polycyclic aromatic hydrocarbon compounds
CN114471476A (zh) 磁性多孔有机骨架材料及其制备方法与应用
Liang et al. Banana-peel-derived magnetic porous carbon as effective adsorbent for the enrichment of six bisphenols from beverage and water samples
CN106512958B (zh) 一种核酸适配体修饰壳聚糖纳米纤维的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191112