CN110430953A - 用于环境修复的磁性零价金属纳米粒子表面上的薄的不溶的氢氧化物壳的合成 - Google Patents

用于环境修复的磁性零价金属纳米粒子表面上的薄的不溶的氢氧化物壳的合成 Download PDF

Info

Publication number
CN110430953A
CN110430953A CN201880018384.6A CN201880018384A CN110430953A CN 110430953 A CN110430953 A CN 110430953A CN 201880018384 A CN201880018384 A CN 201880018384A CN 110430953 A CN110430953 A CN 110430953A
Authority
CN
China
Prior art keywords
nzvi
nanoparticle
shell
core
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880018384.6A
Other languages
English (en)
Other versions
CN110430953B (zh
Inventor
X.Y.李
胡奕博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hong Kong HKU
Original Assignee
University of Hong Kong HKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hong Kong HKU filed Critical University of Hong Kong HKU
Publication of CN110430953A publication Critical patent/CN110430953A/zh
Application granted granted Critical
Publication of CN110430953B publication Critical patent/CN110430953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28059Surface area, e.g. B.E.T specific surface area being less than 100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/056Submicron particles having a size above 100 nm up to 300 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/101Sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明涉及使用控速去质子方法在纳米级零价铁(NZVI)表面上合成薄的不溶的氢氧化物壳。氢氧化物涂覆的NZVI比现有技术更好地保持悬浮在水相中,并且能用于去除地下水污染物。

Description

用于环境修复的磁性零价金属纳米粒子表面上的薄的不溶的 氢氧化物壳的合成
发明领域
本发明涉及对零价金属纳米粒子的修饰,具体涉及对用于环境修复的纳米级零价铁的修饰。
发明背景
由于纳米粒子在电子、光学和环境应用中具有许多特定功能,已对其进行了广泛的研究和使用。单个纳米粒子的聚集影响其在应用期间的长期性能。参见,Vilé,G.,etal.,“A stable single-site palladium catalyst for hydrogenations,”AngewandteChemie International Edition 54(38):11265-11269(2015),通过引用将该文献全文并入本申请。磁性纳米粒子(诸如,铁、镍和钴)更容易聚集在一起形成大的链和簇。
现如今,具有高比反应表面积(10-100m2/g)的纳米级零价铁(NZVI)已广泛用于地下水污染的原地修复。随着工业化的快速发展,在生产、使用和处置过程中,大量危害性化学品被排放到地表水、地下水和土壤中。重金属、氯化脂族化合物和硝基芳族化合物是广泛分布和最受关注的地下水污染物。参见,J.and Z.Stasicka,“Chromium occurrencein the environment and methods of its speciation,”Environmental Pollution,107(3):263-283(2000);Zhao,X.,et al.,“Removal of fluoride from aqueous media byFe3O4@Al(OH)3magnetic nanoparticles,”Journal of Hazardous Materials,173(1–3):102-109(2010);Nielsen,R.B.and J.Keasling,“Reductive dechlorination ofchlorinated ethene DNAPLs by a culture enriched from contaminatedgroundwater,”Biotechnology and bioengineering,62(2):160-165(1999);and Gupta,V.K.,et al.,“A novel magnetic Fe@Au core–shell nanoparticles anchoredgraphene oxide recyclable nanocatalyst for the reduction of nitrophenolcompounds,”Water Research,48(0):210-217(2014),通过引用将上述文献全文并入本申请。将NZVI悬浮液注入亚表水层中形成了可渗透的反应性屏障,其能有效去除由其中流过的地下水中的危害性污染物。NZVI与各种金属的相互作用可分类为:
1.还原–Cr、As、Cu、U、Pb、Ni、Se、Co、Pd、Pt、Hg、Ag。
2.吸附–Cr、As、U、Pb、Ni、Se、Co、Cd、Zn、Ba。
3.氧化/再氧化–As、U、Se、Pb。
4.共沉淀–Cr、As、Ni、Se。
5.沉淀–Cu、Pb、Cd、Co、Zn。
NZVI可通过气相还原法或液相还原法合成以产生具有不同粒径、表面积、结晶度、厚度和氧化物壳组成的NZVI。NZVI也可通过用不同金属化合物掺杂或在表面上添加官能团进行修饰以用于不同目的。
NZVI粒子之间的磁性吸引使得它们在水溶液中迅速聚集并形成较大的簇,这限制了大规模环境应用。聚集降低了NZVI粒子的悬浮稳定性,并使其在注射过程中难以迁移穿过被水饱和的多孔介质到达污染区域。NZVI粒子的聚集还减少了反应性表面积,并且因此降低了其对污染物的反应性。
因此,对NZVI粒子进行修饰以防止其在水相中的聚集和沉降对于该粒子的环境应用来说是至关重要的。在实验室和现场研究中已使用多种表面活性剂和聚合电解质来稳定NZVI。溶液中和吸附在NZVI表面上的聚合物引入了大量负电荷,给予粒子相当大的静电斥力以对抗聚集。除了聚合物之外,在NZVI合成过程期间还添加无机支撑材料如硅粉、Mg-氨基粘土和柱状膨润土以形成带支撑的NZVI,并且具有约3.5-7的相当可观的支撑材料:NZVI质量比。支撑材料有效防止NZVI粒子聚集并促进污染物从溶液到粒子表面上的质量转移。然而,鲜有研究用微细的核壳结构来修饰NZVI。纳米粒子的核壳结构在许多领域正吸引越来越多的注意,诸如,电子、生物医药、制药、光学和催化。参见,Ghosh Chaudhuri,R.andS.Paria,“Core/shell nanoparticless:classes,properties,synthesis mechanisms,characterization,and applications,”Chemical Reviews,112(4):2373-2433(2012),通过引用将该文献全文并入本申请。在将纳米粒子用薄壳涂覆之后,其性质可非常不同。可通过改变壳材料或涂覆质量比来修饰性质。此外,用环保的薄壳修饰NZVI可显著减少与NZVI一起注入到环境中的物质,这是一种有前途的可持续进行的环境修复方法。
发明内容
本发明的主要目的是开发一种以均匀的核壳结构和有限的涂覆量在反应性纳米粒子上涂覆薄的、可渗透的和不溶的氢氧化物壳的方法,因此增强了纳米粒子在水溶液中的悬浮稳定性和反应性。氢氧化物可以是氢氧化铝(Al(OH)3)。反应性纳米粒子可以是NZVI。因此,可在NZVI表面上合成Al(OH)3纳米粒子以形成具有均匀的核壳结构的Al(OH)3涂覆的NZVI(NZVI@Al(OH)3)产物。
与NZVI相比,根据本发明的NZVI@Al(OH)3产物具有用于环境修复的更高的应用可行性。使用Al(OH)3修饰NZVI以得到可渗透涂层壳。可通过本发明的合成方法实现对壳厚度的控制。用Al(OH)3壳涂覆提高了NZVI粒子的表面电荷和BET表面积,这增强了NZVI的悬浮稳定性和反应性。根据本发明的修饰技术需要有限的化学品量、合成时间和能耗,这使其成为一种环境友好的方法。
制备核壳产物的方法的示例性实施方式包括通过以下操作在NZVI粒子表面上均匀涂覆Al(OH)3
(a)在无氧条件下,使用超声照射在醇介质(优选乙醇)中分散NZVI,其中NZVI浓度为0.5-2g/L;
(b)将铝离子添加到NZVI分散液中,Al:Fe质量比为2-10wt%;和
(c)通过将氢氧化钠(NaOH)的添加速率良好控制为1-3mol-OH/mol-Al/min且将OH-:Al3+的总摩尔比控制为3使铝离子逐渐去质子。氢氧化物壳的厚度和渗透性可通过铝离子的量来控制。
Al(OH)3壳可有效防止聚集,因此在涂覆之后提高了纳米粒子的比表面积,这可归因于壳所提供的空间稳定效应。此外,随着涂覆量的增加,纳米粒子的表面电荷得以富集并且磁吸引力得以降低,这有效地增强了纳米粒子在水相中的悬浮稳定性。
Al(OH)3壳能促进NZVI粒子与溶解污染物的表面反应。首先,由于NZVI粒子与污染物的反应是表面介导的,NZVI的反应性将随着比表面积增大而增加。其次,Al(OH)3涂层壳促使污染物被吸附到纳米粒子表面上。当Al(OH)3壳使纳米粒子的表面电荷从负性变为正性时,静电吸引可有效促进带负电的污染物从水相向粒子表面的质量转移。第三,反应产物,即亚铁(Fe2+)和铁(Fe3+)离子,将会容易地沉淀在裸NZVI粒子的表面上,形成(氢)氧化铁壳,其抑制了污染物从水相向NZVI表面的质量转移,降低了反应速率。当具有Al(OH)3壳时,铁离子在粒子表面上的吸附和沉淀将被Al(OH)3表面上的正电荷所抑制,这保留了NZVI粒子的更多反应性表面以用于污染物修复。
在Al(OH)3壳结构的基础上,NZVI表面可进一步用聚电解质功能化以形成聚电解质/Al(OH)3杂化涂层壳。聚电解质可以是富含羧酸基团的聚合物。聚电解质/Al(OH)3壳可在粒子表面上富集负电荷,这可归因于聚电解质的大量羧酸基团,其将增加粒子间的静电斥力和增强NZVI粒子在水相中的悬浮稳定性。另一方面,表面羧酸基团可用作交联剂以经由离子交换将阳离子吸附或集中在粒子表面上。交联功能可用于从水相中去除重金属,诸如,Cr3+、Co2+和Ni2+离子,以及用于集中进行表面反应的反应性阳离子,诸如,Fe2+离子。而且,在水相中与NZVI的反应期间,具有游离羧酸基团的表面聚电解质可交联反应产物,诸如,Fe3+离子,这将抑制氢氧化物沉淀的形成和在粒子表面上保留更多的反应性位点。
在一个实施方式中,本发明涉及一种核壳结构化的纳米粒子,其包含被薄的、不溶的氢氧化物壳围绕的零价金属纳米粒子核。
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述零价金属纳米粒子核是磁性零价金属纳米粒子。
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述磁性零价金属纳米粒子是NZVI。
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述不溶的氢氧化物壳是Al(OH)3
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述不溶的氢氧化物壳包含Al(OH)3和聚电解质。
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述聚电解质包含一种或多于一种富含羧酸基团的聚合物。
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述富含羧酸基团的聚合物是,但不限于,聚丙烯酸(PAA)、羧甲基纤维素(CMC)和聚乙烯醇-共-醋酸乙烯酯-共-衣康酸(PV3A)。
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述氢氧化物壳具有2-20nm的厚度,优选4-15nm。
在另一个实施方式中,本发明涉及上述核壳结构化的纳米粒子,其中所述零价金属纳米粒子核的粒径在20-150nm范围内,优选50-100nm。
在另一个实施方式中,本发明涉及一种合成核壳结构化的纳米粒子的方法,所述核壳结构化的纳米粒子具有被薄的、不溶的氢氧化物壳所围绕的零价金属纳米粒子核,所述方法包含以下步骤:
通过超声照射将零价金属纳米粒子分散到醇介质中;
将作为前体的金属离子添加到纳米粒子悬浮液中;
在控速条件下将NaOH添加到纳米粒子悬浮液中以去质子和沉淀金属离子;和
用甲醇和乙醇清洗产物。
在另一个实施方式中,本发明涉及一种合成核壳结构化的纳米粒子的方法,所述核壳结构化的纳米粒子具有被薄的聚电解质/氢氧化物杂化壳(hybrid shell)围绕的零价金属纳米粒子核,所述方法包含以下步骤:
通过超声照射将零价金属纳米粒子分散在醇介质中;
将聚电解质添加到纳米粒子悬浮液中;
将作为前体的金属离子添加到纳米粒子悬浮液中;
在控速条件下将NaOH添加到纳米粒子悬浮液中以去质子和沉淀金属离子;和
用甲醇和乙醇清洗产物。
在另一个实施方式中,本发明涉及上述用于合成核壳结构化的纳米粒子的方法,其中所述醇介质是乙醇。
在另一个实施方式中,本发明涉及上述用于合成核壳结构化的纳米粒子的方法,其中所述金属离子前体是无水金属氯化物。
在另一个实施方式中,本发明涉及上述用于合成核壳结构化的纳米粒子的方法,其中实施所述步骤的气氛是氮气(N2)或氩气(Ar),温度是22±1℃。
在另一个实施方式中,本发明涉及一种在水性介质中制备高悬浮纳米粒子的方法,所述方法包含以下步骤:
将权利要求1的核壳纳米粒子添加到水性介质中;和
通过声处理混合至少约20秒。
在另一个实施方式中,本发明涉及一种从水性介质去除污染物的方法,所述方法包含以下步骤:将如前所述的核壳纳米粒子添加到污染的水性介质中以实现污染物的吸附和还原。
在另一个实施方式中,本发明涉及如上所述的从水性介质中去除污染物的方法,其中所述污染物包含下组中的一种:含硝基有机化合物(4-硝基苯酚、硝基苯)、卤化化合物(CCl4、C2HCl3)、高价态重金属(Cr2O7 2-和AsO4 3-)、非金属阴离子(NO3 -和SO4 2-)和重金属阳离子(Cr3+、Ni2+和Co2+)。
在另一个实施方式中,本发明涉及如上所述的从水性介质中去除污染物的方法,其中所述水性介质包含下组物质中的一种:污染的地表水、污染的地下水、城市废水、工业废水、来自废水处理厂的流出物、来自工业厂房的流出物、来自垃圾填埋场的渗滤液和来自矿区的渗滤液。
附图简述
当结合以下详细描述和附图考虑时,本发明的前述和其它目的和优点将变得更明显,其中各个视图中类似的标号表示类似的要素,其中:
图1的图表显示的是在0.1g/L、0.5g/L和1g/L的NZVI浓度下,在超声照射期间,在乙醇中,在无氧条件下,作为时间函数的裸NZVI粒子的平均直径;
图2A是裸NZVI的扫描电子显微镜(SEM)图像,并且图2B是具有1.0wt%Al(OH)3壳的NZVI@Al(OH)3的SEM图像;
图3A是裸NZVI的透射电子显微镜(TEM)图像,图3B是具有0.4wt%Al(OH)3壳的NZVI@Al(OH)3的TEM图像,图3C是具有1.0wt%Al(OH)3壳的NZVI@Al(OH)3的TEM图像,并且图3D是具有3.4wt%Al(OH)3壳的NZVI@Al(OH)3的TEM图像;
图4示出了合成的裸NZVI和具有0.4wt%、1.0wt%和3.4wt%Al(OH)3壳的NZVI@Al(OH)3的XRD图谱;
图5A示出了裸NZVI和具有1.0wt%Al(OH)3壳的NZVI@Al(OH)3的Fe2p的X射线光电子能谱(XPS),图5B示出了裸NZVI和具有1.0wt%Al(OH)3壳的NZVI@Al(OH)3的O1s的XPS,并且图5C是裸NZVI和具有1.0wt%Al(OH)3壳的NZVI@Al(OH)3的Al 2p的XPS;
图6示出了裸NZVI和具有0.4wt%、1.0wt%和3.4wt%Al(OH)3壳的NZVI@Al(OH)3在1mM NaHCO3溶液中的沉降曲线,[NZVI]=0.1g/L;
图7示出了裸NZVI和NZVI@Al(OH)3在1mM NaHCO3溶液中的无氧H2生成,[NZVI]=0.1g/L;
图8是示出了合成氧化铁和Al(OH)3纳米粒子上的4-NP在水溶液中的吸附等温线的图表,其中所述水溶液中的固体浓度为0.1g/L;
图9是示出了裸NZVI和NZVI@Al(OH)3在无氧条件下还原4-NP的去污染能力的图表,[NZVI]=0.1g/L,[4-NP]=0.1g/L;
图10是示出了裸NZVI和1.0wt%涂覆质量的NZVI@Al(OH)3在有氧和无氧腐蚀之前和之后的4-NP去除效率的图表(腐蚀条件:[NZVI]=0.1g/L,[NaHCO3]=1.0mM,pH=8.3±0.1,T=23±1℃);
图11A是裸NZVI的TEM图像,图11B是具有1wt%Al/Fe涂覆量的NZVI@PAA/Al(OH)3的TEM图像,图11C是具有2wt%Al/Fe涂覆量的NZVI@PAA/Al(OH)3的TEM图像,并且图11D是具有3wt%Al/Fe涂覆量的NZVI@PAA/Al(OH)3的TEM图像;
图12A示出了具有1wt%、2wt%和3wt%Al/Fe涂覆量的NZVI@PAA/Al(OH)3的Al 2p的XPS谱,并且图12B示出了具有1wt%、2wt%和3wt%Al/Fe涂覆量的NZVI@PAA/Al(OH)3的C1s的XPS谱;
图13示出了裸NZVI和具有不同Al/Fe涂覆量的NZVI@PAA/Al(OH)3在无氧条件下还原Cr(VI)的去污染能力,[NZVI]=0.3g/L,[Cr(VI)]=0.03g/L;和
图14示出了在24h之后,不同NZVI浓度的裸NZVI和1wt%Al/Fe涂覆量的NZVI@PAA/Al(OH)3在无氧腐蚀条件下的Cr(VI)去除效率,其中[Cr(VI)]=0.03g/L。
示例性实施方式说明
本发明的修饰技术用于反应性金属纳米粒子,所述反应性纳米粒子容易聚集在一起,从而当为干粉形式时形成大簇或在液体介质中沉积。
在一个实施方式中,反应性金属纳米粒子是或包括NZVI。在粒子间具有磁性吸引的NZVI通常是在其应用期间受聚集问题困扰的一类纳米粒子。
为在纳米粒子表面上均匀涂覆薄的、不溶的和可渗透的壳,纳米粒子应当在涂覆之前是分离的,并且在涂覆过程期间保持悬浮。应用超声照射作为涂覆过程的前驱过程以将NZVI粒子在醇介质(优选乙醇)中打散形成单个颗粒或小簇。超声过程优选在无氧条件和室温下进行以保护NZVI粒子的反应性内含物(Fe0)免于氧化。
在磁性纳米粒子表面上涂覆非-磁性壳能够削弱粒子间的磁性吸引,因为非-磁性层用作磁性粒子表面处的无序自旋层。饱和磁化强度的值(铁磁性和铁磁性材料的特性)将随着无序自旋层的厚度增加而降低,如方程1中所示。
Ms=Msb[(r-d)/r]3 (1)
其中,r是纳米粒子的半径,d是无序自旋层的厚度,并且Msb是主体Ms(bulk Ms)。参见,Kolhatkar,A.G.et al.,“Tuning the magnetic properties of nanoparticles,”International Journal of Molecular Sciences,14(8):15977-16009(2013),通过引用将该文献全文并入本申请。
磁性壳优选实施吸附剂的功能。更优选地,吸附剂表面在大多数环境条件(即,pH值小于9)下带正电。带正电荷表面能够容易地吸附环境中的大部分有毒污染物,这些污染物在水相中带负电。
在一个实施方式中,非-磁性吸附剂是或包括无定形Al(OH)3纳米粒子。首先,Al(OH)3纳米粒子广泛用作成本有效和环保的吸附剂以去除带负电的污染物,诸如,来自水性环境的磷酸根、砷酸根、六价铬和氟离子。其次,在约9-11.5的零电荷点时,无定形Al(OH)3纳米粒子在中性或弱酸性(污染)条件下为高度带正电荷的。参见,Kosmulski,M.,“pH-dependent surface charging andpoints of zero charge II.Update,”Journal ofColloid and Interface Science,275(1):214-224(2004);Kosmulski,M.,“pH-dependentsurface charging and points of zero charge:III.Update,”Journal of Colloid andInterface Science,298(2):730-741(2006);and Yan,Y.,et al.,“Mechanism of myo-inositol hexakisphosphate sorption on amorphous aluminum hydroxide:spectroscopic evidence for rapid surface precipitation,”EnvironmentalScience&Technology,48(12):6735-6742(2014),上述文献通过引用整体并入本申请。表面上的正电荷能够对纳米粒子给予静电斥力,即,静电稳定,以有利于纳米粒子在水性环境中的分离和悬浮。最后,由于无定形Al(OH)3纳米粒子具有聚合物-样结构,其基本单元是通过双氢氧化物桥接合的呈八面体构造的六个铝原子的环,可通过聚合物-样结构提供空间稳定(聚合物稳定)。参见,Teagarden,D.L.and S.L.Hem,“Conversion of aluminumchlorohydrate to aluminum hydroxide,”Journal of the Society of CosmeticChemists 33(6):281-295(1982),通过引用将该文献全文并入本申请。
通常使用AlCl3、Al2(SO4)3或Al(NO3)3作为前体,通过将Al3+水溶液的pH值调节到所需的碱性条件来合成无定形Al(OH)3纳米粒子。随后,将Al3+离子逐渐去质子并通过逐渐与OH-粒子结合而沉淀(方程2),这花费大约24小时。Al3+离子的去质子过程通过羟基桥接进行的聚合过程,得到链-样结构。参见,Rengasamy,P.and J.Oades,“Interaction ofmonomeric and polymeric species of metal ions with claysurfaces.III.Aluminium(III)and chromium(III),”Soil Research 16(1):53-66(1978),通过引用将该文献全文并入本申请。
本发明人开发了一种名为“控速沉淀”或“控速去质子”的新方法以在NZVI粒子表面上涂覆Al(OH)3壳。使用该方法,首先将AlCl3溶解在醇介质中,优选乙醇,并添加到NZVI悬浮液中。一部分Al3+离子被吸附在NZVI粒子的表面上。将涂覆量(即,Al:Fe质量比)从2wt%调节到10wt%。其次,将溶解在相同醇介质中的NaOH通过注射泵逐渐注入NZVI悬浮液中。NaOH的注射速率被良好控制在1-3mol-OH/mol-Al/min。注入的OH与Al的总摩尔比被控制为3。最后,使用纯的醇(优选甲醇)清洗产物以去除任何杂质。
Al3+→Al(OH)2+→Al(OH)2 +→Al(OH)3 (2)
较高的Al量有利于Al3+离子在NZVI表面上的吸附,增加Al(OH)3壳的厚度并降低Al(OH)3壳对水溶液中溶质的渗透性。Al的最佳涂覆量可有所不同以去除不同污染物。在NaOH注入期间,将Al3+离子逐渐去质子以形成聚阳离子Al(OH)x (3-x)+,并且最终Al(OH)3纳米粒子沉淀在固相(即,NZVI粒子)的表面上。Al(OH)3涂层壳的均匀性受NaOH注入速率的影响。
本发明的非-磁性涂层壳(优选无定形Al(OH)3纳米粒子)用于制备在水溶液中良好地悬浮的磁性纳米粒子,优选NZVI粒子,其可用于在反应器中去除污染物,或者可被注入到亚表水层中用于地下水修复。NZVI粒子的悬浮稳定性受磁性吸引力和斥力影响。斥力可来自于静电斥力和空间斥力。Al(OH)3壳增加了NZVI粒子表面上的无序自旋层的厚度,因此削弱了NZVI粒子间的磁性吸引。NZVI粒子的表面电荷(即,静电斥力)可由Al(OH)3涂层壳富集,并且随着涂覆量增加而增加。此外,涂覆量增加使涂层壳增厚,从而可提供空间阻碍以达到稳定。
使用Al(OH)3涂层壳以增加NZVI粒子的反应性。首先,当通过超声照射分离NZVI粒子并用非-磁性壳涂覆时,NZVI粒子的比表面积在涂覆后增加。其次,当Al(OH)3在水溶液中的悬浮稳定性增加时,反应性表面被保留更长时间以去除污染物。第三,由于较低pH条件有利于与NZVI的反应并且产生OH-离子,因此在表面上具有AlOH基团的Al(OH)3壳可释放H+离子(方程3)以中和纳米粒子周围产生的OH-离子并将pH保持在相对低的条件。参见,Sposito,G.,The environmental chemistry of aluminum,CRC Press(1995),通过引用将该文献全文并入本申请。
AlOH=AlO-+H+ (3)
Al(OH)3涂层壳优选用于提高NZVI粒子与带负电荷污染物的反应速率。由于AlOH基团可结合H+离子并形成带正电荷表面(方程4),促进了带负电荷污染物从水相向纳米粒子表面的质量转移,即,吸附。在一个优选实施方式中,带负电荷污染物为含硝基有机化合物,诸如,4-硝基苯酚和硝基苯。在另一个实施方式中,带负电荷污染物是具有高价态的重金属,诸如,重铬酸根(Cr2O7 2-)和砷酸根(AsO4 3-)。带负电荷污染物的另一个实例是非金属阴离子,诸如,硝酸根(NO3 -)、硫酸根(SO4 2-)和磷酸根(PO4 3-)。此外,Al(OH)3涂层壳的带正电荷表面能抑制Fe2+和Fe3+离子(它们是NZVI粒子的反应产物)在粒子表面上的沉淀。相比于Al(OH)3壳,裸NZVI粒子的表面因为具有薄的氧化铁壳(~3nm)而是带负电荷的。氧化铁壳是用于吸附和沉淀Fe2+和Fe3+离子的更合适的表面,其将显著抑制污染物与NZVI粒子的反应性表面的有效接触并降低反应速率。
AlOH+H+=AlOH2 + (4)
在另一个实施方式中,在Al(OH)3壳的基础上用聚电解质对NZVI的表面进一步功能化。本发明的聚电解质可以是或包括PAA。PAA的分子在聚合物链上具有许多羧酸基团。PAA可经由羧酸基团与NZVI粒子的(氢)氧化铁表面之间的锚定(-COO-Fe-O-)而被吸附在NZVI粒子的表面上。参见Jiemvarangkul,P.,et al.,“Enhanced transport ofpolyelectrolyte stabilized nanoscale zero-valent iron(nZVI)in porous media,”Chemical Engineering Journal,170(2-3):482-491(2011),通过引用将该文献全文并入本申请。另一方面,PAA可交联Al3+离子与羧酸基团(-COO-Al2+),这在AL3+去质子过程期间被用于控制Al(OH)3纳米粒子的形态。参见Mathieu,Y.,et al.,“Control of themorphology and particle size of boehmite nanoparticles synthesized underhydrothermal conditions,”Langmuir,23(18):9435-9442(2007),通过引用将该文献全文并入本申请。总体上,使用锚定和交联行为,在Al(OH)3壳的涂覆过程期间添加PAA将有利于PAA的固定和Al(OH)3纳米粒子在NZVI表面上的沉淀。
涂覆在NZVI表面上的PAA/Al(OH)3杂化壳优选用于提高NZVI粒子的悬浮稳定性和反应能力。使用PAA/Al(OH)3涂层壳,PAA的一部分未经锚定或未交联的羧酸基团可在粒子表面附近提供负电荷(-COO-)以改进粒子的ζ-电势,并且因此改进NZVI粒子的悬浮稳定性。另一方面,表面-COO-基团能交联Fe2+离子,后者是通过H+粒子和溶解氧(DO)的腐蚀以及与污染物的反应产生的。表面交联的Fe2+离子可在还原污染物(诸如,Cr2O7 2-)中起重要作用。参见Mu,Y.,et al.,“Insight into core-shell dependent anoxic Cr(VI)removal withFe@Fe2O3 nanowires:indispensable role of surface bound Fe(II),”ACS AppliedMaterials&Interfaces,7(3):1997-2005(2015),通过引用将该文献全文并入本申请。此外,表面-COO-基团的交联功能能抑制NZVI表面在反应期间的钝化。在NZVI的有氧腐蚀期间和NZVI对Cr2O7 2-或其它氧化性污染物的还原期间将产生三价阳离子(如,Fe3+和Cr3+)。在水相中具有低溶解度的三价阳离子在NZVI表面上生成之后将作为氢氧化物迅速沉淀并钝化整个NZVI粒子。在PAA的表面-COO-基团存在下,生成的阳离子(Mn+)将交叉排列以形成-COO-M(n-1)+,这能显著抑制阳离子的沉淀。参见Baigorri,R.,et al.,“Supramolecularassociation induced by Fe(III)in low molecular weight sodium polyacrylate,”Colloids and Surfaces A:Physicochemical and Engineering Aspects,292(2):212-216(2007);Korus,I.and Loska,K.“Removal of Cr(III)and Cr(VI)ions from aqueoussolutions by means of polyelectrolyte-enhanced ultrafiltration,”Desalination,247(1):390-395(2009),通过引用将该文献全文并入本申请。
实施例
实施例1
在裸NZVI粒子表面上涂覆Al(OH)3
裸NZVI的合成
使用Lu所报道的NaBH4还原法但进行了调整,合成了在本实施例中使用的裸NZVI粒子。参见,Lu,L.,et al.,“Synthesis and characterization of Fe-Fe2O3 core-shellnanowires and nanonecklaces,”Crystal Growth&Design7(2):459-464(2007),通过引用将该文献全文并入本申请。具体地,在250mL玻璃反应器中,将0.1159g FeCl3溶解在71.5mL去离子水中。随后以4.5mL/min的速率将50mL NaBH4水溶液(0.4mol/L)添加到FeCl3溶液中,通过蠕动泵控制。接下来,将溶液用悬吊式机械搅拌装置混合,并且在还原过程期间将反应器用纯氮气充满。在还原10-分钟之后,用磁场分离NZVI粒子,并且用去离子水和乙醇分别清洗三次。随后将NZVI粒子在乙醇中在N2气氛下用声处理清洗三次以完全去除任何杂质。
NZVI悬浮液的制备
在100mL锥形瓶中,分别将4mg、20mg和40mg NZVI粒子溶解在40mL无水乙醇中,得到0.1g/L、0.5g/L和1g/L的NZVI浓度。将锥形瓶用PTEE隔膜密封,将顶部空间用纯氮气充满。锥形瓶在声处理槽中以40kHz的超声频率声处理,输出功率密度为0.27W/cm2。在超声照射期间监测NZVI粒子的平均大小。图1示出了NZVI簇在乙醇中初始具有沉积物形式的48.7μm的平均大小。在声处理1min之后,浓度为0.1g/L和0.5g/L的NZVI簇破碎成单个粒子或小簇,平均直径为210.7nm。然而,对于1g/L的NZVI浓度,花费了约30min将NZVI粒子的平均直径减少到332.0nm。结果表明,使用超声照射提供的恒定能量,簇破碎的效率随着NZVI浓度增加而降低。在效率和成本有效性方面,0.5g/L的NZVI浓度优选用于涂覆过程。
NZVI@Al(OH)3的合成
通过在用橡胶塞和铝翻盖密封的120mL玻璃瓶中将0.494g无水AlCl3溶解在100mL无水乙醇中制备Al离子储备溶液(1g/L)。在将NZVI悬浮液(0.5g/L)于锥形瓶中声处理5min之后,将AlCl3储备溶液迅速注入锥形瓶中。将Al量(mAl/mFe×100wt%)从3wt%调节到5wt%。随后经由注射泵以1mol-OH/mol-Al/min的递送速率将具有所需浓度的3mL NaOH乙醇溶液(molOH/molAl=3.0)引入到锥形瓶中。在整个涂覆过程中使用超声照射悬浮NZVI粒子并混合溶液。为保护NZVI粒子免于氧化,涂覆过程在氮气气氛(200mL/min)和22℃条件下进行。在注入NaOH溶液之后,将固相(即NZVI@Al(OH)3粒子)用乙醇和甲醇清洗,并通过磁体分离。将合成的NZVI@Al(OH)3粒子存储在乙醇中以减少氧化,并且在使用前用脱氧的去离子水清洗。
结果和讨论
图2A示出了本实施例中合成的裸NZVI,并且图2B示出了本实施例中合成的NZVI@Al(OH)3。由图2A可见裸NZVI由具有光滑表面的50-100nm粒子组成。如图2B所示,在用Al(OH)3壳涂覆NZVI之后,根据本发明的样品中的粒子被粗糙表面覆盖。TEM图像示出裸NZVI粒子最初被3nm层覆盖(图3A),其是由Fe0腐蚀形成的氧化铁膜。参见,Nurmi,J.T.,et al.,“Characterization and properties of metallic iron nanoparticles:spectroscopy,electrochemistry,and kinetics,”Environmental Science&Technology,39(5):1221-1230(2005),通过引用将该文献全文并入本申请。相比于裸NZVI粒子,NZVI@Al(OH)3粒子额外被更透明的壳涂覆,其具有与氧化铁层的清晰边界线。该更透明的壳在涂覆过程期间形成,并且随着Al量(Aldose/Fe)从3wt%增加到5wt%而变得更厚。根据TEM图像,对于3wt%、4wt%和5wt%的铝量,透明壳的厚度分别为约3.9nm、约4.3nm和约6.7nm。这些重量百分比时的图像在图3B、3C和3D中示出。
表1(如下)示出了在本实施例中合成的NZVI@Al(OH)3粒子的物理和化学性质。当铝量为3wt%、4wt%和5wt%时,铝沉积质量(Alcoat/Fe)分别为0.4wt%、1.0wt%和3.4wt%。因此,回收效率(Alcoat/Aldose)从0.13增加到0.81,因为较高浓度的Al3+和OH-有利于NZVI表面上的吸附和沉淀。因此,随着Al(OH)3涂覆质量增加,粒子的比表面积逐渐从17.0m2/g增加到36.1m2/g,这可归因于在涂覆过程之后Al(OH)3壳提供的空间稳定抑制了NZVI聚集。NZVI粒子最初因氧化铁壳而在表面上带负电荷,其ζ-电势为-9.7。在用Al(OH)3壳涂覆之后,ζ-电势从负性变为正性。随着Al涂覆质量增加,ζ-电势也从13.3增加到18.5。
NZVI的XRD图谱由铁的弱宽峰占主导(图4),与通过NaBH4还原方法合成的NZVI的弱结晶特质一致。参见,Ai,Z.,et al.,“Core–shell structure dependent reactivityof Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol,”EnvironmentalScience&Technology,47(10):5344-5352(2013),通过引用将该文献全文并入本申请。在用不同Al量涂覆之后,NZVI的这个XRD图谱没有改变。在使用不同Al量的情况下,于室温通过控速沉淀法涂覆在NZVI表面上的Al(OH)3未显示出任何明显的结晶特征。Al(OH)3壳的这种无定形特质使所述壳具有缺损和孔,从而允许水溶液中的溶质穿壳运输。
进行图5中示出的XPS分析以比较NZVI和NZVI@Al(OH)3的表面组成。对于Fe 2p的NZVI和1.0wt%NZVI@Al(OH)3的XPS测量显示,在涂覆后表面上铁的原子浓度从29.3%降低到19.9%。参见图5A。由于XPS的测量深度为约5nm,铁表面浓度的降低显示NZVI粒子被Al(OH)3壳覆盖由此减少了从NZVI逸出的光电子。参见,Feng,Q.,et al.,“Investigation onthe corrosion and oxidation resistance of Ni–Al2O3 nano-composite coatingsprepared by sediment co-deposition,”Surface and Coatings Technology,202(17):4137-4144(2008),通过引用将该文献全文并入本申请。图5B中的XPS O 1s谱显示,在涂覆后羟基O浓度从53.2%增加到70.1%,这可归因于在表面上形成了与Al结合的羟基基团(OH-Al,中心在531.5eV)。参见,Sherwood,P.M.A.,“Introduction to studies ofaluminum and its compounds by XPS,”Surface Science Spectra,5(1):1-3(1998),通过引用将该文献全文并入本申请。还通过对Al 2p的XPS测量确认了Al的价态(图5C)。相比于裸NZVI,NZVI@Al(OH)3的XPS Al 2p谱示出了中心在74.2eV的清晰峰,其被归属为Al(III)。参见,Zou,Y.,et al..“Environmental remediation and application ofnanoscale zero-valent iron and its composites for the removal of heavy metalions:a review,”Environmental Science&Technology,50(14):7290-7304.(2016),通过引用将该文献全文并入本申请。
表1
实施例2
沉降研究
进行沉降测试以说明NZVI和NZVI@Al(OH)3粒子在水溶液中的悬浮稳定性。将包含0.1g/L NZVI的NZVI或NZVI@Al(OH)3的悬浮液装入1-cm塑料比色杯中。使用紫外-可见光(UV-Vis)分光光度计在508nm监测悬浮液的光学吸光度(It),其为时间的函数。在沉降实验中采用2mL的悬浮液体积,使得紫外-可见光可照射悬浮液的顶部区域,这消除了来自被照射区域之上的沉降的影响。在测试之前,使用20-秒声处理将NZVI粒子悬浮在水溶液中。
结果和讨论
通过绘制归一化吸光度(It/I0)随时间的变化来获得沉降曲线(图6)。I0是悬浮液的初始吸光度,对于包含0.1g/L NZVI的所有NZVI和NZVI@Al(OH)3悬浮液,所述初始吸光度经测量均为1.2±0.15。It/I0的下降表明粒子从顶部区域向下沉降。当Al/Fe量从0到3.4wt%时,沉降半数时间(thalf,It/I0=0.5)从10.6min增加到51.6min。NZVI和NZVI@Al(OH)3的沉降遵循Phenrat et al对于NZVI粒子沉降所讨论的模式。参见,Phenrat,T.,etal.,“Aggregation and sedimentation of aqueous nanoscale zerovalent irondispersions,”Environmental Science&Technology,41(1):284-290(2006),通过引用将该文献全文并入本申请。临界时间(tcrit)段将沉降曲线分为两部分。在tcrit之前,NZVI粒子逐渐聚集成离散的聚集体,其具有缓慢的沉降速度。当NZVI聚集体彼此连接形成临界尺寸的链和簇时,即,在tcrit时,NZVI粒子开始迅速沉降。沉降曲线的两部分通过方程5拟合,描述了被照射区域中粒子通过沉降去除的效率。
在这里τ是通过分形聚集体的流体动力学半径确定的特征时间(min)。
对于沉降的第1部分,3.4wt%NZVI@Al(OH)3的τ1为539.4min,这比裸NZVI(55.8min)的τ1大8.7倍。同时,在3.4wt%Al涂覆质量的情况下,τ2(对于第2部分)仅增加到1.2倍。τ的比较表明Al(OH)3涂层壳对NZVI沉降的影响主要在tcrit之前的粒子聚集上。相比于NZVI,合成的NZVI@Al(OH)3需要更多时间形成临界尺寸的聚集体,即,Al(OH)3壳抑制了NZVI粒子在水溶液中的聚集。在形成临界尺寸的聚集体之后,NZVI和NZVI@Al(OH)3粒子具有相似的沉降速度。
实施例3
反应性测试–无氧H2生产
无氧H2生成受水溶液pH值和纳米粒子比表面积的影响,进行该无氧H2生成来比较NZVI和NZVI@Al(OH)3粒子的反应性。在手套箱中,将126mL血清瓶用包含0.1g/L NZVI的80mL悬浮液填充并用橡胶塞和铝翻盖密封。血清瓶的顶部空间最初用纯N2填充。在反应期间以200rpm进行摇动,并在选定时间点提取顶部空间中的50μL气体以通过气相色谱(GC9890)进行H2浓度测量。
结果和讨论
在图7中呈现了10天内的使用Fe0量归一化的无氧H2生成的结果,其用伪零级动力学模拟(方程6)
其中,是在时间t(d)时产生的H2摩尔数,是参与H2生成的Fe0摩尔数,是观察到的H2生成的速率常数(mol/mol-Fe0/d)。
随着Al量从0wt%增加到3.4wt%,从0.0422mol/mol-Fe0/d增加到0.0751mol/mol-Fe0/d。随着Al(OH)3壳质量比的增加而增加(表1)。由于粒子表面上的质子浓度以及被Al(OH)3壳所提升的反应性表面积的增加,NZVI@Al(OH)3粒子的反应性高于裸NZVI粒子的反应性。
实施例4
4-硝基苯酚(4-NP)去除
水溶液中氧化铁和Al(OH)3纳米粒子对4-NP的吸附
在水溶液中,用所选定的带负电荷的污染物进行吸附实验以显示NZVI(氧化铁)和NZVI@Al(OH)3(Al(OH)3)粒子的表面吸附能力。氧化铁通过将裸NZVI在有氧去离子水中于23℃和200rpm连续摇动下老化24小时来合成。使用与针对具有100wt%同等Al当量的NZVI@Al(OH)3的涂覆过程相同的方法合成没有裸NZVI的Al(OH)3涂层壳。合成的氧化铁和Al(OH)3纳米粒子经测定分别为19.5m2/g和7.2m2/g。使用每份10mL的多份4-硝基苯酚溶液进行吸附实验,所述溶液为0.01g/L、0.02g/L、0.05g/L和0.1g/L,并各与1mmol/L NaHCO3共同溶解。向溶液中添加1mg氧化铁或Al(OH)3以得到0.1g/L固相。在添加固体后,通过于23℃以40rpm旋转24hr混合溶液以达到吸附平衡。在平衡之后通过0.45μm膜过滤1mL样品以去除固相,并测定水相中的4-NP浓度(Ce)。
4-NP在水溶液中的还原
用NZVI和NZVI@Al(OH)3粒子进行无氧4-NP还原的分批实验。将43mL小瓶中装入39.2mL包含0.1g/L NZVI和1mmol/L NaHCO3的脱氧水溶液,并用PTEE隔膜密封。随后将0.8mL浓度为5g/L的4-NP溶液注入密封小瓶中。溶液的初始pH值为7.3。将小瓶在翻滚式旋转器上以60rpm旋转以完全混合溶液。每次抽取1-mL分散液并用0.45-μm膜过滤。将滤液稀释10倍,并将经稀释样品的pH调节到约10以测量4-NP浓度。通过紫外可见光吸收光谱在250-500nm扫描范围内监测水相中的4-NP的浓度。对于所有反应性实验,室温均被控制为23℃。
结果和讨论
通过朗格缪尔等温线分析吸收过程(方程7):
其中,qe是4-NP在固相上的平衡吸附容量(mg/g),qm是最大吸附容量(mg/g),KL是朗格缪尔吸附常数(L/mg)。NZVI粒子上的氧化铁(由纤铁矿和磁铁矿组成)显示了0.026mg/m2的吸附容量,而Al(OH)3涂覆的纳米粒子的值则为0.423mg/m2(图8)。这种相当大的差异可归因于以下事实:表面电荷主导了纳米粒子对水溶液中污染物的吸附行为。Al(OH)3纳米粒子表面上的正电荷有利于4-NP的吸附。
在NZVI的反应性表面上,4-NP可被还原为4-氨基苯酚(4-AP),其具有较低毒性。在没有Al(OH)3壳的情况中,0.1g/L 4-NP中的91.7%在6min后被裸NZVI还原,而通过1.0wt%NZVI@Al(OH)3在3min之内去除了96.8%。还原曲线在图9中显示,并且可用伪1级动力学拟合(方程8),
其中,[4-NP]是4-NP在时间t(min)时的浓度(g/L),kobs,4-NP是4-NP还原的速率常数(/mg-Fe0/min)。
以参与反应的Fe0进行质量归一化,当涂覆质量从0增加到1.0wt%时,kobs,4-NP从0.080/mg-Fe0/min增加到0.320/mg-Fe0/min。毫无疑问,与裸NZVI相比,NZVI@Al(OH)3的较高悬浮稳定性和BET表面积提供了用于反应的更有效的表面。然而,将Al(OH)3涂层壳增加至3.4wt%使得kobs,4-NP显著降低到0.0165/mg-Fe0/min。反应性的下降可能要归因于过多的Al(OH)3涂层壳和壳渗透性的降低,这抑制了4-NP穿过Al(OH)3壳的质量转移和与NZVI粒子的反应性表面的接触。因此,1.0wt%的Al(OH)3涂层壳对于用NZVI@Al(OH)3粒子去除4-NP来说是最佳的。
实施例5
NZVI@Al(OH)3的寿命和长期反应性
由于水腐蚀限制了NZVI用于全面环境用途的寿命和可用性,因此对NZVI进行修饰以减少腐蚀和延长NZVI粒子的寿命。在本研究中,调查了在有氧和无氧条件下Al(OH)3涂层壳对NZVI寿命的作用。在有氧条件下,裸NZVI粒子被快速氧化,悬浮液在有氧腐蚀5分钟之后变为黄色。在腐蚀15分钟后,裸NZVI粒子在悬浮液中变为褐色。如随后的4-NP还原实验所示,裸NZVI的反应性明显随着有氧腐蚀的时间而降低,并且4-NP去除效率从96.3%显著降低到15.9%(图10)。相反,Al(OH)3涂层壳能有效阻碍NZVI粒子的有氧腐蚀。在有氧腐蚀实验中,1.0wt%的NZVI@Al(OH)3悬浮液看起来比裸NZVI悬浮液的黄色要浅得多。已腐蚀的NZVI@Al(OH)3的4-NP去除效率降低到初始水平的44.0%(图10),这显著高于已腐蚀的裸NZVI在此情况下的去除效率。
Al(OH)3涂层壳也能在无氧条件下保护NZVI粒子的反应性。在无氧环境中腐蚀10天之后,裸NZVI和NZVI@Al(OH)3悬浮液的外观没有明显变化。然而,在无氧腐蚀之后,裸NZVI的4-NP去除效率降低至47.8%(图10)。相比而言,无氧腐蚀之后,NZVI@Al(OH)3的4-NP去除效率仅降低至68.2%。
NZVI@Al(OH)3的寿命延长很可能是因为NZVI表面上的Al(OH)3涂层壳提供的保护作用。如H2生成结果所示,H2生成的表面积归一化速率常数(ksa,H2)从0.0247L/m2/d降低至0.0182L/m2/d。因此,NZVI@Al(OH)3的表面较不易到达,并因此在暴露于竞争氧化剂(诸如,H+离子和DO)时相比于裸NZVI更不易受攻击。此外,铁腐蚀产生Fe2+(方程9)和/或Fe3+离子(方程10),它们沉淀在NZVI表面上(方程11和12)并降低NZVI的反应性。因此,Al(OH)3涂层壳将降低NZVI的表面腐蚀,导致NZVI寿命延长和长期反应性。
2H2O+Fe0→Fe2++H2↑+2OH- (9)
4Fe2++O2+2H2O→4Fe3++4OH- (10)
Fe2++2OH-→Fe(OH)2↓ (11)
Fe3++3OH-→Fe(OH)3↓ (12)
在腐蚀实验中还评估了Al离子的长期浸出以评价Al(OH)3涂层壳的化学稳定性。在不同腐蚀条件下,对于8.3-10.5之间的pH范围,所溶解的Al离子的浓度在0-10.3μg/L之间变化。当具有1.0wt%涂层壳的NZVI@Al(OH)3的悬浮液中的总Al含量等于1.0mg/L时,在长期暴露于水环境之后从NZVI@Al(OH)3的涂覆表面释放的Al少于1%。
实施例6
在NZVI粒子表面上涂覆PAA/Al(OH)3杂化壳
在涂覆过程之前,将10mg PAA粉末添加到在实施例1中制备的40mL NZVI悬浮液(0.5g/L)中。随后将AlCl3储备溶液注入锥形瓶中,其中Al量(mAl/mFe×100wt%)在1-3wt%范围内。最后,将3mL具有所需浓度的NaOH乙醇溶液(molOH/molAl=3.0)经由注射泵以1mol-OH/mol-Al/min的递送速率立即引入到锥形瓶中。PAA/Al(OH)3涂覆的NZVI(NZVI@PAA/Al(OH)3)的涂覆过程的其它实验条件与NZVI@Al(OH)3的实验条件相同。
结果和讨论
图11示出了裸NZVI和NZVI@PAA/Al(OH)3的TEM图像。与裸NZVI(图11A)相比,在NZVI@PAA/Al(OH)3的表面上形成均匀的透明壳,其透明度高于NZVI核(图11B–11D)。随着Al/Fe量从1wt%增加到3wt%,涂层壳的厚度随之增加。在NZVI表面上涂覆PAA/Al(OH)3壳将ζ-电势值从-9.7增加到-22.5,并且随着Al/Fe涂覆量逐渐增加到3wt%,磁饱和值从153.6emu/g降低到112.0emu/g。
Al 2p的XPS谱显示,随着Al/Fe涂覆量从1wt%增加到3wt%,Al(III)的表面原子浓度从0.31%增加到0.99%(图12A)。同时,C的表面浓度从20.6%增加至26.5%(图12B)。随着Al/Fe涂覆量增加,羧酸根基团相对于总C的相对丰度保持恒定为约22.4%。
实施例7
六价铬(Cr(VI))去除
进行Cr(VI)还原的分批实验以研究PAA/Al(OH)3壳对NZVI粒子反应性的作用。对于典型的Cr(VI)还原实验,将裸NZVI或NZVI@PAA/Al(OH)3粒子和20mL脱氧Cr(VI)溶液装入23-mL玻璃反应器中以得到分别为0.3g/L和0.03g/L的NZVI和Cr(VI)初始浓度。将反应器用聚四氟乙烯隔膜密封并在顶部空间充入N2气。在反应期间,将反应器以40rpm于室温(23±1℃)旋转。以预定时间间隔获取1-mL分散液样品,并通过0.45-μm膜过滤。按照标准二苯碳酰二肼法使用紫外-可见光分光光度计于540nm测量滤液中Cr(VI)的浓度。通过将NZVI浓度分别降低至0.2g/L和0.1g/L来研究修复规模(即NZVI量)对Cr(VI)还原的作用。
结果和讨论
图13中所呈现的实验结果显示,PAA/Al(OH)3涂层壳改进了NZVI的Cr(VI)还原效率。使用2wt%的最佳Al/Fe涂覆量,在0.3g/L NZVI和0.03g/L Cr(VI)的初始反应条件下,在120分钟之后,剩余的Cr(VI)的比例(C/C0)从0.54降至0.25。在24-hr反应之后,使用裸NZVI的C/C0稍微降低到0.51,而使用2-wt%NZVI@PAA/Al(OH)3的C/C0降至0.07。
将裸NZVI的NZVI量从0.1g/L增加到0.3g/L不会成正比地增加Cr(VI)还原,其中在24hr之后,Cr(VI)去除效率仅从33.3%提高到49.4%(图14)。具有2wt%涂覆量的NZVI@PAA/Al(OH)3与裸NZVI在0.1g/L的NZVI量条件下对Cr(VI)还原具有类似性能。然而,当NZVI量增加到0.3g/L时,NZVI@PAA/Al(OH)3的Cr(VI)还原效率增加到92.6%,这远高于使用裸NZVI所获得的还原效率。因此,使用PAA/Al(OH)3涂层壳对Cr(VI)还原的改进随着NZVI量增加而增加。即,PAA/Al(OH)3涂层壳可有利于放大NZVI技术的应用规模和保持污染物去除性能稳定。
尽管已经参考其优选实施例具体示出和描述了本发明;本领域技术人员将理解,在不脱离本发明的精神和范围的情况下,可以在其中进行形式和细节上的各种改变。

Claims (18)

1.一种核壳结构化的纳米粒子,其包含被薄的不溶的氢氧化物壳围绕的零价金属纳米粒子核。
2.如权利要求1所述的核壳结构化的纳米粒子,其中所述零价金属纳米粒子核是磁性零价金属纳米粒子。
3.如权利要求2所述的核壳结构化的纳米粒子,其中磁性零价金属纳米粒子是纳米级零价铁(NZVI)。
4.如权利要求1-3中任一项所述的核壳结构化的纳米粒子,其中所述不溶的氢氧化物壳是氢氧化铝(Al(OH)3)。
5.如权利要求1-3中任一项所述的核壳结构化的纳米粒子,其中所述不溶的氢氧化物壳包含Al(OH)3和聚电解质。
6.如权利要求5所述的核壳结构化的纳米粒子,其中所述聚电解质包含一种或多于一种富含羧酸基团的聚合物。
7.如权利要求6所述的核壳结构化的纳米粒子,其中所述富含羧酸基团的聚合物是但不限于聚丙烯酸(PAA)、羧甲基纤维素(CMC)和聚乙烯醇-共-醋酸乙烯酯-共-衣康酸(PV3A)。
8.如权利要求1-7中任一项所述的核壳结构化的纳米粒子,其中所述氢氧化物壳的厚度为2-20nm,优选为4-15nm。
9.如权利要求1-8中任一项所述的核壳结构化的纳米粒子,其中所述零价金属纳米粒子核的粒径在20-150nm范围内,优选50-100nm。
10.一种合成权利要求4所述的核壳结构化的纳米粒子的方法,所述方法包括以下步骤:
通过超声照射将零价金属纳米粒子分散在醇介质中;
将作为前体的金属离子添加到纳米粒子悬浮液中;
在控速条件下将NaOH添加到纳米粒子悬浮液中以去质子和沉淀金属离子;和
用甲醇和乙醇清洗产物。
11.一种合成权利要求5所述的核壳结构化的纳米粒子的方法,所述方法包括以下步骤:
通过超声照射将零价金属纳米粒子分散在醇介质中;
将聚电解质添加至纳米粒子悬浮液中;
将作为前体的金属离子添加至纳米粒子悬浮液中;
在控速条件下将NaOH添加至纳米粒子悬浮液中以去质子和沉淀金属离子;和
用甲醇和乙醇清洗产物。
12.如权利要求10或11所述的合成方法,其中所述醇介质是乙醇。
13.如权利要求10或11所述的合成方法,其中所述金属离子前体是无水金属氯化物。
14.如权利要求10或11所述的合成方法,其中用于进行所述步骤的气氛是N2或Ar,温度是22±1℃。
15.一种在水性介质中制备高悬浮纳米粒子的方法,所述方法包含以下步骤:
将权利要求1-9中任一项所述的核壳纳米粒子添加到水性介质中;和
通过声处理混合至少约20秒。
16.一种从水性介质去除污染物的方法,所述方法包括以下步骤:
将权利要求1-9中任一项所述的核壳纳米粒子添加到污染的水性介质中以实现污染物的吸附和还原。
17.如权利要求16所述的方法,其中所述污染物包含下组物质中的一种:含硝基有机化合物(4-硝基苯酚、硝基苯)、卤化化合物(CCl4、C2HCl3)、高价态重金属(Cr2O7 2-、AsO4 3-)、非金属阴离子(NO3 -和SO4 2-)和重金属阳离子(Cr3+、Co2+、Ni2+)。
18.如权利要求16所述的方法,其中所述水性介质包含下组物质中的一种:污染的地表水、污染的地下水、城市废水、工业废水、来自废水处理厂的流出物、来自工业厂房的流出物、来自垃圾填埋场的渗滤液和来自矿区的渗滤液。
CN201880018384.6A 2017-03-13 2018-03-12 用于环境修复的氢氧化物壳的合成 Active CN110430953B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762470643P 2017-03-13 2017-03-13
US62/470,643 2017-03-13
PCT/CN2018/078696 WO2018166417A1 (en) 2017-03-13 2018-03-12 Synthesis of a thin insoluble hydroxide shell on the surface of magnetic zero-valent metal nanoparticles for environmental remediation

Publications (2)

Publication Number Publication Date
CN110430953A true CN110430953A (zh) 2019-11-08
CN110430953B CN110430953B (zh) 2022-05-03

Family

ID=63522606

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880018384.6A Active CN110430953B (zh) 2017-03-13 2018-03-12 用于环境修复的氢氧化物壳的合成

Country Status (3)

Country Link
US (1) US11241670B2 (zh)
CN (1) CN110430953B (zh)
WO (1) WO2018166417A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894084A (zh) * 2019-12-06 2020-03-20 中国科学技术大学 一种纳米零价铁负载材料及其制备方法和污水中六价铬的净化方法
CN112156810A (zh) * 2020-09-17 2021-01-01 齐鲁工业大学 可催化降解4-硝基苯酚的纳米纤维素膜及其制备方法与应用
CN115382519A (zh) * 2022-04-26 2022-11-25 华侨大学 一种核壳磁性锆基吸附剂及其制备方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110000392A (zh) * 2019-03-21 2019-07-12 浙江工业大学 一种活化球磨零价铁材料的制备方法
CN109972173B (zh) * 2019-05-09 2024-02-27 东华理工大学 一种基于太阳能的改性nzvi三维电化学方法回收核废水中铀的装置
CN112295543A (zh) * 2020-10-20 2021-02-02 常州大学 一种具有高效重金属吸附性能生物炭的制备方法及其应用
CN115055679B (zh) * 2022-06-07 2024-05-21 安徽师范大学 零价铁还原剂及其制备方法和应用
CN116692954B (zh) * 2023-07-13 2024-04-02 中国市政工程中南设计研究总院有限公司 一种Fe-Fe2O3核壳材料的制备方法、污泥厌氧发酵方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236086A (ja) * 2010-05-11 2011-11-24 Yokohama National Univ マグネタイトナノ微粒子の製造方法
CN103143705A (zh) * 2013-03-29 2013-06-12 湖南科技大学 一种氧化铝包覆型纳米铁粒子及其制备方法与应用
CN103606660A (zh) * 2013-11-06 2014-02-26 中国科学院化学研究所 氧化铝包覆型颗粒及其制备方法与应用
CN105081305A (zh) * 2014-05-04 2015-11-25 中国人民解放军63971部队 多孔纳米零价铁及多孔纳米零价铁复合材料
CN105244185A (zh) * 2015-10-09 2016-01-13 上海交通大学 一种镍/氢氧化镍储能电极材料的电化学制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297290B2 (en) * 2003-08-08 2007-11-20 The Board Of Regents Of The University And Community College System Of Nevada Nanostructured magnetorheological fluids and gels
CN102884010A (zh) * 2009-09-18 2013-01-16 得克萨斯州A&M大学系统 用于处理被污染流体的零价铁/氧化铁矿物/亚铁复合物
WO2014186754A2 (en) * 2013-05-16 2014-11-20 Board Of Regents The University Of Texas System Dry solid aluminum adjuvant-containing vaccines and related methods thereof
KR101535388B1 (ko) * 2013-07-19 2015-07-08 주식회사 엘지화학 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011236086A (ja) * 2010-05-11 2011-11-24 Yokohama National Univ マグネタイトナノ微粒子の製造方法
CN103143705A (zh) * 2013-03-29 2013-06-12 湖南科技大学 一种氧化铝包覆型纳米铁粒子及其制备方法与应用
CN103606660A (zh) * 2013-11-06 2014-02-26 中国科学院化学研究所 氧化铝包覆型颗粒及其制备方法与应用
CN105081305A (zh) * 2014-05-04 2015-11-25 中国人民解放军63971部队 多孔纳米零价铁及多孔纳米零价铁复合材料
CN105244185A (zh) * 2015-10-09 2016-01-13 上海交通大学 一种镍/氢氧化镍储能电极材料的电化学制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAI-JIE WEI等: ""Surface coating with Ca(OH)2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media"", 《WATER SCIENCE AND TECHNOLOGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110894084A (zh) * 2019-12-06 2020-03-20 中国科学技术大学 一种纳米零价铁负载材料及其制备方法和污水中六价铬的净化方法
CN112156810A (zh) * 2020-09-17 2021-01-01 齐鲁工业大学 可催化降解4-硝基苯酚的纳米纤维素膜及其制备方法与应用
CN115382519A (zh) * 2022-04-26 2022-11-25 华侨大学 一种核壳磁性锆基吸附剂及其制备方法与应用

Also Published As

Publication number Publication date
US20200001272A1 (en) 2020-01-02
CN110430953B (zh) 2022-05-03
US11241670B2 (en) 2022-02-08
WO2018166417A1 (en) 2018-09-20

Similar Documents

Publication Publication Date Title
CN110430953A (zh) 用于环境修复的磁性零价金属纳米粒子表面上的薄的不溶的氢氧化物壳的合成
Liu et al. Immobilizing nZVI particles on MBenes to enhance the removal of U (VI) and Cr (VI) by adsorption-reduction synergistic effect
Yu et al. Efficient removal of uranium (VI) by layered double hydroxides supported nanoscale zero-valent iron: A combined experimental and spectroscopic studies
CN111097414B (zh) 一种多孔材料负载超细纳米零价铁的简单方法
Wang et al. Immobilization of mercury by iron sulfide nanoparticles alters mercury speciation and microbial methylation in contaminated groundwater
Lee et al. Facile synthesis of copper ferrocyanide-embedded magnetic hydrogel beads for the enhanced removal of cesium from water
Li et al. Removal of hexavalent chromium in soil and groundwater by supported nano zero-valent iron on silica fume
Zhang et al. Core–shell structured magnetic γ-Fe2O3@ PANI nanocomposites for enhanced As (V) adsorption
Li et al. PA6@ FexOy nanofibrous membrane preparation and its strong Cr (VI)-removal performance
Wang et al. Magnetic mesoporous carbon nanospheres from renewable plant phenol for efficient hexavalent chromium removal
Li et al. Adsorption-reduction strategy of U (VI) on NZVI-supported zeolite composites via batch, visual and XPS techniques
Lei et al. A novel one-step method for preparation of sulfonate functionalized nanodiamonds and their utilization for ultrafast removal of organic dyes with high efficiency: Kinetic and isotherm studies
Crane et al. Towards “Precision Mining” of wastewater: Selective recovery of Cu from acid mine drainage onto diatomite supported nanoscale zerovalent iron particles
Zhu et al. Application of nZVI and its composites into the treatment of toxic/radioactive metal ions
Yang et al. High removal rate and selectivity of Hg (II) ions using the magnetic composite adsorbent based on starch/polyethyleneimine
CN108689472B (zh) 一种包覆型纳米零价铁材料及其制备方法和应用
Akharame et al. Beta-FeOOH nanoparticles: a promising nano-based material for water treatment and remediation
Mackenzie et al. NZVI synthesis and characterization
Peng et al. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation
Kou et al. Efficient adsorptive and reductive removal of U (VI) and Se (IV) using porous hexagonal boron nitride supported nanoscale iron sulfide: Performance and mechanism
Wang et al. 3D magnetic flower-shaped yolk-shell like structure Fe3O4@ N-doped carbon@ MnO2 composites for the efficient removal of Re (VII) and As (V)
Deng et al. Arsenate removal from underground water by polystyrene-confined hydrated ferric oxide (HFO) nanoparticles: effect of humic acid
Zhang et al. Selective removal and long-term immobilization of uranium by ultralow content Fe0 in the pores of amino functionalized silica gel
Wei et al. Surface coating with Ca (OH) 2 for improvement of the transport of nanoscale zero-valent iron (nZVI) in porous media
Li et al. High-performance FeOOH quantum dots: A novel one-pot microemulsion method for fast preparation and adsorption kinetics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Chinese Pokfulam Road Hongkong

Applicant after: THE University OF HONG KONG

Address before: Pokfulan Road, Hong Kong, China

Applicant before: THE University OF HONG KONG

CB02 Change of applicant information
CB03 Change of inventor or designer information

Inventor after: Li Xiaoyan

Inventor after: Hu Yibo

Inventor before: X.Y.Li

Inventor before: Hu Yibo

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant