CN110423114A - 一种陶瓷电解质材料及其制备方法 - Google Patents

一种陶瓷电解质材料及其制备方法 Download PDF

Info

Publication number
CN110423114A
CN110423114A CN201910699539.3A CN201910699539A CN110423114A CN 110423114 A CN110423114 A CN 110423114A CN 201910699539 A CN201910699539 A CN 201910699539A CN 110423114 A CN110423114 A CN 110423114A
Authority
CN
China
Prior art keywords
preparation
electrolyte material
ceramic electrolyte
powder
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910699539.3A
Other languages
English (en)
Other versions
CN110423114B (zh
Inventor
曾和平
黄延伟
贺嘉杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Chongqing Institute of East China Normal University
Original Assignee
East China Normal University
Chongqing Institute of East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University, Chongqing Institute of East China Normal University filed Critical East China Normal University
Priority to CN201910699539.3A priority Critical patent/CN110423114B/zh
Publication of CN110423114A publication Critical patent/CN110423114A/zh
Priority to US16/892,581 priority patent/US11465911B2/en
Application granted granted Critical
Publication of CN110423114B publication Critical patent/CN110423114B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于激光加工技术和能源材料领域,具体为一种快速激光烧结合成固态电解质及其制备方法。具体为:固态电解质的化学式为A2BxOy(2≤x≤10,7≤y≤20,且0≤y/x≤3.5),其中A为Sm、Sc、Y、La、Nd、Eu、Gd、Dy、Er、Yb、Lu等稀土元素,B为Ti、Zr、Ce和Hf。本发明获得的固态电解质具有结构稳定、离子电导率高的特点,同时解决了传统陶瓷结构电解质烧结困难、粉体易团聚的问题,制备方法工艺简单,原料利用率高,能耗低,无污染。

Description

一种陶瓷电解质材料及其制备方法
技术领域
本发明属于激光加工技术和能源材料领域,具体涉及一种快速激光烧结合成固态电解质及其制备方法。
背景技术
随着传统化石能源的不断消耗和环境问题的日益严重,以燃料电池、锂离子电池为代表的新能源装置不断涌现。固体氧化物燃料电池(Solid Oxide Fuel Cell,简称SOFC)属于第三代燃料电池,是一种在中高温下直接将储存在燃料和氧化剂中的化学能高效、环境友好地转化成电能的全固态化学发电装置。在所有的燃料电池中,SOFC的工作温度最高,属于高温燃料电池,不但具有较高的发电效率,同时也具有低污染的环境效益。SOFC由三个主要部分组成:阴极(空气电极)、阳极(燃料电极)和电解质(阴极和阳极之间的离子导电膜),其中电解质是一种致密的、通离子阻电子的固体氧化物材料,SOFC的基本工作原理是,在阳极一侧持续通入燃料气,如:氢气(H2)、甲烷(CH4)、城市煤气等,具有催化作用的阳极表面吸附燃料气体,并通过阳极的多孔结构扩散到阳极与电解质的界面。在阴极一侧持续通入氧气或空气,具有多孔结构的阴极表面吸附氧,由于阴极本身的催化作用,使得O2得到电子变为O2-,在化学势的作用下,O2-进入固体电解质氧离子导体,由于浓度梯度引起扩散,最终到达固体电解质与阳极的界面,与燃料气体发生反应,失去的电子通过外电路回到阴极,在外电路对电器设备进行供电。
固体电解质不仅起着在阴、阳两极之间传导离子的作用,还能隔离阳极燃料气体和阴极氧化气体。良好的固体电解质具有如下特点:(1)具有阻隔电子导通离子的作用;(2)高温及氧化还原气氛中的物理和化学稳定性、结构和尺寸稳定性;(3)与电池阴阳极材料、连接体材料具有良好的热机械匹配性和化学兼容性;(4)结构致密;(5)易于大规模加工、性能优异、制造成本低。目前研究比较多的SOFC电解质材料主要有晶体类型为萤石型的ZrO2基、CeO2基、Bi2O3基固体电解质材料和晶体类型为钙钛矿型的LaGaO3基固体电解质材料。近年来,烧绿石结构的稀土锆酸盐电解质具有良好的离子电导率而受到研究者的广泛关注,锆基烧绿石体系氧化物(Ln2Zr2O7,Ln=La,Nd,Gd,Sm等)在中温400-800℃时的离子电导率尽管超过了氧化钇稳定的氧化锆(YSZ),但其离子导电率仍需要进一步研究和提高,另一方面稀土锆酸盐是一种采用传统固相反应方法较难合成的材料,对设备、合成条件要求高。
发明内容
本发明的目的在于提出一种新型固体氧化物燃料电池用固态电解质及一种简单高效的固体电解质制备方法,以解决现有技术中所存在的上述问题。
本发明是通过以下技术方案实现的:
一种陶瓷电解质材料,其分子通式为A2BxOy,其中,A为Sm、Sc、Y、La、Nd、Eu、Gd、Dy、Er、Yb和Lu中的至少一种,B为Ti、Zr、Ce和Hf中的至少一种,2≤x≤10,7≤y≤20,且0≤y/x≤3.5。
一种如前述的陶瓷电解质材料的制备方法,其包括如下步骤:
S1、将氧化物AOm与氧化物BOn通过人工研磨或球磨混匀后,以无水乙醇、丙酮或去离子水为媒质进行湿法球磨,将产物取出后,在60~80℃下干燥,得到磨料,将所述磨料进行研磨,得到反应粉末;
S2、将所述反应粉末进行压实后,在激光照射下进行烧结,得到所述陶瓷电解质材料;
其中,m和n均为整数。
作为优选方案,步骤S1中还包括对反应粉末进行造粒的步骤,具体为:
将粘结剂配制质量分数为2~8%的粘结剂水溶液,分2~3次加入到所述反应粉末中,进行研磨、过30~60目筛;
步骤S2中还包括排粘的步骤,具体为:
过筛后的产物进行压实,通过加热或激光辐照的方法进行排粘。
作为优选方案,所述粘结剂包括PVA、甲氧基硅烷、聚氨酯、硅酮中的至少一种。
作为优选方案,所述加热的方法为,以2~5℃/min的速率升温至300~500℃,保温10~24h;所述激光照射的功率不超过30W,光斑直径为10~15mm,照射时间为5~20min。
作为优选方案,所述压实的方法为液压法或等静压法,所述液压的压力为2~15MPa之间,压实时间为3~10s;所述等静压法的压力为100~300MPa,压实时间为3s。
作为优选方案,步骤S2中所述的激光的照射波长为980nm,功率为90~1500W。
与现有技术相比,本发明具有如下的有益效果:
本发明所得的A2BxOy(2≤x≤10,7≤y≤20,且0≤y/x≤3.5)型陶瓷材料具有结构稳定、晶粒细小、绝缘性好等特征,与传统高温固相反应合成的稀土固态陶瓷电解质A2B2O7相比,处于贫氧状态,具有一定浓度的氧空位离子,传统高温固相合成陶瓷电解质的方法要求条件高,烧结困难,能耗高,本发明的具体制备方法是将稀土元素A的氧化物AOm与元素B的氧化物BOn作为原材料进行充分均匀混合得到原料混合物粉末,将原料混合物粉末通过液压或者等静压压实、压片,然后置于金属坩埚内或其他与生成物不发生化学反应的基体上,选择合适的激光器和激发波长,通过调节适当的激光光斑、功率、时间等参数进行激光辐照或烧结使原料混合物发生高温固相反应,得到A2BxOy型陶瓷材料,其中激光辐射和烧结过程可以快速局部加热,以快速热冲击发生合成反应,快速热冷却的过程有利于得到粒径细小的基质材料。此法获得氧化物固体电解质具有结构稳定、离子电导率高的特点,同时解决了传统陶瓷结构电解质烧结困难、粉体易团聚的问题,制备方法简单,原料利用率高,能耗低,无污染,适合大规模工业化应用。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明中实施例1所合成的固体电解质Yb2Zr8O19的X射线衍射图;
图2为本发明中实施例3所合成的固体电解质Yb2Zr8O19的微观形貌图;
图3为本发明中实施例4所合成的固体电解质Yb2Zr8O19进行EDS时所选取的微观区域;
图4为本发明中实施例4所合成的固体电解质Yb2Zr8O19进行EDS能谱分析;
图5为本发明中实施例5所合成的固体电解质Yb2Zr8O19样品照片。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
以稀土元素Yb的氧化物Yb2O3与元素Zr的氧化物ZrO2按照摩尔比Yb:Zr=2:8,分别计算称取相应质量的两种氧化物原料,作为原材料进行高能球磨混合,以乙醇为球磨媒质,球磨转速400r/m,时间24h,充分均匀混合得到原料混合物粉末,将球磨得到的混合物粉末在80℃烘箱里烘干、研磨,将研磨后的原料混合物粉经液压机压实,压力为8MPa,保持时间5s,然后置于铜坩埚内,采用半导体激光器,激光波长980nm,激光烧结功率300W,对坩埚内混合原料进行烧结使原料混合物发生高温固相反应,烧结时长5min,得到Yb2Zr8O19型陶瓷电解质材料,该材料在1500℃-2000℃之间结构稳定不发生相变,晶粒可根据球磨参数和激光参数进行细化,可达100nm以下,绝缘性较好,电导率低于10-6S/m。图1是所合成的固体电解质Yb2Zr8O19的X射线衍射图。
实施例2
以稀土元素Yb的氧化物Yb2O3与元素Zr的氧化物ZrO2按照摩尔比Yb:Zr=2:8,分别计算称取相应质量的两种氧化物原料,作为原材料进行高能球磨混合,以乙醇为球磨媒质,球磨转速400r/m,时间24h,充分均匀混合得到原料混合物粉末,将球磨得到的混合物粉末在70℃烘箱里烘干、研磨,在研磨均匀的粉末中加入质量分数为8%的PVA粘结剂进行造粒、压实,在马弗炉中550℃排粘,升温速率控制在1℃/min,保温时间12小时,然后置于铜坩埚内,采用半导体激光器,激光波长980nm,激光烧结功率400W,对坩埚内混合原料进行烧结使原料混合物发生高温固相反应,烧结时长5min,得到Yb2Zr8O19型较为致密的陶瓷电解质材料,该材料在1800℃结构稳定不发生相变,晶粒可根据球磨参数和激光参数进行细化,可达50nm以下,绝缘性较好,电导率低于10-6。S/m
实施例3
以稀土元素Yb的氧化物Yb2O3与元素Zr的氧化物ZrO2按照摩尔比Yb:Zr=2:8,分别计算称取相应质量的两种氧化物原料,作为原材料进行高能球磨混合,以丙酮为球磨媒质,球磨转速400r/m,时间24h,充分均匀混合得到原料混合物粉末,将球磨得到的混合物粉末在80℃烘箱里烘干、研磨,在研磨均匀的粉末中加入质量分数为8%的PVA粘结剂进行造粒、压实,然后进行激光低功率辐照排除粘结剂,辐照功率为30W,时长10min,然后置于铜坩埚内,采用半导体激光器,激光波长980nm,激光烧结功率500W,对坩埚内混合原料进行烧结使原料混合物发生高温固相反应,烧结时长3min,得到Yb2Zr8O19型较为致密的陶瓷电解质材料。所得Yb2Zr8O19陶瓷材料具有2000℃结构稳定、晶粒尺寸10nm,导电率低于10-7S/m,适合作为燃料电池固体电解质使用。图2是所合成材料Yb2Zr8O19的微观形貌。
实施例4
以稀土元素Yb的氧化物Yb2O3与元素Zr的氧化物ZrO2按照摩尔比Yb:Zr=2:8,分别计算称取相应质量的两种氧化物原料,作为原材料进行高能球磨混合,以丙酮为球磨媒质,球磨转速400r/m,时间24h,充分均匀混合得到原料混合物粉末,将球磨得到的混合物粉末在70℃烘箱里烘干、研磨,将研磨均匀的粉末进行液压压实成型,压力为10MPa,保持时间10s,取出置于铜坩埚内,采用半导体激光器,激光波长980nm,激光烧结功率600W,对坩埚内混合原料进行烧结使原料混合物发生高温固相反应,烧结时长5min,得到Yb2Zr8O19型陶瓷电解质材料。图3是对所生成材料Yb2Zr8O19进行元素能谱分析所选区域,图4是对所生成材料Yb2Zr8O19进行EDS能谱分析图。
实施例5
以稀土元素Yb的氧化物Yb2O3与元素Zr的氧化物ZrO2按照摩尔比Yb:Zr=2:8,分别计算称取相应质量的两种氧化物原料,作为原材料进行高能球磨混合,以丙酮为球磨媒质,球磨转速400r/m,时间24h,充分均匀混合得到原料混合物粉末,将球磨得到的混合物粉末在70℃烘箱里烘干、研磨,将研磨均匀的粉末进行液压压实成型,压力为10MPa,保持时间10s,取出置于铜坩埚内,采用半导体激光器,激光波长980nm,激光烧结功率800W,对坩埚内混合原料进行烧结使原料混合物发生高温固相反应,烧结时长5min,得到Yb2Zr8O19型陶瓷电解质材料。图5是所生成材料Yb2Zr8O19的样品实物照片。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (7)

1.一种陶瓷电解质材料,其特征在于,分子通式为A2BxOy,其中,A为Sm、Sc、Y、La、Nd、Eu、Gd、Dy、Er、Yb和Lu中的至少一种,B为Ti、Zr、Ce和Hf中的至少一种,2≤x≤10,7≤y≤20,且0≤y/x≤3.5。
2.一种如权利要求1所述的陶瓷电解质材料的制备方法,其特征在于,包括如下步骤:
S1、将氧化物AOm与氧化物BOn通过人工研磨或球磨混匀后,以无水乙醇、丙酮或去离子水为媒质进行湿法球磨,将产物取出后,在60~80℃下干燥,得到磨料,将所述磨料进行研磨,得到反应粉末;
S2、将所述反应粉末进行压实后,在激光照射下进行烧结,得到所述陶瓷电解质材料;
其中,m和n均为整数。
3.如权利要求2所述的陶瓷电解质材料的制备方法,其特征在于,步骤S1中还包括对反应粉末进行造粒的步骤,具体为:
将粘结剂配制质量分数为2~8%的粘结剂水溶液,分2~3次加入到所述反应粉末中,进行研磨、过30~60目筛;
步骤S2中还包括排粘的步骤,具体为:
过筛后的产物进行压实,通过加热或激光辐照的方法进行排粘。
4.如权利要求3所述的陶瓷电解质材料的制备方法,其特征在于,所述粘结剂包括PVA、甲氧基硅烷、聚氨酯、硅酮中的至少一种。
5.如权利要求3所述的陶瓷电解质材料的制备方法,其特征在于,所述加热的方法为,以2~5℃/min的速率升温至300~500℃,保温10~24h;所述激光照射的功率不超过30W,光斑直径为10~15mm,照射时间为5~20min。
6.如权利要求2所述的陶瓷电解质材料的制备方法,其特征在于,所述压实的方法为液压法或等静压法,所述液压的压力为2~15MPa之间,压实时间为3~10s;所述等静压法的压力为100~300MPa,压实时间为3s。
7.如权利要求2所述的陶瓷电解质材料的制备方法,其特征在于,步骤S2中所述的激光的照射波长为980nm,功率为90~1500W。
CN201910699539.3A 2019-07-30 2019-07-30 一种陶瓷电解质材料及其制备方法 Active CN110423114B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910699539.3A CN110423114B (zh) 2019-07-30 2019-07-30 一种陶瓷电解质材料及其制备方法
US16/892,581 US11465911B2 (en) 2019-07-30 2020-06-04 Method for preparing ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910699539.3A CN110423114B (zh) 2019-07-30 2019-07-30 一种陶瓷电解质材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110423114A true CN110423114A (zh) 2019-11-08
CN110423114B CN110423114B (zh) 2022-05-10

Family

ID=68413247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910699539.3A Active CN110423114B (zh) 2019-07-30 2019-07-30 一种陶瓷电解质材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110423114B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753970A (zh) * 2021-09-08 2021-12-07 苏州大学 传导材料在质子传导中的应用及氧气极
CN113773076A (zh) * 2021-09-26 2021-12-10 苏州正义新能源科技有限公司 一种低烧结温度的燃料电池电解质隔膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125238A1 (ja) * 2012-02-23 2013-08-29 Jx日鉱日石エネルギー株式会社 電気化学還元装置および、芳香族炭化水素化合物または含窒素複素環式芳香族化合物の水素化体の製造方法
CN108306032A (zh) * 2018-01-11 2018-07-20 成都新柯力化工科技有限公司 一种低温h-sofc类燃料电池电解质膜及制备方法
CN109851377A (zh) * 2019-03-18 2019-06-07 广东朗研科技有限公司 一种激光诱导高温固相反应生成a2b2o7型热障涂层材料的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125238A1 (ja) * 2012-02-23 2013-08-29 Jx日鉱日石エネルギー株式会社 電気化学還元装置および、芳香族炭化水素化合物または含窒素複素環式芳香族化合物の水素化体の製造方法
CN108306032A (zh) * 2018-01-11 2018-07-20 成都新柯力化工科技有限公司 一种低温h-sofc类燃料电池电解质膜及制备方法
CN109851377A (zh) * 2019-03-18 2019-06-07 广东朗研科技有限公司 一种激光诱导高温固相反应生成a2b2o7型热障涂层材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADRI CT等: "ReaxFF Reactive Force Field for Solid Oxide Fuel Cell Systems with Application to Oxygen Ion Transport in Yttria-Stabilized Zirconia", 《JOURNAL OF PHYSICS AND CHEMISTRY A》 *
YAMAMURA H等: "Relationship between oxide-ion conductivity and dielectric relaxation in the Ln2Zr2O7 system having pyrochore-type compositions (Ln= Yb, Y, Gd, Eu, Sm, Nd, La)", 《JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113753970A (zh) * 2021-09-08 2021-12-07 苏州大学 传导材料在质子传导中的应用及氧气极
CN113773076A (zh) * 2021-09-26 2021-12-10 苏州正义新能源科技有限公司 一种低烧结温度的燃料电池电解质隔膜及其制备方法

Also Published As

Publication number Publication date
CN110423114B (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
Arshad et al. An efficient Sm and Ge co-doped ceria nanocomposite electrolyte for low temperature solid oxide fuel cells
Liu et al. Fabrication and characterization of micro-tubular cathode-supported SOFC for intermediate temperature operation
CN102942364A (zh) 氧化锌—碳酸盐共掺杂铈锆酸钡质子导体材料及其制备方法
CN109768292B (zh) 一种固体氧化物燃料电池电化学极化原位制备阳极的方法
CN103390739A (zh) 一种固体氧化物燃料电池氧化铈基电解质隔层及其制备
CN106848358A (zh) 一种掺杂氧化铈基固体氧化物燃料电池及其制备方法
Guo et al. A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components
CN110423114A (zh) 一种陶瓷电解质材料及其制备方法
Wu et al. Fabrication and characterization of Ca2+, Sr2+, Ba2+, Sm3+, and La3+ co-doped ceria-based electrolyte powders for low-temperature anode-supported solid oxide fuel cells
CN117438624A (zh) 一种固体氧化物燃料电池改性方法
Tao et al. Pr Doped Barium Cerate as the Cathode Material for Proton‐Conducting SOFCs
Abbas et al. Study of CuNiZnGdCe-nanocomposite anode for low temperature SOFC
Raza et al. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell
Chen et al. Characteristics of NiO-YSZ anode based on NiO particles synthesized by the precipitation method
CN103493273A (zh) 制备电化学半电池的方法
Wu et al. Study on microstructure and physical properties of Ba0. 5Sr0. 5Fe1− xCuxO3− δ–Ce0. 8Sm0. 15Ca0. 05O1. 875 cathode materials used in solid oxide fuel cell
CN111416138A (zh) 一种质子陶瓷膜燃料电池及其制备方法
CN115692806A (zh) 一种高熵钙钛矿电解质及其制备方法与应用、电池
Meng et al. Heterointerface Effect in Accelerating the Cathodic Oxygen Reduction for Intermediate-Temperature Solid Oxide Fuel Cells
DAMISIH et al. Characteristics of gadolinium doped cerium at different calcination temperatures for intermediate temperature SOFC
Jiang et al. A novel cobalt-free La0. 6Sr0. 4Fe0. 9Nb0. 1O3 cathode for medium temperature solid oxide fuel cells
CN111995396A (zh) 一种利用镁改性铌酸钠陶瓷氧离子电导性能的方法
CN112928317A (zh) 一种氧化铈基电解质材料的制备方法
Wang et al. Enhanced electrochemical performance of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode by Zr4+, Sm3+ and Yb3+ tri-doped BaCeO3 compositing for intermediate-temperature thin-film fuel cells
Murutoglu et al. One step densification of SDC—Na2CO3 nano‐composite electrolytes for SOFC applications by cold sintering process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant