CN110405196B - 铁氧体/还原性金属复合颗粒的制备方法及基于激光3d打印制备高温隐身涂层的方法 - Google Patents

铁氧体/还原性金属复合颗粒的制备方法及基于激光3d打印制备高温隐身涂层的方法 Download PDF

Info

Publication number
CN110405196B
CN110405196B CN201910773810.3A CN201910773810A CN110405196B CN 110405196 B CN110405196 B CN 110405196B CN 201910773810 A CN201910773810 A CN 201910773810A CN 110405196 B CN110405196 B CN 110405196B
Authority
CN
China
Prior art keywords
laser
powder
printing
coating
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910773810.3A
Other languages
English (en)
Other versions
CN110405196A (zh
Inventor
姜建堂
管振杰
杨勇
甄良
邵文柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910773810.3A priority Critical patent/CN110405196B/zh
Publication of CN110405196A publication Critical patent/CN110405196A/zh
Priority to US16/940,763 priority patent/US20210053117A1/en
Application granted granted Critical
Publication of CN110405196B publication Critical patent/CN110405196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/008Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression characterised by the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1039Sintering only by reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/026Spray drying of solutions or suspensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • C22C1/053Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor with in situ formation of hard compounds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

铁氧体/还原性金属复合颗粒的制备方法及基于激光3D打印制备高温隐身涂层的方法,属于吸波涂层制备的技术领域。本发明要解决现有高温吸波涂层存在涂层/基体结合力不足,涂层微观结构难以控制、电磁性能无法保证的问题。本发明中将纳米级的铁氧体粉末与纳米级的还原性金属粉末通过混合造粒工艺制备复合颗粒;在3D打印设备密闭制备腔中,复合颗粒通过激光诱导原位反应在基板表面上制得高温隐身涂层。本发明应用于构件的高温隐身及电磁污染防治。

Description

铁氧体/还原性金属复合颗粒的制备方法及基于激光3D打印 制备高温隐身涂层的方法
技术领域
本发明属于吸波涂层制备的技术领域;具体涉及铁氧体/还原性金属复合颗粒的制备方法及基于激光3D打印制备高温隐身涂层的方法;可以应用于构件的高温隐身及电磁污染防治。
背景技术
在国防技术领域,发动机等高温部件雷达隐身的需求正在快速增加;在民用技术领域,随着雷达技术和无线通信技术功率水平、应用规模爆炸式的增长,由杂散电磁波造成的电磁泄密和电磁污染问题日益突出。在构件表明敷装吸波涂层可有效吸收杂散电磁波,是解决电磁泄密和电磁污染问题的有效手段。传统电磁波吸收涂层多选用树脂基体、加入吸收剂并以涂覆方式制备吸波涂层;该类涂层在环境温度高于150℃时容易从基体上剥落,因而无法满足通信设备、国防装备高温构件杂散电磁波吸收或吸波隐身的功能需求。因此,耐高温吸波敷层成为高温环境下电磁辐射控制的关键基础,相应技术亟待开发。
目前,针对高温吸波涂层的研究开展尚少。采用耐高温树脂制备树脂基吸波涂层或通过热喷涂方法制备陶瓷基吸波涂层的尝试都有初步进展,但普遍存在工艺复杂、涂层/基体结合力不足的问题;且以此两类方法制备的涂层其微观结构难以控制、电磁性能无法保证,难以满足应用要求。
发明内容
本发明针对现有高温吸波涂层涂层/基体结合力不足,微观结构难以控制、电磁性能无法保证等问题提供了一种基于激光3D打印技术制备高温隐身涂层的方法;本发明基于3D打印技术进行、通过激光诱导原位铝热反应获得铁磁/介电复合敷层。本发明工艺简单、覆层致密完整且组织性能满足高温隐身的要求,是高温隐身涂层制备技术领域的创新,优势显著、应用前景广阔。
本发明将耐高温性能与电磁吸收性能有机融合、以原位自生方式制备涂层,满足涂层高温隐身的服役要求并同时解决膜层/基底结合力问题。
本发明铁氧体/还原性金属复合颗粒的制备方法是通过混合造粒工艺制备的,具体制备方法是通过下述步骤完成的:
步骤一、将纳米级的铁氧体粉末、纳米级的还原性金属粉末与助剂,混合均匀后得到浆料;
步骤二、然后采用离心喷雾干燥造粒方式进行造粒,造粒完毕后进行分级处理,选取颗粒呈类球形且尺寸为10μm-60μm,即得到铁氧体/还原性金属复合颗粒;
其中步骤一所述助剂为聚乙烯醇(PVA)或甲基纤维素(CMC)。
进一步地限定,步骤一中所述铁氧体粉末为Fe3O4、BaFe12O19、CoFe2O4中的一种;所述铁氧体粉末的粒度直径为50~500nm,形状为类球形。
进一步地限定,步骤一中所述还原性金属粉末为Al粉、Zn粉或Zr粉;所述还原性金属粉末的粒度直径为50~500nm,形状为类球形。
进一步地限定,步骤一中铁氧体粉末与还原性金属粉末的质量比为(1~5)∶1。
进一步地限定,步骤一中助剂用量是铁氧体粉末与还原性金属粉末总质量的0.1%-3%。
进一步地限定,步骤二中造粒的工艺参数:喷雾干燥塔的进口温度为220℃-260℃,喷雾干燥塔的出口温度为100℃-120℃,喷雾干燥塔中雾化盘的转速为 18000r/min-30000r/min。
本发明中基于激光3D打印制备高温隐身涂层的方法,其特征在于所述制备方法是按下述步骤进行的:
步骤1、敷层制备之前对基板表面喷砂以去除氧化膜和污染物;
步骤2、将经步骤1喷砂处理之后的基板置于制备腔内,制备腔用氩气清洗3~5遍,并向送粉器装载上述方法制备的铁氧体/还原性金属复合颗粒;
步骤3、设定工艺参数之后开启程序进行3D打印,打印过程中,送粉器同步相随向光束扫描位置送入粉末进行诱导反应(即粉末一旦送达基板表面即被激光引燃发生反应,反应产物均匀沉积在基板表面并快速形成冶金结合),设定区域3D打印结束之后,关闭激光和送粉机构,待基板冷却之后取出,即基板表面上制得高温隐身涂层。
进一步限定,步骤1基板的材料选择钛合金板材或者钢板,
进一步限定,步骤1基板的板厚为4~10mm。
进一步限定,步骤3中的3D打印工艺参数:送粉量为1rap/min-5rap/min,采用光纤激光器,激光功率设定为400W~1000W,激光光斑直径为1~3mm,相邻道次打印之间的搭接率为20%-30%,激光的扫描速度为600mm/min~1200mm/min,送粉器移动速度与激光的扫描速度保持一致。
进一步限定,步骤3所述打印过程中敷层厚度通过调节送粉量和扫描速度进行调控,每道次打印获得的敷层其厚度为100μm~1200μm。
本发明通过激光照射诱导Fe3O4/Al,BaFe12O19/Al等混合粉末发生铝热反应、形成Fe 颗粒镶嵌于Al2O3基体的复合结构;以Al2O3等氧化物作为耐热组元保证涂层体系耐温性能、以Fe颗粒作为吸收剂以实现电磁波吸收和损耗;本发明通过原料粉末、工艺参数的调节实现敷层微观组织及微波电磁性能的控制。
本发明实现了高温吸波涂层的原位反应制备,其中吸收剂(Fe颗粒)和基体(如Al2O3等氧化物)原位共生、融合良好;
本发明中敷层通过激光诱导铝热反应原位自生,其微观组织结构特性可以通过激光功率、扫描速率和送粉量等参数调节进行精细控制;
本发明研制的激光诱导铝热反应原位自生敷层其基体主要为Al2O3、电磁损耗组元为镶嵌于Al2O3基体的Fe颗粒,敷层/基板结合良好、敷层耐温/耐候性能强,高温环境下仍能正常服役。
本发明为高温隐身涂层的研制和应用提供了新的思路,契合现代装备高温构件表面敷层原位制造、牢固结合、高温隐身的综合要求,可望应用于军/民用装备高温构件,解决高温隐身的领域难题;
本发明融合了铝热反应、3D打印等技术的优势,实现了数模驱动隐身材料/敷层一体化制造,为隐身技术领域涂层研制提供了新颖工具,可望形成先发优势、带动3D打印技术的功用拓展和技术增值。
附图说明
图1是Fe3O4/Al复合颗粒形貌(SEM照片);
图2是Fe/Al2O3激光诱导原位反应涂层表面形貌;
图3是Fe/Al2O3激光诱导原位反应涂层物相组成及微观组织;
图4是Fe/Al2O3激光诱导原位反应涂层微观组织,(a)涂层表面微观结构,(b)涂层截面;
图5是Fe/Al2O3激光诱导原位反应涂层电磁波吸收性能。
图6是实施例2中采用自由空间法测的涂层的反射损耗特性的典型吸波曲线。
具体实施方式
实施例1:本例使用的铁氧体/还原性金属复合颗粒的制备方法是通过混合造粒工艺制备的,具体制备方法是通过下述步骤完成的:
步骤一、将粒度直径为80nm、类球形的Fe3O4颗粒、粒度直径为50nm、类球形的 Al颗粒与聚乙烯醇(PVA)助剂按Fe3O4与Al的质量比为3.2∶1、助剂用量是铁氧体粉末与还原性金属粉末总质量的0.5%的配比进行均匀混合得到浆料;
步骤二、所得浆料采用离心喷雾干燥造粒方式进行造粒;其中喷雾干燥工艺参数为:喷雾干燥塔的进口温度为220℃,喷雾干燥塔的出口温度为100℃,喷雾干燥塔中雾化盘的转速为20000r/min。造粒完毕后进行分级处理,颗粒呈类球形且平均尺寸为50μm,颗粒典型形貌见图1,即得到Fe3O4/Al复合颗粒。
本实施例中基于激光3D打印制备高温隐身涂层的方法,其特征在于所述制备方法是按下述步骤进行的:
步骤1、以板厚为5mm钛合金板作为基板,对基板表面喷砂预处理以去除油污、氧化膜;
步骤2、将钛合金基板置于制备腔内,反复充放氩气清洗制备腔3遍;向送粉器装载上述方法制备的Fe3O4/Al复合颗粒;
步骤3、设定工艺参数之后开启程序进行3D打印,打印过程中,送粉器同步相随向基板上光束照射位置送粉以进行激光诱导反应(即粉末一旦送达基板表面即被激光引燃发生反应,反应产物均匀沉积在基板表面并快速形成冶金结合),设定区域3D打印结束之后,关闭激光和送粉机构,待基板冷却之后取出,即基板表面上制得高温隐身涂层;
本例中设定的3D打印工艺参数为:采用光纤激光器,激光功率设定为700W,激光光斑直径为3mm,相邻道次打印之间的搭接率为30%,激光的扫描速度为600mm/min;送粉量为2rap/min,送粉器移动速度与激光的扫描速度保持一致;敷层厚度为700μm。
本实施例在激光诱导下发生原位铝热反应。将Fe3O4/Al复合颗粒颗粒用于激光诱导反应工艺时,颗粒中细化的铝热反应位点使得生成的Fe和Al2O3具有精细的微观复合结构:细小Fe颗粒均匀的弥散在Al2O3组成的基体内部;本实施例获得的涂层具有明显的电磁吸收性能。
本实施例中敷层制备过程中激光甫一开启,照射位置的复合粉末即被引燃,伴随明亮的火焰和烟尘,表明铝热反应十分强烈。按照事先设定的扫描路径渐次扫描、最终形成整个敷层。反应形成的涂层其表面形貌如图2所示。由图可以清晰分辨每道次扫描形成的敷层。由图可见,本工艺制备涂层的结构完整、表面致密。
XRD分析表明,反应后涂层的物相组成为Fe、Al2O3和未反应完全的Fe3O4,如图 3中左图所示。
涂层表面微观结构的典型特征如图4(a)所示,由图可见Fe颗粒均匀弥散在 Al2O3/Fe3O4陶瓷基体上;基体中存在一定数量的孔隙;统计表明,Fe颗粒的尺寸为5~80 微米、多集中于50微米左右。涂层截面的SEM图像如图4(b)所示。观察表明,涂层完整致密、与基体结合良好,涂层厚度约700微米。
使用200mm×200mm试板、采用自由空间法对涂层的反射损耗特性进行测试,典型反射损耗曲线如图5所示;由图可见,涂层在15.3GHz处最大吸收优于25dB。对涂层进行高温试验,将涂层置于600℃马弗炉内处理30分钟后取出后直接放入冷水中,涂层不剥落,仍保持致密完整结构;且高温处理前后样品几乎不发生质量变化,如表1所示,表明涂层耐氧化能力突出。
表1Fe/Al2O3激光诱导原位反应涂层600℃保温30min前后质量变化表
Figure BDA0002174435880000051
本实施例中的核心为铝热反应,其具体反应式为:
Fe3O4(粉末)+Al(粉末)→Al2O3(敷层基体)+Fe(吸波颗粒)
实施例2:本实施例中基于激光3D打印制备高温隐身涂层的方法是按下述步骤进行的:
本实施例使用的铁氧体/还原性金属复合颗粒的制备方法是通过混合造粒工艺制备的,具体制备方法是通过下述步骤完成的:
步骤一、将粒度直径为100nm、类球形的BaFe12O19颗粒、粒度直径为50nm、类球形Al颗粒与助剂(甲基纤维素(CMC))按BaFe12O19颗粒与Al颗粒的质量比为3.2∶1、助剂用量是铁氧体粉末与还原性金属粉末总质量的1%的配比混合均匀后得到浆料;
步骤二、所得浆料采用离心喷雾干燥造粒方式进行造粒;其中喷雾干燥工艺参数为:喷雾干燥塔的进口温度为260℃,喷雾干燥塔的出口温度为120℃,喷雾干燥塔中雾化盘的转速为20000r/min。造粒完毕后进行分级处理,得到BaFe12O19/Al复合颗粒颗粒呈类球形且平均尺寸为30μm。
本实施例中基于激光3D打印制备高温隐身涂层的方法,其特征在于所述制备方法是按下述步骤进行的:
步骤1、以厚度为8mm钢板作为基板,对基板表面喷砂预处理以去除油污、氧化膜;
步骤2、将基板置于制备腔内,制备腔用氩气清洗3遍;向送粉器装载上述方法制备的BaFe12O19/Al复合颗粒;
步骤3、设定工艺参数之后开启程序进行3D打印,打印过程中,送粉器同步相随向基板上光束照射位置送粉以进行激光诱导反应(即粉末一旦送达基板表面即被激光引燃发生反应,反应产物均匀沉积在基板表面并快速形成冶金结合),设定区域3D打印结束之后,关闭激光和送粉机构,待基板冷却之后取出,即基板表面上制得高温隐身涂层;
本实施例中3D打印工艺参数:采用光纤激光器,激光功率设定为1000W,激光光斑直径为2mm,相邻打印道之间的搭接率为20%,激光的扫描速度为800mm/min;送粉量为4rap/min,送粉器移动速度与激光的扫描速度保持一致。敷层厚度为700μm。
本实施例中的核心为铝热反应,其具体反应式为:
BaFe12O19(粉末)+Al(粉末)→Al2O3(敷层基体)+Fe(吸波颗粒)
采用自由空间法测的了涂层的反射损耗特性,典型吸波曲线如图6所示;由图可见,涂层在11.8~17.6GHz波段内吸收优于5dB。

Claims (3)

1.一种基于激光3D打印制备高温隐身涂层的方法,其特征在于所述方法是按下述步骤进行的:
步骤1、对基板表面进行喷砂处理以去除氧化膜和污染物;
步骤2、将步骤1处理后的基板置于制备腔内工作台上,制备腔用氩气清洗3~5遍;并向送粉器装载铁氧体/还原性金属复合颗粒;
步骤3、设定工艺参数之后开启程序进行3D打印,打印过程中,送粉器同步相随向激光照射区域送粉以进行激光诱导反应制备;设定区域3D打印结束之后,关闭激光和送粉机构,待基板冷却之后取出,即基板表面上制得高温隐身涂层;
其中,步骤2所述铁氧体/还原性金属复合颗粒是通过混合造粒工艺制备的,具体制备方法是通过下述步骤完成的:
步骤一、将纳米级的铁氧体粉末、纳米级的还原性金属粉末与助剂,混合均匀后得到浆料;
步骤二、然后采用离心喷雾干燥造粒方式进行造粒,造粒完毕后进行分级处理,选取颗粒呈类球形且尺寸为10 μm-60 μm,即得到铁氧体/还原性金属复合颗粒;
步骤一所述助剂为聚乙烯醇(PVA)或甲基纤维素(CMC);
步骤一中所述铁氧体粉末为Fe3O4、BaFe12O19、CoFe2O4中的一种,所述铁氧体粉末的粒度直径为50~500nm,形状为类球形;
步骤一中所述还原性金属颗粒为Al颗粒、Zn颗粒或Zr颗粒,所述还原性金属粉末的粒度直径为50~500nm,形状为类球形;
步骤一中铁氧体粉末与还原性金属粉末的质量比为(1~5):1;助剂用量是铁氧体粉末与还原性金属粉末总质量的0.1%-3%;步骤二中造粒的工艺参数:喷雾干燥塔的进口温度为220℃-260℃,喷雾干燥塔的出口温度为100℃-120℃,喷雾干燥塔中雾化盘的转速为18000r/min-30000r/min;
步骤3中的3D打印工艺参数:采用光纤激光器,激光功率设定为400W~1000W,激光光斑直径为1~3mm,相邻道次打印之间的搭接率为20%-30%,激光的扫描速度为600mm/min~1200mm/min;送粉量为1rap/min-5rap/min,送粉器移动速度与激光的扫描速度保持一致;
步骤3所述打印过程中每道次打印所制备的敷层厚度为100μm~1200μm。
2.根据权利要求1所述基于激光3D打印制备高温隐身涂层的方法,其特征在于步骤1基板的材料选择钛合金板材或者钢板。
3.根据权利要求1所述基于激光3D打印制备高温隐身涂层的方法,其特征在于步骤1基板的板厚为4~10mm。
CN201910773810.3A 2019-08-21 2019-08-21 铁氧体/还原性金属复合颗粒的制备方法及基于激光3d打印制备高温隐身涂层的方法 Active CN110405196B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910773810.3A CN110405196B (zh) 2019-08-21 2019-08-21 铁氧体/还原性金属复合颗粒的制备方法及基于激光3d打印制备高温隐身涂层的方法
US16/940,763 US20210053117A1 (en) 2019-08-21 2020-07-28 Method for preparing ferrite/reducing metal composite particles and method for preparing high temperature resistant stealth coating based on 3d laser printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910773810.3A CN110405196B (zh) 2019-08-21 2019-08-21 铁氧体/还原性金属复合颗粒的制备方法及基于激光3d打印制备高温隐身涂层的方法

Publications (2)

Publication Number Publication Date
CN110405196A CN110405196A (zh) 2019-11-05
CN110405196B true CN110405196B (zh) 2022-01-11

Family

ID=68368209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910773810.3A Active CN110405196B (zh) 2019-08-21 2019-08-21 铁氧体/还原性金属复合颗粒的制备方法及基于激光3d打印制备高温隐身涂层的方法

Country Status (2)

Country Link
US (1) US20210053117A1 (zh)
CN (1) CN110405196B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111636045B (zh) * 2020-06-04 2022-02-11 陕西科技大学 一种2-8GHz频段用双损耗三层吸波涂层及其制备方法
CN113264574B (zh) * 2021-04-22 2023-04-25 东莞理工学院 一种Ni-Fe/MoS2电极的制备方法及其降解氟苯尼考污染物中的应用
CN113382623B (zh) * 2021-06-18 2022-10-28 西安交通大学 一种热、电磁多功能防护器及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW479003B (en) * 1999-08-24 2002-03-11 Tdk Corp Granule for forming ferrite body, ferrite sintered product and production method thereof
CN1162567C (zh) * 2001-12-28 2004-08-18 河北工业大学 金属表面喷涂自反应复合粉合成金属/陶瓷复合涂层的方法
JP2005303006A (ja) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd 圧粉磁心の製造方法および圧粉磁心
CN100425570C (zh) * 2006-02-27 2008-10-15 乳源东阳光磁性材料有限公司 一种宽温叠加特性优异的锰锌系铁氧体
CN102758164B (zh) * 2011-04-25 2015-01-07 中国农业机械化科学研究院 一种耐温热喷涂雷达吸波涂层及其喷涂粉末制备方法
CN102925050B (zh) * 2012-11-15 2015-04-08 安徽理工大学 水性红外-激光复合隐身涂料的制备方法
CN104193345B (zh) * 2014-08-20 2015-11-11 中南大学 基于3d打印技术制备吸波陶瓷部件的方法
CN109694246A (zh) * 2019-01-22 2019-04-30 苏州冠达磁业有限公司 一种超高频率吸波滤波锰锌铁氧体及其制备方法

Also Published As

Publication number Publication date
CN110405196A (zh) 2019-11-05
US20210053117A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
CN110405196B (zh) 铁氧体/还原性金属复合颗粒的制备方法及基于激光3d打印制备高温隐身涂层的方法
CN111636045B (zh) 一种2-8GHz频段用双损耗三层吸波涂层及其制备方法
CN102276295A (zh) 一种适用于丝网印刷的95%氧化铝陶瓷金属化浆料
CN102758164B (zh) 一种耐温热喷涂雷达吸波涂层及其喷涂粉末制备方法
CN113135775B (zh) 超高温电磁散射与红外辐射兼容抑制的隐身材料及制备方法
Shao et al. A thin dielectric ceramic coating with good absorbing properties composed by tungsten carbide and alumina
CN105861972A (zh) 一种氧化铬-氧化钛基高温高发射率涂层及其制备方法
CN106270490A (zh) 一种表层为金属陶瓷层的硬质合金及其制备方法
US20100119706A1 (en) Method for the production of an abradable coating
Zhao et al. Research on laser-assisted selective metallization of a 3D printed ceramic surface
CN103225054B (zh) 三层型氧化铝-镁铝尖晶石复合绝缘涂层及其涂覆方法
US5211991A (en) Method of plasma spraying magnetic-cermet dielectric coatings
EP4112585A1 (en) Method for manufacturing sintered body
CN106392081B (zh) 一种表层富含陶瓷相的硬质合金及其制备方法
CN110527930B (zh) 一种铁基非晶激光熔覆涂层材料及其制备方法
CN109440053A (zh) 一种雷达吸波涂层材料及其制备方法
CN104372284A (zh) 一种硬度和韧性较好的等离子喷涂TiN涂层的制备方法
CN115196951B (zh) 一种多层结构的改性碳纤维-莫来石陶瓷吸波材料及其制备方法
CN108998689B (zh) 一种耐高温金属陶瓷吸波材料及其制备方法
CN108941543A (zh) 一种氧化铝包覆金属铬粉体的制备方法
CN109852917A (zh) C/C、C/SiC复合材料表面钼钛锆构件真空等离子喷涂成形制备方法
US5486382A (en) Method for preparing a cermet-coated article
CN114110553A (zh) 一种锅炉管屏和锅炉发电机组
CN104212957A (zh) 一种金属材料激光表面淬火吸收涂料及其制备和使用方法
CN112466647A (zh) 一种高磁导率铁硅铝软磁合金片状粉末的生产工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant