CN110396404B - 基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用 - Google Patents

基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用 Download PDF

Info

Publication number
CN110396404B
CN110396404B CN201910629200.6A CN201910629200A CN110396404B CN 110396404 B CN110396404 B CN 110396404B CN 201910629200 A CN201910629200 A CN 201910629200A CN 110396404 B CN110396404 B CN 110396404B
Authority
CN
China
Prior art keywords
dinitroaniline
methylimino
coumarin
hydroxy
fluorescent molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910629200.6A
Other languages
English (en)
Other versions
CN110396404A (zh
Inventor
刘丽霞
李丛舒
尚学芳
高习龙
遆桐宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xinxiang Medical University
Original Assignee
Xinxiang Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xinxiang Medical University filed Critical Xinxiang Medical University
Priority to CN201910629200.6A priority Critical patent/CN110396404B/zh
Publication of CN110396404A publication Critical patent/CN110396404A/zh
Application granted granted Critical
Publication of CN110396404B publication Critical patent/CN110396404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • C07C251/86Hydrazones having doubly-bound carbon atoms of hydrazone groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/06Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
    • C07D311/08Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
    • C07D311/16Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6443Fluorimetric titration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electrochemistry (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用,本发明的技术方案要点为:基于腙类衍生物的荧光分子探针的结构式为:
Figure DDA0002128191960000011
本发明还具体公开了基于腙类衍生物的荧光分子探针的制备方法及其在阳离子识别方面的应用。本发明合成路线合理可行,步骤简单,条件温和,收率较高,且对Cu2+和Fe3+的结合能力较好,因此该系列荧光分子探针在阳离子识别方面具有潜在的应用前景。

Description

基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识 别方面的应用
技术领域
本发明属于荧光分子探针的合成及阳离子的识别技术领域,具体涉及一种基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用。
背景技术
近些年来因为阴阳离子在生物体病理生理研究中的重要性,以及它们在材料科学和环境科学中的特殊地位,所以离子识别得到了学术界的广泛关注。传统的测定阴阳离子的方法如离子色谱检测法、电导检测法、高效液相色谱法等存在一些缺陷,如仪器昂贵,重复性和选择性以及专一性差等。而荧光因其具有高选择性和灵敏度以及实时性成为了一种重要的检测方法。再加上腙类化合物具有较强的配位能力和多样的配位形式,因此开发基于腙类衍生物的荧光分子探针对离子识别的实际应用价值将成为未来的研究重点。
发明内容
本发明解决的技术问题是提供了一种工艺简单且收率较高的基于腙类衍生物的荧光分子探针及其制备方法,该方法制备的基于腙类衍生物的荧光分子探针在阳离子识别方面具有潜在的应用前景。
本发明为解决上述技术问题采用如下技术方案,基于腙类衍生物的荧光分子探针,其特征在于该荧光分子探针的结构如式I所示:
Figure BDA0002128191940000011
其中R为H或NO2,R位于苯环上的邻位或对位。
优选的,基于腙类衍生物的荧光分子探针选自如下化合物之一:
N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素;
N-4’-硝基苯胺-7-羟基-8-甲亚胺基-香豆素;
N-2’-硝基苯胺-7-羟基-8-甲亚胺基-香豆素;
N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯;
N-2’-硝基苯胺-1-甲亚胺基-2,4-二羟基苯;
N-4’-硝基苯胺-1-甲亚胺基-2,4-二羟基苯。
本发明所述的基于腙类衍生物的荧光分子探针,其特征在于具体过程为:由化合物III制备化合物II时,化合物III和乌洛托品(六亚甲基四胺)在冰醋酸中回流反应6h,再加入盐酸回流反应30min,冷却后用乙醚萃取,重结晶得到化合物II,其中化合物III与乌洛托品的投料摩尔比为1:2;由化合物II或2,4-二羟基苯甲醛制备化合物I时,化合物II或2,4-二羟基苯甲醛在乙醇中与取代苯肼加热回流反应6h,再经过重结晶后得到化合物I,其中化合物II或2,4-二羟基苯甲醛与取代苯肼的投料摩尔比为1:1;
制备过程中的反应方程式为:
Figure BDA0002128191940000021
本发明所述的基于腙类衍生物的荧光分子探针在阳离子识别方面的应用。
本发明还提供了所述的通式I化合物的离子识别,尤其是所述通式I化合物对HS-、SO3 2-、H2PO4 -、CH3COO-、F-、Cl-、Br-、I-8种阴离子以及Li+、K+、Na+、Mg2+、Mn2+、Al3+、Fe3+、Co2+、Cd2 +、Ni2+、Cu2+11种阳离子的识别。进一步地提出了所述通式I化合物由紫外-可见光谱滴定实验,荧光滴定实验,电化学实验和比色实验可以看出:对于不同的阴阳离子,化合物I对Cu2+和Fe3+的选择性最高,对其他离子几乎没有结合能力。
本发明所述的基于腙类衍生物的荧光分子探针在阳离子识别方面的应用,其特征在于:通过UV-Vis吸收光谱检测化合物I与不同离子的结合,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯均对Cu2+和Fe3+均具有较高的选择性,N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯只对Cu2+和Fe3+有响应,而N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素除了Cu2+和Fe3+有响应,还对Na+和Cd2+有响应,因此N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯的选择性高于N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素。
本发明所述的基于腙类衍生物的荧光分子探针在阳离子识别方面的应用,其特征在于:通过荧光光谱滴定检测化合物I与不同离子的结合,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯对Cu2+和Fe3+均具有良好的选择性。
本发明所述的基于腙类衍生物的荧光分子探针在阳离子识别方面的应用,其特征在于:通过电化学实验检测化合物I与不同离子的结合,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+发生了电化学反应,而N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Fe3+结合的循环伏安图未发生变化。
本发明所述的基于腙类衍生物的荧光分子探针在阳离子识别方面的应用,其特征在于:通过比色实验检测化合物I与不同离子的结合,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素加入HS-后溶液颜色变深,加入Fe3+、Cu2+、Al3+、F-后溶液变为浅黄色,加入Ni2+、H2PO4 -后溶液变为黄色,加入Cd2+、Na+、CH3COO-后溶液变为玫红色,加入HS-后,溶液变为浅玫红色,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素可通过肉眼识别出Fe3+、Cu2+、Al3+、Cd2+、Na+、Li+、Ni2+、F-、CH3COO-、H2PO4 -和HS-,而N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯加入不同的阴阳离子之后没有明显的颜色变化。
本发明式I化合物的离子识别作用,在取代基及取代位置相同的条件下,化合物I中含有香豆素的腙类衍生物对Cu2+和Fe3+的结合能力强于含有苯的腙类衍生物,而选择性却低于含有苯的腙类衍生物。
本发明选择以取代苯肼为原料,设计合成了一系列基于腙类衍生物的荧光分子探针。经初步试验显示,其中的部分化合物对Cu2+和Fe3+的选择性和灵敏度高,结合能力比较强,而对HS-、SO3 2-、H2PO4 -、CH3COO-、F-、Cl-、Br-、I-8种阴离子以及Li+、K+、Na+、Mg2+、Mn2+、Al3+、Co2+、Cd2+、Ni2+9种阳离子几乎没有选择性。本发明合成路线合理可行,步骤简单,条件温和,收率较高,且对Cu2+和Fe3+的结合能力较好,因此该系列荧光分子探针在阳离子识别方面具有潜在的应用前景。
附图说明
图1是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cu2+作用的UV-vis光谱变化曲线;
图2是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Fe3+作用的UV-vis光谱变化曲线;
图3是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Na+作用的UV-vis光谱变化曲线;
图4是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cd2+作用的UV-vis光谱变化曲线;
图5是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+作用的UV-vis光谱变化曲线;
图6是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Fe3+作用的UV-vis光谱变化曲线;
图7是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与等量的不同离子作用的UV-vis光谱变化曲线;
图8是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与等量的不同离子作用的UV-vis光谱变化曲线;
图9是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cu2+作用的荧光光谱变化曲线;
图10是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Fe3+作用的荧光光谱变化曲线;
图11是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+作用的荧光光谱变化曲线;
图12是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Fe3+作用的荧光光谱变化曲线;
图13是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与等量的不同离子作用的荧光光谱变化曲线;
图14是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与等量的不同离子作用的荧光光谱变化曲线;
图15是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cu2+反应的循环伏安图;
图16是N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cu2+反应的循环伏安图;
图17是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+反应的循环伏安图;
图18是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+反应的循环伏安图;
图19是向N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素的DMSO溶液中分别滴加等量的各种阳离子的颜色变化图;
图20是向N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素的DMSO溶液中分别滴加等量的各种阴离子的颜色变化图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
Figure BDA0002128191940000051
其中R是H或NO2;所述R位于苯环上的邻位或对位。基于腙类衍生物的荧光分子探针选自:N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素;N-4’-硝基苯胺-7-羟基-8-甲亚胺基-香豆素;N-2’-硝基苯胺-7-羟基-8-甲亚胺基-香豆素;N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯;N-2’-硝基苯胺-1-甲亚胺基-2,4-二羟基苯;N-4’-硝基苯胺-1-甲亚胺基-2,4-二羟基苯。
实施例2
所述基于腙类衍生物的荧光分子探针的制备方法,包括以下步骤:
Figure BDA0002128191940000061
由化合物III制备化合物II时,化合物III和乌洛托品(六亚甲基四胺)在冰醋酸中回流反应6h,后加入盐酸回流反应30min,冷却后用乙醚萃取,重结晶得到化合物II,其中化合物III与乌洛托品的投料摩尔比为1:2;由化合物II或2,4-二羟基苯甲醛制备化合物I时,化合物II或2,4-二羟基苯甲醛在乙醇中与取代苯肼加热回流反应6小时,经过重结晶后得到化合物I,其中化合物II或2,4-二羟基苯甲醛与取代苯肼的投料摩尔比为1:1。
实施例3
化合物II的合成
取10g乌洛托品(六亚甲基四胺)和5g化合物III 7-羟基香豆素溶于50mL冰醋酸中,溶解完全后在95℃下回流反应6h。取75mL、20wt%的盐酸加入回流完毕的溶液中,加完后在60℃下回流反应30min;冷却后用乙醚萃取三次(3×50mL),合并有机溶剂,除去溶剂,用无水乙醇重结晶得到淡黄色固体,即化合物II。1H NMR(400MHz,DMSO)δ11.90(s,1H),10.43(s,1H),8.02(d,J=9.6Hz,1H),7.87(d,J=8.7Hz,1H),6.95(d,J=8.7Hz,1H),6.38(d,J=9.6Hz,1H)。ESI-HRMS(m/z):189.0197(M-H)-
N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素的合成
将1.9015g化合物II(10mmol)的热乙醇溶液(20mL)逐滴加入1.9814g 2,4-二硝基苯肼(10mmol)的无水乙醇溶液(20mL)中,边加热边搅拌,完全溶解后在80℃下回流反应6h,回流完毕,静置冷却,溶液中有沉淀析出,过滤,无水乙醇洗涤后,用甲醇和乙醚(体积比为2:1)重结晶,得到橙色固体,即N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素。1H NMR(400MHz,DMSO)δ11.95(s,1H),11.31(s,1H),9.28(s,1H),8.83(d,J=2.6Hz,1H),8.38(dd,J=9.6,2.6Hz,1H),8.01(d,J=9.5Hz,1H),7.84(d,J=9.6Hz,1H),7.66(d,J=8.6Hz,1H),6.96(d,J=8.6Hz,1H),6.34(d,J=9.5Hz,1H)。ESI-HRMS(m/z):317.0527(M-H)-
N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯的合成
将1.3812g 2,4-二羟基苯甲醛(10mmol)的热乙醇溶液(20mL)逐滴加入1.9814g2,4-二硝基苯肼(10mmol)的无水乙醇溶液(20mL)中,边加热边搅拌,完全溶解后在80℃下回流反应6h,回流完毕,静置冷却,溶液中有沉淀析出,过滤,无水乙醇洗涤后,用甲醇重结晶,得到红色固体,即N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯。1H NMR(400MHz,DMSO)δ11.59(s,1H),10.13(s,1H),9.97(s,1H),8.82(m,2H),8.32(dd,J=9.7,2.6Hz,1H),7.94(d,J=9.7Hz,1H),7.64(d,J=9.2Hz,1H),6.35(m,2H)。ESI-HRMS(m/z):368.2(M-H)-
实施例4
通过UV-Vis吸收光谱研究化合物I与不同离子的结合。将化合物配成4.0×10- 5mol·L-1的DMSO溶液,检测离子为HS-、SO3 2-、H2PO4 -、CH3COO-、F-、Cl-、Br-、I-8种阴离子以及Li+、K+、Na+、Mg2+、Mn2+、Al3+、Fe3+、Co2+、Cd2+、Ni2+、Cu2+11种阳离子,阳离子以水为溶剂,阴离子以DMSO为溶剂,离子浓度4.0×10-2mol·L-1。由下图可知,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素在330nm、404nm和525nm处出现吸收峰,加入Cu2+后330nm和404nm处的吸收强度逐渐升高,而525nm处的紫外吸收强度逐渐下降直至吸收峰消失;并且在430nm左右出现了一个等吸收点(图1)。加入Fe3+后330nm和404nm处的吸收强度逐渐升高,而525nm处的吸收强度随着Fe3+的加入逐渐降低直至加入4.8×10-5mol·L-1Fe3+时吸收强度不再变化或变化很小,并且在450nm左右出现了一个等吸收点(图2)。加入Cd2+后330nm和404nm处的吸收强度逐渐降低,而525nm处的吸收强度逐渐升高,并且在450nm左右出现了一个等吸收点(图3)。加入Na+出现了与加入Cd2+时相同的情况(图4)。N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯在440nm处出现吸收峰,加入Cu2+后440nm处的吸收峰蓝移至420nm,其吸收强度随着Cu2+的加入逐渐降低,而在300nm处出现新的吸收峰,其吸收强度随着Cu2+的加入逐渐升高,并且在400nm左右出现了一个等吸收点(图5)。加入Fe3+后440nm处吸收峰逐渐蓝移,且其吸收强度随着Fe3+的加入逐渐升高(图6)。而加入其他离子时N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素(图7)和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯并无明显的光谱变化(图8)。由此可以看出,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯均对Cu2+和Fe3+有较高的选择性,但是N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯只对Cu2+和Fe3+有响应,而N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素除了Cu2+和Fe3+还对Na+和Cd2+有响应,因此N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯的选择性高于N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素。
实施例5
在与紫外相同条件下通过荧光光谱滴定检测化合物I与不同离子的结合。从下图可知:N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素在345nm处有一个荧光发射峰。随着Cu2+浓度的增加,在345nm处荧光强度逐渐降低,在465nm处出现新的吸收峰,并且新峰的强度随着Cu2+浓度的增加而升高(图9)。随着Fe3+浓度的增加,在345nm处的荧光强度逐渐降低(图10)。N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯在345nm处有一发射峰,随着Cu2+浓度的增加,在345nm处N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯的荧光强度逐渐降低(图11)。加入Fe3+后,发生了同样的现象(图12)。N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯(图13)加入其他离子F-、Cl-、Br-、I-、HS-、H2PO4 -、CH3COO-、Li+、Na+、Mg2+、Al3+、K+、Mn2+、Ni2+、Cd2+荧光光谱均无明显变化(图14)。因此,N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯对Cu2+、Fe3+有良好的选择性。
实施例6
通过电化学实验研究了化合物I与不同离子的结合。以玻碳电极为工作电极,铂电极为辅助电极,甘汞电极为参比电极,饱和的高氯酸钠溶液为电解质溶液,电压扫描范围为-1V~1V,扫描速率为0.05V/s。以循环伏安法检测N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+和Fe3+结合。由下图可以看出:N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素本身在-0.25V处有一微弱的氧化峰,在-0.7V处有一微弱的还原峰(图15),当N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cu2+以1:1反应之后-0.25V处的氧化峰正移到0.13V处,-0.7V处的还原峰正移到0.3V处,并且峰电流均增大。随着Cu2+的不断加入,氧化峰和还原峰的峰电位不断正移,电流不断增大,直到N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cu2+以1:4的比例反应时峰电位变化很小可以忽略(图16)。N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯在-0.1V处有一微弱的氧化峰,在-0.55V处有一微弱的还原峰(图17)。当与Cu2+以1:1反应之后-0.1V处的氧化峰正移到0.15V处,-0.55V处的还原峰正移到-0.35V处。随着Cu2+的不断加入,氧化峰和还原峰的峰电位不断正移,直到N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+以1:5的比例反应时峰电位基本不变(图18)。由此可以看出N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+发生了电化学反应。而N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Fe3+结合的循环伏安图未发生变化。
实施例7
通过比色实验研究了化合物I与不同离子的结合。298K,均匀光源照射条件下,在白色背景板上依次排列多个同种规格的通明比色瓶,分别加入等量的4.0×10-5mol·L-1的N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯的DMSO溶液2500μL,然后在的比色瓶中分别加入等量的不同阳离子和阴离子至颜色变化最显著。N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与阳离子的比色结果如下图19所示(加入离子的顺序为:Fe3+、Cu2+、Al3+、Cd2+、Na+、Mg2+、Li+、Ni2+、Mn2+、K+)。N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与阴离子的比色结果如下图20所示(加入离子的顺序为:F-、Cl-、Br-、I-、CH3COO-、H2PO4 -、HS-)。由图可以看出:加入HS-后溶液颜色变深,加入Fe3+、Cu2+、Al3+、F-后溶液变为浅黄色,加入Ni2+、H2PO4 -后溶液变为黄色,加入Cd2+、Na+、CH3COO-后溶液变为玫红色,加入HS-后,溶液变为浅玫红色。故得出结论N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素可通过肉眼识别出Fe3+、Cu2+、Al3+、Cd2+、Na+、Li+、Ni2+、F-、CH3COO-、H2PO4 -和HS-。而N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯加入不同的阴阳离子之后没有明显的颜色变化。
实施例8
通过结合常数研究了化合物I与不同离子的结合。以紫外数据为依据,通过非线性拟合法计算N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与不同离子的结合常数,如下表所示:
表1主客体结合的结合常数
Figure BDA0002128191940000091
Figure BDA0002128191940000101
K1为N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与离子的结合常数,
K2为N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与离子的结合常数。
由此表可以看出N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯的对Cu2+和Fe3+的结合能力低于N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素。
本发明选择以取代苯肼为原料,设计合成了一系列基于腙类衍生物的荧光分子探针。经初步试验显示,其中的部分化合物化合物对Cu2+和Fe3+的选择性和灵敏度高,结合能力比较强,而对HS-、SO3 2-、H2PO4 -、CH3COO-、F-、Cl-、Br-、I-8种阴离子以及Li+、K+、Na+、Mg2+、Mn2 +、Al3+、Co2+、Cd2+、Ni2+9种阳离子几乎没有选择性。本发明合成路线合理可行,步骤简单,条件温和,收率较高,且且对Cu2+和Fe3+的选择性和结合能力较好,因此该系列荧光分子探针在阳离子识别方面具有潜在的应用前景。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (4)

1.基于腙类衍生物的荧光分子探针在制备阳离子识别方面的荧光探针的应用,其特征在于:通过UV-Vis吸收光谱检测荧光分子探针与不同离子的结合,其中N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯均对Cu2+和Fe3+均具有选择性,N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯只对Cu2+和Fe3+有响应,而N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素除了Cu2+和Fe3+有响应,还对Na+和Cd2+有响应,N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯的选择性高于N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素。
2.基于腙类衍生物的荧光分子探针在制备阳离子识别方面的荧光探针的应用,其特征在于:通过荧光光谱滴定检测荧光分子探针与不同离子的结合,其中N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯对Cu2+和Fe3+均具有选择性。
3.基于腙类衍生物的荧光分子探针在制备阳离子识别方面的荧光探针的应用,其特征在于:通过电化学实验检测荧光分子探针与不同离子的结合,其中N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+发生了电化学反应,而N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素和N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Fe3+结合的循环伏安图未发生变化。
4.基于腙类衍生物的荧光分子探针在制备阳离子识别方面的荧光探针的应用,其特征在于:所述荧光分子探针中含有香豆素的腙类衍生物N-2’,4’-二硝基苯胺-7-羟基-8-甲亚胺基-香豆素与Cu2+的结合常数达到了1.374×1015±0.080×1014,与Fe3+的结合常数达到了3.848×1013±0.679×1012,含有苯的腙类衍生物N-2’,4’-二硝基苯胺-1-甲亚胺基-2,4-二羟基苯与Cu2+的结合常数达到了1.3161×1013±2.204×1011,与Fe3+的结合常数达到了1.1202×106±3.091×105,荧光分子探针中含有香豆素的腙类衍生物对Cu2+和Fe3+的结合能力强于含有苯的腙类衍生物,而选择性却低于含有苯的腙类衍生物。
CN201910629200.6A 2019-07-12 2019-07-12 基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用 Active CN110396404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910629200.6A CN110396404B (zh) 2019-07-12 2019-07-12 基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910629200.6A CN110396404B (zh) 2019-07-12 2019-07-12 基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用

Publications (2)

Publication Number Publication Date
CN110396404A CN110396404A (zh) 2019-11-01
CN110396404B true CN110396404B (zh) 2022-06-17

Family

ID=68325396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910629200.6A Active CN110396404B (zh) 2019-07-12 2019-07-12 基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用

Country Status (1)

Country Link
CN (1) CN110396404B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057034A (zh) * 2019-12-02 2020-04-24 西北师范大学 香豆素功能化的柱[5]芳烃及其合成和应用
CN114213407B (zh) * 2021-12-01 2023-12-19 江苏海洋大学 一种2-吡啶基噻唑腙类香豆素衍生物化学传感器、制备方法及应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417961B (zh) * 2008-12-06 2012-07-25 西北师范大学 一类基于硝基苯腙和酚羟基的阴离子受体及其阴离子检测试纸的制备和应用
JP2010194518A (ja) * 2009-02-27 2010-09-09 Hitachi Zosen Corp アンモニア分解触媒
EP2287149A1 (en) * 2009-08-20 2011-02-23 Max-Delbrück-Centrum Für Molekulare Medizin Enhancers of protein degradation
CN104530102B (zh) * 2014-12-08 2017-06-06 辽宁科技大学 一种检测生物体内硫离子的荧光铜配合物及其应用
JP6605334B2 (ja) * 2016-01-06 2019-11-13 昭和化学工業株式会社 クマリン誘導体の製造方法、発色用蛍光剤の製造方法、並びに、蛍光用色素の製造方法
WO2018085737A1 (en) * 2016-11-04 2018-05-11 The Trustees Of Dartmouth College Photochromic hydrazone switches
SG11202005465SA (en) * 2017-12-22 2020-07-29 Brewer Science Inc Laser-releasable bonding materials for 3-d ic applications
CN108409726B (zh) * 2018-01-17 2021-06-15 南通大学 一种香豆素2-肼基苯并噻唑席夫碱Cd2+荧光探针的制备及应用

Also Published As

Publication number Publication date
CN110396404A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
Jaung Synthesis and halochromism of new quinoxaline fluorescent dyes
Kaur et al. Ferrocene-BODIPY Push–Pull dyad: A common platform for the sensing of Hg2+ and Cr3+
Mergu et al. A coumarin-derived Cu2+-fluorescent chemosensor and its direct application in aqueous media
Li et al. Novel mercury sensor based on water soluble styrylindolium dye
Ma et al. AIE-active luminogen for highly sensitive and selective detection of picric acid in water samples: Pyridyl as an effective recognition group
CN110396404B (zh) 基于腙类衍生物的荧光分子探针及其制备方法和在阳离子识别方面的应用
Verma et al. Photophysical properties of ligand localized excited state in ruthenium (ii) polypyridyl complexes: A combined effect of electron donor–acceptor ligand
Erdemir et al. A novel “turn on” fluorescent sensor based on hydroxy-triphenylamine for Zn2+ and Cd2+ ions in MeCN
CN111423423A (zh) 一种比率型荧光探针在检测过氧亚硝基阴离子中的应用
Qin et al. A novel ratiometric fluorescent probe for detection of Fe3+ by rhodamine–quinoline conjugate
Qiu et al. Near-infrared chemodosimetric probes based on heptamethine cyanine dyes for the “naked-eye” detection of cyanide in aqueous media
Yang et al. Colorimetric and Highly Selective Fluorescence" Turn‐on" Detection of Cr3+ by Using a Simple Schiff Base Sensor
Han et al. Novel ratio fluorescence probes for selectively detecting zinc ion based on Y-type quinoxaline framework
CN111518089A (zh) 一种检测pH的比率型荧光探针及其制备方法和应用
Huang et al. A fluorescent probe based on triphenylamine with AIE and ICT characteristics for hydrazine detection
CN109232558B (zh) 一种用于检测Cu2+的衍生物
Zhu et al. A novel dibenzimidazole-based fluorescent organic molecule as a turn-off fluorescent probe for Cr3+ ion with high sensitivity and quick response
Zhang et al. An acid-fluorescence and alkali-colorimetric dual channels sensor for Hg2+ selective detection by different coordination manners in aqueous media
CN109251746A (zh) 蒽环桥联双核钌配合物荧光探针的制备及其应用
CN108484479B (zh) 一种咔唑基双光子荧光探针及其制备方法和用途
Sun et al. A naphthalene based chemosensor for dual channel recognition of Al3+ and relay recognition of Fe3+ in water-bearing system and bioimaging in Zebrafish
Kılıçaslan et al. Synthesis, electrochemical, in-situ spectroelectrochemical and in-situ electrocolorimetric characterization of new phthalocyanines containing macrocyclic moieties
He et al. Colorimetric and fluorescent probe for highly selective and sensitive recognition of Cu2+ and Fe3+ based on asymmetric squaraine dye
CN102660254B (zh) 一种用于汞离子检测的含铱配合物磷光材料及其制备方法
CN114539181B (zh) 一种用于铝离子和锌离子快速检测的荧光探针及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant