CN110368961B - 一种片层自组装海星状富镍碲化镍催化剂的制备方法 - Google Patents

一种片层自组装海星状富镍碲化镍催化剂的制备方法 Download PDF

Info

Publication number
CN110368961B
CN110368961B CN201910657105.7A CN201910657105A CN110368961B CN 110368961 B CN110368961 B CN 110368961B CN 201910657105 A CN201910657105 A CN 201910657105A CN 110368961 B CN110368961 B CN 110368961B
Authority
CN
China
Prior art keywords
nickel
telluride
catalyst
rich
starfish
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910657105.7A
Other languages
English (en)
Other versions
CN110368961A (zh
Inventor
熊昆
龙川
黄丽萍
张海东
陈佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN201910657105.7A priority Critical patent/CN110368961B/zh
Publication of CN110368961A publication Critical patent/CN110368961A/zh
Application granted granted Critical
Publication of CN110368961B publication Critical patent/CN110368961B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及电解制氢技术领域,具体公开了一种片层自组装海星状富镍碲化镍催化剂的制备方法,包括以下步骤,步骤1:将氢氧化钾、碲源和还原剂溶解在溶剂中,后加入泡沫镍基底;步骤2:将步骤1密封加热反应,使泡沫镍基底上生成碲化镍,加热的温度不超过200℃;步骤3:将生成有碲化镍的泡沫基底放入惰性气氛中进行退火处理,退火温度不低于250℃,得片层自组装海星状富镍碲化镍催化剂。采用本发明技术方案制得的催化剂呈现海星状富镍结构,有助于提高电解水析氢性能。

Description

一种片层自组装海星状富镍碲化镍催化剂的制备方法
技术领域
本发明涉及电解制氢技术领域,特别涉及一种片层自组装海星状富镍碲化镍催化剂的制备方法。
背景技术
电解水制氢,利用不可存储的可再生资源(太阳能、风能、潮汐能等)发电催化水解离析出氢气,不仅获得的产品清洁、纯度高,还可以将电能间接储存为化学能待利用,实现了资源可持续利用,对解决能源和环境问题具有重要意义。因此构筑合适的催化剂是降低电解水制氢能耗、提高电解效率的技术核心。催化剂的作用是加速电极-电解质两相界面上的电荷转移过程。
过渡金属泡沫镍(NF)是常见的电极基底,但基底材料的析氢催化活性较差,通常需要担载具有高催化活性的催化剂。由于析氢反应过程中不断有气泡析出,若催化剂与基底的结合力不牢,催化层容易被析出气体冲刷而脱落,最终导致活性下降甚至失活。因此,对于电极表面的催化剂,首先,需要优化设计催化剂的电子结构,使其有助于氢的吸脱附反应,从而达到高效产氢;其次,催化剂应具备有序化的开放结构,以便提供更多的活性位参与反应,同时为氢的逸出提供通道;最后,催化剂与基底之间的结合力较强,从而增强电子从基底传输到催化剂表面,也避免催化层被产生的气体冲刷而脱落,保证催化电极的稳定性。
发明内容
本发明提供了一种片层自组装海星状富镍碲化镍催化剂的制备方法,其目的在于增加碲化镍催化剂的析氢活性位,提高析氢性能。
为了达到上述目的,本发明的技术方案为:
一种片层自组装海星状富镍碲化镍催化剂的制备方法,包括以下步骤:
步骤1:将氢氧化钾、碲源和还原剂溶解在溶剂中,后加入泡沫镍基底;
步骤2:将步骤1密封加热反应,使泡沫镍基底上生成碲化镍,加热的温度不超过200℃;
步骤3:将生成有碲化镍的泡沫基底放入惰性气氛中进行退火处理,退火温度不低于250℃,得片层自组装海星状富镍碲化镍催化剂。
本技术方案的技术原理和效果在于:
1、本方案中的氢氧化钾作为强碱具有腐蚀性,在密封环境中加热可以加速对泡沫镍基底的腐蚀能力,提高了泡沫镍基底表面的粗糙度,有利于增加泡沫镍基底的活性比表面积和活性位,同时,泡沫镍基底被氢氧化钾腐蚀溶解而自发提供镍离子,无须额外加入镍源,在还原剂水合肼的还原作用下,直接与碲源提供的碲反应生成碲化镍。
2、本方案中由于步骤2中碲化镍在密封状态下加热反应而成,而在步骤3中的退火温度是在惰性气氛中进行的,因此在高温退火时,碲化镍中的镍不会被空气中的氧气氧化而形成氧化镍,镍与碲发生了互相扩散,其中由于镍更容易沿表面和晶界扩散,从而有助于生成表面富含镍的碲化镍,晶体结构由NiTe转变成Ni2.86Te2.0,形成非化学计量配比,而非化学计量配比的产生将有助于形成较多缺陷,改变活性氢物种的吸附脱附性质,增加析氢本征活性。
3、本发明方法制备的片层自组装海星状富镍碲化镍催化剂在未使用粘合剂的情况下,碲化镍与泡沫镍基底之间的结合力强,同时碲化镍催化剂呈现海星状开放结构,电解液和析出气泡易扩散,简单易行,操作安全,适用于氯碱电解、电解水制氢领域,易于实现工业化。
进一步,所述步骤1中的溶剂为乙醇和水的混合液,乙醇与水的体积比为1:2。
有益效果:发明人通过实验证明,采用乙醇与水以1:2的体积比混合的混合液作为溶剂,更利于碲源与泡沫镍基底反应生成碲化镍。
进一步,所述步骤1中氢氧化钾的摩尔浓度为0.1~10mol/L。
有益效果:由于氢氧化钾是用于腐蚀泡沫镍基底的表面,使泡沫基底的表面粗糙度增大,而由于生成的碲化镍为微米级,因此粗糙度又不能太大,所以氢氧化钾在此摩尔浓度下即能保证泡沫镍基底的有一定粗糙度,又能够保证不会过于粗糙。
进一步,所述步骤1中碲源的摩尔浓度为0.001~0.1mol/L。
有益效果:由于碲化镍是在泡沫镍基底的表面生长的,且生成的碲化镍均为微米级,由于碲化镍一旦形成,就相当于在泡沫镍基底的表面形成一层保护层,阻断了泡沫镍基底继续与碲源的接触,因此采用该浓度的碲源不仅能够保证在泡沫镍基底表面形成完整的碲化镍层,同时还避免加入过多碲,以造成不必要的浪费。
进一步,所述步骤1中水合肼与溶剂的体积比为1/30~1/3。
有益效果:采用该体积比的水合肼能够充分利用水合肼的还原作用,使碲源与泡沫镍基底产生充分的反应,形成碲化镍。
进一步,所述步骤1中的碲源为单质碲、氧化碲或亚碲酸钠中的一种。
有益效果:采用这三种碲源均可制得富镍的碲化镍催化剂。
进一步,所述步骤2中加热温度为80~200℃,反应时间为1~36h。
有益效果:在该反应温度和时间下,更有利于形成片层海星状结构的碲化镍。
进一步,所述步骤3中退火温度为250~500℃,退火时间为0.5~10h。
有益效果:生成有碲化镍的泡沫镍基底在该退火温度和退火时间下,镍和碲能够更好的互相扩散,有助于形成表面富镍的碲化镍。
附图说明
图1为实施例1中片层自组装海星状富镍碲化镍催化剂的扫描电子显微镜图;
图2为实施例1中步骤3生成有碲化镍的泡沫镍基底在退火前后的XRD图;
图3为实施例1和对比例1~2的析氢线性扫描伏安曲线图。
具体实施方式
下面通过具体实施方式进一步详细说明:
实施例1-5的参数如下表1所示:
表1为实施例1~5片层自组装海星状富镍碲化镍催化剂制备方法的参数
Figure BDA0002137184850000031
Figure BDA0002137184850000041
下面以实施例1为例详细说明一种片层自组装海星状富镍碲化镍催化剂的制备方法,包括以下步骤:
步骤1:以10mL乙醇和20mL水的混合液为溶剂,配制1.0mol/L的氢氧化钾和0.01mol/L的单质碲,加入4mL的水合肼,后向溶液中加入清洗干净的泡沫镍基底。
步骤2:将步骤1密封加热反应,加热的温度为180℃,反应的时间为10h,使泡沫镍基底上生成一层碲化镍,生成有碲化镍的泡沫镍基底的化学表达式记为NiTe/NF。
步骤3:从步骤2溶液中取出的生成有碲化镍的泡沫基底进行洗涤干燥,后放入氩气惰性气氛中进行高温退火处理,退火温度为300℃,退火时间为0.5h,得到片层自组装海星状富镍碲化镍催化剂,化学表达式记为Ni2.86Te2.0/NF。
另列举两组对比例与实施例1~5得到的片层自组装海星状富镍碲化镍催化剂进行对比试验:
对比例1为未生成有碲化镍的泡沫镍(NF)基底。
对比例2采用负载量为20wt%Pt,型号为Johnson Matthey的商业Pt/C催化剂。
现对实施例1~5和对比例1~2进行试验检测:
1、SEM检测:
采用扫描电镜对实施例1~5制得的片层自组装海星状富镍碲化镍催化剂进行检测,以实施例1为例,检测结果如图1所示。
从图1可以观察到,泡沫镍基底的表面形成了均匀的片层自组装海星状结构的碲化镍,而这样的结构有助于增加催化剂的比表面积,提高活性位数目,同时开放的垂直片层结构还能够促进电解液的传输和析氢反应过程中生成气体产物的及时扩散,使得催化剂具备更好的析氢性能。
2、XRD检测
采用X射线衍射仪对实施例1~5中步骤3高温退火前后的生成有碲化镍的泡沫镍基底进行检测,以实施例1和对比例1为例,如图2所示,详细分析如下。
图2中曲线(1)为对比例1(NF)的衍射图,曲线(2)为步骤3退火后形成的Ni2.86Te2.0/NF的衍射图,曲线(3)为步骤3退火前形成的NiTe/NF的衍射图,从图2的曲线(3)可以观察到,在泡沫镍(NF)表面生成了一层片层海星状富镍碲化镍催化剂后,依然保持了NF金属的特性。
同时观察图2中曲线(2)和曲线(3)可知,生成有碲化镍的泡沫镍基底在退火后,NiTe转变成Ni2.86Te2.0,表面镍含量增加,形成非化学计量配比,这将有助于形成较多缺陷,改变活性氢物种的吸附脱附性质,增加析氢本征活性。
3、线性扫描伏安法
采用三电极体系,以1mol/L的KOH水溶液作为电解质溶液,将实施例1~5制备的片层自组装海星状富镍碲化镍催化剂、对比例1的泡沫镍和对比例2的商业Pt/C催化剂作为工作电极,汞/氧化汞电极为参比电极,碳棒为辅助电极,在电化学工作站上测试析氢线性扫描伏安曲线。
图3中曲线a是对比例1的线性扫描伏安曲线,曲线b是实施例1的线性扫描伏安曲线,曲线c是对比例2的线性扫描伏安曲线;通过对图3的观察可知,在电流密度为10mA/cm2时,对比例1(NF)的过电位为161mV,实施例1(片层自组装海星状富镍碲化镍催化剂)的过电位为121mV,对比例2(商业Pt/C催化剂)的过电位为48mV,通过以上数据可以发现将泡沫镍基底表面进行片层自组装形成海星状富镍碲化镍催化剂的析氢活性相较于对比例1显著提高,尽管在电流密度为10mA/cm2时与商业Pt/C催化剂电极的电位差距较大,但是从图中可以明显观察到,富镍碲化镍催化剂的曲线在大电流密度下具有更小的过电位,在接近50mA/cm2时几乎可与商业Pt/C催化剂相媲美。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (7)

1.一种片层自组装海星状富镍碲化镍催化剂的制备方法,其特征在于:包括以下步骤:
步骤1:将氢氧化钾、碲源和水合肼溶解在溶剂中,后加入泡沫镍基底;
步骤2:将步骤1密封加热反应,使泡沫镍基底上生成碲化镍,加热的温度不超过200℃;
步骤3:将步骤2生成有碲化镍的泡沫基底放入惰性气氛中进行退火处理,退火温度为250~500℃,退火时间为0.5~10h,得片层自组装海星状富镍碲化镍催化剂。
2.根据权利要求1所述的一种片层自组装海星状富镍碲化镍催化剂的制备方法,其特征在于:所述步骤1中的溶剂为乙醇和水的混合液,乙醇与水的体积比为1:2。
3.根据权利要求1所述的一种片层自组装海星状富镍碲化镍催化剂的制备方法,其特征在于:所述步骤1中氢氧化钾的摩尔浓度为0.1~10mol/L。
4.根据权利要求1所述的一种片层自组装海星状富镍碲化镍催化剂的制备方法,其特征在于:所述步骤1中碲源的摩尔浓度为0.001~0.1mol/L。
5.根据权利要求1所述的一种片层自组装海星状富镍碲化镍催化剂的制备方法,其特征在于:所述步骤1中水合肼与溶剂的体积比为1/30~1/3。
6.根据权利要求1所述的一种片层自组装海星状富镍碲化镍催化剂的制备方法,其特征在于:所述步骤1中的碲源为单质碲、氧化碲或亚碲酸钠中的一种。
7.根据权利要求1~6任意一项所述的一种片层自组装海星状富镍碲化镍催化剂的制备方法,其特征在于:所述步骤2中加热温度为80~200℃,反应时间为1~36h。
CN201910657105.7A 2019-07-19 2019-07-19 一种片层自组装海星状富镍碲化镍催化剂的制备方法 Active CN110368961B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910657105.7A CN110368961B (zh) 2019-07-19 2019-07-19 一种片层自组装海星状富镍碲化镍催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910657105.7A CN110368961B (zh) 2019-07-19 2019-07-19 一种片层自组装海星状富镍碲化镍催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN110368961A CN110368961A (zh) 2019-10-25
CN110368961B true CN110368961B (zh) 2021-07-13

Family

ID=68254333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910657105.7A Active CN110368961B (zh) 2019-07-19 2019-07-19 一种片层自组装海星状富镍碲化镍催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110368961B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112481654B (zh) * 2020-11-27 2021-11-09 浙江大学衢州研究院 一种二维碲化镍支撑钯单原子的催化剂及其制备方法和应用
CN113584518B (zh) * 2021-07-02 2023-04-07 武汉工程大学 一种碲/碲化镍析氢催化剂及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103058289B (zh) * 2013-01-05 2014-09-10 中南大学 镍的硫族化合物及氧化物空心球的制备方法
CN104036959A (zh) * 2014-06-16 2014-09-10 大连理工大学 含碲对电极、具有该对电极的太阳能电池及其制造方法
CN106498434B (zh) * 2016-11-04 2018-08-17 重庆工商大学 一体化镍基多孔磷化镍析氢电极的制备方法
CN106910639B (zh) * 2017-03-20 2018-12-07 浙江大学 一种用于超级电容器电极材料的NiTe2的制备方法
CN108636428B (zh) * 2018-03-13 2021-04-02 北京化工大学 一种金属碲化物作为双功能电解水催化剂的制备方法

Also Published As

Publication number Publication date
CN110368961A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN109252180B (zh) 一种三元mof纳米片阵列材料、制备方法及其应用
CN109852994B (zh) 一种Co9S8与氮掺杂碳复合阵列电极的制备方法
CN113445072B (zh) 一种泡沫镍复合电极及其制备方法和应用
CN109954503A (zh) 一种硒化镍和三元硒化镍铁复合电催化剂及制备方法和应用
CN112626540B (zh) 一种用于电解水的多级结构电极及其制备方法
CN109599565B (zh) 一种双功能钴与氮掺杂碳复合原位电极的制备方法
Ming et al. Facile growth of transition metal hydroxide nanosheets on porous nickel foam for efficient electrooxidation of benzyl alcohol
CN106757143A (zh) 一种水分解反应用催化电极及其制备方法
CN110280249A (zh) 一种非贵金属NiCoFe/NF电催化剂的制备方法及其氧气析出应用
CN111663152B (zh) 一种泡沫镍负载无定型磷掺杂钼酸镍双功能电催化电极的制备方法及应用
CN110965076A (zh) 一种双功能三维分层核壳结构电解水电极的制备方法
CN113512738B (zh) 三元铁镍钼基复合材料电解水催化剂、其制备方法和应用
CN112808274A (zh) 室温方法制备高性能的铁掺杂镍或钴基非晶态羟基氧化物催化剂及其高效电解水制氢研究
CN113637997A (zh) 一种Co2P/CuP2/NF析氢析氧电催化剂制备方法
CN110368961B (zh) 一种片层自组装海星状富镍碲化镍催化剂的制备方法
CN109759066A (zh) 一种硼掺杂石墨烯负载的钴镍双金属氧化物析氧催化剂的制备方法
CN113136597A (zh) 一种铜锡复合材料及其制备方法和应用
CN112680745B (zh) 一种限域负载钌纳米团簇的氮化钨纳米多孔薄膜一体化电极及其制备方法和应用
CN110629248A (zh) 一种Fe掺杂Ni(OH)2/Ni-BDC电催化剂的制备方法
CN113930782A (zh) 一种自支撑电极的制备方法与应用
CN110137523B (zh) 一种制氢水合肼燃料电池装置
CN114045521B (zh) 一种纳米级电催化剂的制备方法
CN113955728B (zh) 中空等级结构磷化钴/磷化钴锰的制备及其电解水的应用
CN115928135A (zh) 一种铁掺杂氢氧化镍复合硒化镍材料及其制备方法和应用
CN115261915A (zh) 一种含钴和镍的复合电催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant