CN110354881A - 一种NxC包裹金属纳米颗粒核壳结构材料的制备方法 - Google Patents

一种NxC包裹金属纳米颗粒核壳结构材料的制备方法 Download PDF

Info

Publication number
CN110354881A
CN110354881A CN201910555871.2A CN201910555871A CN110354881A CN 110354881 A CN110354881 A CN 110354881A CN 201910555871 A CN201910555871 A CN 201910555871A CN 110354881 A CN110354881 A CN 110354881A
Authority
CN
China
Prior art keywords
shell structure
preparation
metal
organic
metal nanoparticle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910555871.2A
Other languages
English (en)
Other versions
CN110354881B (zh
Inventor
庄林
李振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201910555871.2A priority Critical patent/CN110354881B/zh
Publication of CN110354881A publication Critical patent/CN110354881A/zh
Application granted granted Critical
Publication of CN110354881B publication Critical patent/CN110354881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种NxC包裹金属纳米颗粒核壳结构材料的制备方法,包括以下步骤:1)将金属纳米颗粒酸处理,去除表面的氧化物;2)将获得的纳米颗粒分散于溶剂(如乙腈)中,在搅拌条件下,再缓慢加入一定质量的有机配体(如TCNQ等),配体与金属纳米颗粒反应,在纳米颗粒表面形成一定厚度的有机盐;3)将有机盐包裹的金属纳米颗粒在焙烧气氛下进行焙烧,即得NxC包裹的金属纳米颗粒核壳结构材料。本发明还进一步提供了该材料的应用。本发明提供的一种以金属纳米颗粒为前驱体,制备NxC包裹金属纳米颗粒核壳结构的方法和应用,能够作为催化剂用于CO2还原反应,具有良好的电催化活性,选择性好,重现性高且有良好的稳定性。

Description

一种NxC包裹金属纳米颗粒核壳结构材料的制备方法
技术领域
本发明属于材料制备技术领域,涉及一种核壳结构材料制备方法,尤其涉及一种NxC包裹金属纳米颗粒核壳结构材料的制备方法。
背景技术
21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究是人类对物质性质认识和应用向更深层次的进军。随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。纳米材料是新材料领域中最富活力、研究内涵十分丰富的科学分支。纳米材料的制备与合成技术是当前主要的研究方向,在样品的合成及应用上取得了一些进展,但至今仍不能满足社会快速发展的需求,因此研究纳米材料的制备对其应用起着至关重要的作用。现有技术中新能源领域CO2催化还原反应的催化剂活性不高,C2产物选择性差,极大限制新能源的发展。
发明内容
本发明提出了一类NxC包裹金属纳米颗粒核壳结构材料的制备方法,并且得到了一种具有良好的电催化活性材料,其选择性好,重现性高且有良好的稳定性,这一类材料是一类很有潜力、能应用于新能源领域CO2催化还原反应。
本发明的制备方法包括如下步骤:
一类NxC包裹金属纳米颗粒核壳结构材料的制备方法,其制备步骤如下:
步骤1、金属纳米颗粒前处理:将金属纳米颗粒(如Cu、Ag和Au及其合金等)置于足量的稀酸中搅拌一段时间,再通过离心、洗涤,得到表面无氧化物的金属纳米颗粒;
步骤2、金属纳米颗粒表面有机金属盐包裹层的构筑:将步骤1得到的表面无氧化物的金属纳米颗粒在有机溶剂(如乙腈)中超声分散,在搅拌条件下,加入计算量的有机配体(如TCNQ等),配体与金属纳米颗粒充分反应,在纳米颗粒表面形成一定厚度的有机盐,然后过滤、洗涤,得到有机金属盐包裹的金属纳米颗粒;
步骤3、NxC包裹金属纳米颗粒核壳结构材料:将步骤2所得有机金属盐包裹的金属纳米颗粒在焙烧气氛下进行焙烧,即得NxC包裹的金属纳米颗粒核壳结构材料。
作为一种优选,所述有机溶剂包括乙腈,丙二腈,四氢呋喃等中的任意一种。
作为一种优选,所述的有机配体为具有强吸电子基团的有机分子,具体为7,7',8,8'-四氰醌二甲烷(TCNQ)、2-氟-7,7',8,8'-四氰醌二甲烷(FTCNQ)、2,3,5,6-四氟-7,7',8,8'-四氰醌二甲烷(F4TCNQ)和1,4-双(二氰甲叉)-环己烷中的任意一种。
作为一种优选,有机配体与金属纳米颗粒质量比大于1%。
作为一种优选,所述步骤3中,焙烧氛围为还原性气体与惰性气体的混合气体,还原性气体可以选择氢气和一氧化碳等等,惰性气体可以选择氮气、氦(He)、氖(Ne)、氩(Ar)、氪(Kr)、氙(Xe)等等,还原性气体和惰性气体具体比例不限。
作为一种优选,所述步骤3中,焙烧温度大于250℃,升温速率不限。
本发明还提供一种NxC包裹金属纳米颗粒核壳结构材料的制备方法,其特征在于,其制备步骤如下:
步骤1、金属纳米颗粒前处理:将金属纳米颗粒置于足量的稀酸中搅拌一段时间,再通过离心、洗涤,得到表面无氧化物的金属纳米颗粒;
步骤2、准备有机配体,将有机配体进行加热蒸发,将有机配体蒸汽引入到金属纳米颗粒表面充分反应,在纳米颗粒表面形成一定厚度的有机盐,得到有机金属盐包裹的金属纳米颗粒;
步骤3、NxC包裹金属纳米颗粒核壳结构材料:将步骤2所得有机金属盐包裹的金属纳米颗粒在焙烧气氛下进行焙烧,即得NxC包裹的金属纳米颗粒核壳结构材料。
一种NxC包裹金属纳米颗粒核壳结构材料,采用上述的方法制备得到。
本发明有益效果是:
本发明制备的NxC包裹金属纳米颗粒核壳结构材料应用于电催化CO2还原反应中,可以获得高的电催化活性,选择性好(如附图1所示)。通过图a和b可以看出催化剂具有优异的电催化CO2还原活性和C2产物选择性。在最佳电势-1.1V(vs.RHE)下,乙烯法拉第效率为43%,乙醇法拉第效率为35%,总的C2产物法拉第效率为78±1.5%,而且析氢反应法拉第效率被有效抑制(低于10%)。除此之外,这类NxC包裹金属纳米颗粒核壳结构材料有着非常好的化学稳定性。在空气中不易被氧化,而且催化性能也稳定(如附图2所示)。这都归功于NxC层与CO2分子间的相互作用提高CO2反应活性,促进催化剂表面C-C耦合,除此之外,NxC层可以抑制氢析出反应,保护纳米颗粒不被氧化及提高催化稳定性。
附图说明
图1为本发明NxC包裹金属纳米颗粒核壳结构材料的合成路线示意图。
图2本发明实施例1的NxC包裹金属纳米颗粒核壳结构材料在0.1M KHCO3溶液活性测试结果,其中(a)为不同应用电极电势下产物选择性及电流密度;(b)为不同应用电极电势下H2,C1及C2产物的法拉第效率。。
图3本发明实施例1的NxC包裹金属纳米颗粒核壳结构材料在0.1M KHCO3溶液中,-1.1V(vs.RHE)下的稳定性测试结果。
图4本发明实施例1的NxC包裹金属纳米颗粒核壳结构的表征;其中(a)为NxC包裹金属纳米颗粒BF-STEM结果;(b)为NxC包裹金属纳米颗粒中N元素mapping图;(c)为NxC包裹金属纳米颗粒中C元素mapping图;(d)为NxC包裹金属纳米颗粒中Cu元素mapping图。
图5本发明NxC包裹金属纳米颗粒核壳结构的SEM表征;其中(a)为实施例2中NxC包裹金属纳米颗粒核壳结构的SEM表征;(b)为实施例3中NxC包裹金属纳米颗粒核壳结构的SEM表征;(c)为实施例4中NxC包裹金属纳米颗粒核壳结构的SEM表征;(d)为实施例1中NxC包裹金属纳米颗粒核壳结构的SEM表征;(e)为实施例5中NxC包裹金属纳米颗粒核壳结构的SEM表征。
图6本发明NxC包裹金属纳米颗粒核壳结构的SEM表征。(a)为实施例6中NxC包裹金属纳米颗粒核壳结构的SEM表征;(b)为实施例1中NxC包裹金属纳米颗粒核壳结构的SEM表征;(c)为实施例7中NxC包裹金属纳米颗粒核壳结构的SEM表征。
图7本发明NxC包裹金属纳米颗粒核壳结构的SEM表征。(a)为实施例2中NxC包裹金属纳米颗粒核壳结构的TEM表征;(b)为实施例3中NxC包裹金属纳米颗粒核壳结构的TEM表征;(c)为实施例4中NxC包裹金属纳米颗粒核壳结构的TEM表征;(d)为实施例1中NxC包裹金属纳米颗粒核壳结构的TEM表征;(e)为实施例5中NxC包裹金属纳米颗粒核壳结构的TEM表征。
图8本发明NxC包裹金属纳米颗粒核壳结构的SEM表征。(a)为实施例6中NxC包裹金属纳米颗粒核壳结构的TEM表征,(b)为实施例6中NxC包裹金属纳米颗粒核壳结构的高分辨率TEM表征;(c)为实施例1中NxC包裹金属纳米颗粒核壳结构的TEM表征,(d)为实施例1中NxC包裹金属纳米颗粒核壳结构的高分辨率TEM表征;(e)为实施例7中NxC包裹金属纳米颗粒核壳结构的TEM表征,(f)为实施例7中NxC包裹金属纳米颗粒核壳结构的高分辨率TEM表征。
具体实施方式
下面通过具体实施例对本发明作进一步的说明,其目的在于帮助更好的理解本发明的内容,但这些具体实施方案不以任何方式限制本发明的保护范围。本实施方案所用的原料均为常见已知化合物,均可在市场上购得。
实施例1
称取100mg的商业化纳米Cu粉末于150mL圆底烧瓶中,加入100mL 0.1M H2SO4水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入10mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到CuTCNQ包裹的Cu纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到350℃,并保持2小时后自然冷却至室温。得到NxC包裹Cu纳米颗粒核壳结构材料(Cu@NxC)。
对本实施例所得NxC包裹Cu纳米颗粒核壳结构材料进行电催化CO2还原性能及稳定性测试,催化性能使用上海辰华电化学工作站进行测量,稳定性使用Ivium电化学工作站进行测量,两种测试均采用三电极体系,对电极为Pt片电极,参比电极为0.1M KOH的RHE电极,气体产物均采用岛津生产的气相色谱进行定量分析,液体产物通过核磁进行定量分析。测量结果显示,本发明制备的Cu@NxC,催化剂具有优异的电催化CO2还原活性和C2产物选择性。在最佳电势-1.1V(vs.RHE)下,乙烯法拉第效率为43%,乙醇法拉第效率为35%,总的C2产物法拉第效率为78±1.5%,而且析氢反应法拉第效率被有效抑制(低于10%)。除此之外,这类NxC包裹金属纳米颗粒核壳结构材料有着非常好的化学稳定性。这种高的催化活性及稳定性使其非常有望用于新能源转化领域。
实施例2
称取100mg的商业化纳米Cu粉末于150mL圆底烧瓶中,加入100mL 0.1M H2SO4水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入2.5mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到CuTCNQ包裹的Cu纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到350℃,并保持2小时后自然冷却至室温。得到NxC包裹Cu纳米颗粒核壳结构材料(Cu@NxC)。
实施例3
称取100mg的商业化纳米Cu粉末于150mL圆底烧瓶中,加入100mL 0.1M H2SO4水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入5mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到CuTCNQ包裹的Cu纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到350℃,并保持2小时后自然冷却至室温。得到NxC包裹Cu纳米颗粒核壳结构材料(Cu@NxC)。
实施例4
称取100mg的商业化纳米Cu粉末于150mL圆底烧瓶中,加入100mL 0.1M H2SO4水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入7.5mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到CuTCNQ包裹的Cu纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到350℃,并保持2小时后自然冷却至室温。得到NxC包裹Cu纳米颗粒核壳结构材料(Cu@NxC)。
实施例5
称取100mg的商业化纳米Cu粉末于150mL圆底烧瓶中,加入100mL 0.1M H2SO4水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入12.5mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到CuTCNQ包裹的Cu纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到350℃,并保持2小时后自然冷却至室温。得到NxC包裹Cu纳米颗粒核壳结构材料(Cu@NxC)。
实施例6
称取100mg的商业化纳米Cu粉末于150mL圆底烧瓶中,加入100mL 0.1M H2SO4水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入10mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到CuTCNQ包裹的Cu纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到300℃,并保持2小时后自然冷却至室温。得到NxC包裹Cu纳米颗粒核壳结构材料(Cu@NxC)。
实施例7
称取100mg的商业化纳米Cu粉末于150mL圆底烧瓶中,加入100mL 0.1M H2SO4水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入10mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到CuTCNQ包裹的Cu纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到400℃,并保持2小时后自然冷却至室温。得到NxC包裹Cu纳米颗粒核壳结构材料(Cu@NxC)。
实施例8
称取100mg的商业化纳米Ag粉末于150mL圆底烧瓶中,加入100mL 0.1M H2NO3水溶液,搅拌10分钟,除去表面的氧化物。多次去离子水洗涤、离心。冷冻干燥后,称取50mg加入到100mL乙腈溶剂中,超声分散10分钟,在搅拌条件下加入10mg 7,7,8,8-四氰基对醌二甲烷(TCNQ),继续搅拌30分钟,过滤和乙腈洗涤,冷冻干燥12小时后得到AgTCNQ包裹的Ag纳米颗粒前驱体。
将上述前驱体在管式炉中,在氩气和氢气混合气条件下,以5℃/min升温速率加热到350℃,并保持2小时后自然冷却至室温。得到NxC包裹Ag纳米颗粒核壳结构材料(Ag@NxC)。
本实例中Ag粉的尺寸,Ag与TCNQ质量比及焙烧条件均是可调的,用以控制NxC层厚度和NxC层中C和N元素含量比例,除此之外,金属也可以使用Fe、Co等,配体也可以使用2-氟-7,7',8,8'-四氰醌二甲烷,2,3,5,6-四氟-7,7',8,8'-四氰醌二甲烷,1,4-双(二氰甲叉)-环己烷等,有机溶剂也可以使用丙二腈,四氢呋喃等。
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

1.一种NxC包裹金属纳米颗粒核壳结构材料的制备方法,其特征在于,其制备步骤如下:
步骤1、金属纳米颗粒前处理:将金属纳米颗粒置于足量的稀酸中搅拌一段时间,再通过离心、洗涤,得到表面无氧化物的金属纳米颗粒;
步骤2、金属纳米颗粒表面有机金属盐包裹层的构筑:将步骤1得到的表面无氧化物的金属纳米颗粒在有机溶剂中超声分散,在搅拌条件下,加入计算量的有机配体,配体与金属纳米颗粒充分反应,在纳米颗粒表面形成一定厚度的有机盐,然后过滤、洗涤,得到有机金属盐包裹的金属纳米颗粒;
步骤3、NxC包裹金属纳米颗粒核壳结构材料:将步骤2所得有机金属盐包裹的金属纳米颗粒在焙烧气氛下进行焙烧,即得NxC包裹的金属纳米颗粒核壳结构材料。
2.根据权利要求1所述的制备方法,其特征在于:所述金属为Cu、Ag和Au任意一种单金属或者几种金属组成的合金。
3.根据权利要求1所述的制备方法,其特征在于:所述有机溶剂包括乙腈,丙二腈,四氢呋喃等中的任意一种。
4.根据权利要求1所述的制备方法,其特征在于:所述的有机配体为具有强吸电子基团的有机分子。
5.根据权利要求4所述的制备方法,其特征在于:所述的有机配体为7,7',8,8'-四氰醌二甲烷、2-氟-7,7',8,8'-四氰醌二甲烷、2,3,5,6-四氟-7,7',8,8'-四氰醌二甲烷和1,4-双(二氰甲叉)-环己烷中的任意一种。
6.根据权利要求1所述的制备方法,其特征在于:有机配体与金属纳米颗粒质量比大于1%。
7.根据权利要求1所述的制备方法,其特征在于:所述步骤3中,焙烧氛围为还原性气体与惰性气体组成的混合气体。
8.根据权利要求1所述的制备方法,其特征在于:所述步骤3中,焙烧温度大于250℃。
9.一种NxC包裹金属纳米颗粒核壳结构材料的制备方法,其特征在于,其制备步骤如下:
步骤1、金属纳米颗粒前处理:将金属纳米颗粒置于足量的稀酸中搅拌一段时间,再通过离心、洗涤,得到表面无氧化物的金属纳米颗粒;
步骤2、准备有机配体,将有机配体进行加热蒸发,将有机配体蒸汽引入到金属纳米颗粒表面充分反应,在纳米颗粒表面形成一定厚度的有机盐,得到有机金属盐包裹的金属纳米颗粒;
步骤3、NxC包裹金属纳米颗粒核壳结构材料:将步骤2所得有机金属盐包裹的金属纳米颗粒在焙烧气氛下进行焙烧,即得NxC包裹的金属纳米颗粒核壳结构材料。
10.利用权利要求1至9任意一项所述的制备方法制备的NxC包裹金属纳米颗粒核壳结构材料,其特征在于:该材料用于新能源领域CO2催化还原反应。
CN201910555871.2A 2019-06-25 2019-06-25 一种NxC包裹金属纳米颗粒核壳结构材料的制备方法 Active CN110354881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910555871.2A CN110354881B (zh) 2019-06-25 2019-06-25 一种NxC包裹金属纳米颗粒核壳结构材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910555871.2A CN110354881B (zh) 2019-06-25 2019-06-25 一种NxC包裹金属纳米颗粒核壳结构材料的制备方法

Publications (2)

Publication Number Publication Date
CN110354881A true CN110354881A (zh) 2019-10-22
CN110354881B CN110354881B (zh) 2020-06-23

Family

ID=68216977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910555871.2A Active CN110354881B (zh) 2019-06-25 2019-06-25 一种NxC包裹金属纳米颗粒核壳结构材料的制备方法

Country Status (1)

Country Link
CN (1) CN110354881B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111215146A (zh) * 2020-02-17 2020-06-02 中南大学 一种基团修饰的贵金属基二氧化碳电还原催化剂及其制备方法和应用
CN113319276A (zh) * 2021-05-27 2021-08-31 武汉大学 一种核壳型有机配体包裹的球形铜颗粒的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281675A (zh) * 2018-01-31 2018-07-13 成都新柯力化工科技有限公司 一种空心球形氮化碳包裹铜基燃料电池催化剂及制备方法
CN108404982A (zh) * 2018-03-15 2018-08-17 湖南大学 一种由聚多巴胺还原的氮化碳负载型纳米金催化剂及制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281675A (zh) * 2018-01-31 2018-07-13 成都新柯力化工科技有限公司 一种空心球形氮化碳包裹铜基燃料电池催化剂及制备方法
CN108404982A (zh) * 2018-03-15 2018-08-17 湖南大学 一种由聚多巴胺还原的氮化碳负载型纳米金催化剂及制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111215146A (zh) * 2020-02-17 2020-06-02 中南大学 一种基团修饰的贵金属基二氧化碳电还原催化剂及其制备方法和应用
CN113319276A (zh) * 2021-05-27 2021-08-31 武汉大学 一种核壳型有机配体包裹的球形铜颗粒的制备方法
CN113319276B (zh) * 2021-05-27 2022-06-14 武汉大学 一种核壳型有机配体包裹的球形铜颗粒的制备方法

Also Published As

Publication number Publication date
CN110354881B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
Yang et al. Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core–Pt shell nanoparticles
Liang et al. Ultra-small platinum nanoparticles segregated by nickle sites for efficient ORR and HER processes
Si et al. Boosting visible light photocatalytic hydrogen evolution of graphitic carbon nitride via enhancing it interfacial redox activity with cobalt/nitrogen doped tubular graphitic carbon
Xing et al. Pt modified TiO2 nanotubes electrode: preparation and electrocatalytic application for methanol oxidation
Xu et al. Electrochemical performance of carbon nanotube-supported cobalt phthalocyanine and its nitrogen-rich derivatives for oxygen reduction
Wong et al. Influence of nitrogen doping on carbon nanotubes towards the structure, composition and oxygen reduction reaction
CN104841924B (zh) 一种碳完全封装金属纳米颗粒的制备方法
CN102088091A (zh) 一种燃料电池用碳载核壳型铜-铂催化剂及其制备方法
CN108262034A (zh) 一种催化剂及其制备方法及在常压低温合成氨中的应用
CN114032576B (zh) 一种缺陷纳米纤维碳载体耦合铁单原子催化剂的制备方法
US11020727B2 (en) Fe43.4Pt52.3Cu4.3 polyhedron nanoparticle with heterogeneous phase structure, preparing method and application thereof
CN110354881A (zh) 一种NxC包裹金属纳米颗粒核壳结构材料的制备方法
Li et al. Pd-on-NiCu nanosheets with enhanced electro-catalytic performances for methanol oxidation
CN105789645A (zh) 一种Pt/WO3-RGO催化剂
CN112553646A (zh) 一种MXene负载纳米合金催化剂、制备方法及其应用
CN108091892A (zh) 一种Fe/Co/N/MWCNTs催化剂
CN105903491B (zh) 一种有机硫转化催化剂的制备方法及其应用
CN108315758A (zh) 一种电解水产氢催化剂及其制备方法
Chen et al. Uric acid supported one-pot solvothermal fabrication of rhombic-like Pt35Cu65 hollow nanocages for highly efficient and stable electrocatalysis
CN106890639A (zh) 铟基双组元或三组元纳米催化剂及其制备和应用
Wang et al. Palladium nanoparticles supported by three-dimensional freestanding electrodes for high-performance methanol electro-oxidation
CN110534754B (zh) 一种包裹Fe3C纳米晶的碳纳米管及其制备方法和应用
JP2017127863A (ja) 酸素還元触媒とその活性化方法、および燃料電池触媒
Shi et al. Synthesis Pd/biomass-based carbon microsheet composite for efficient dehydrogenation from formic acid
Zhao et al. A facile synthesis of porous N-doped carbon with hybridization of Fe 3 C nanoparticle-encased CNTs for an advanced oxygen reduction reaction electrocatalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant