CN110352105B - 组件的增材制造的方法 - Google Patents

组件的增材制造的方法 Download PDF

Info

Publication number
CN110352105B
CN110352105B CN201880009051.7A CN201880009051A CN110352105B CN 110352105 B CN110352105 B CN 110352105B CN 201880009051 A CN201880009051 A CN 201880009051A CN 110352105 B CN110352105 B CN 110352105B
Authority
CN
China
Prior art keywords
laser
powder material
component
residual stress
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880009051.7A
Other languages
English (en)
Other versions
CN110352105A (zh
Inventor
阿梅德·卡梅尔
阿南德·A·库尔卡尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Inc filed Critical Siemens Energy Inc
Publication of CN110352105A publication Critical patent/CN110352105A/zh
Application granted granted Critical
Publication of CN110352105B publication Critical patent/CN110352105B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

一种增材制造组件的方法。该方法包括选择粉末特征、沉积粉末材料、检验粉末材料、选择激光加工的工艺和激光参数、激光加工粉末材料、进行层清理、确定和减轻应力状态、额外检验激光加工的粉末材料、并重复这些步骤直到完成组件的建造。

Description

组件的增材制造的方法
技术领域
本发明涉及一种组件的增材制造的方法。
背景技术
基于激光的材料沉积已经被用于精确涂层沉积和增层制造。该工艺的低能源效率和相对低的沉积速率与收益性相冲突,从而限制了可能的应用。腔室尺寸小限制了将大型部件建造为一体化。
与传统制造技术(例如铸造、锻造和机械加工)相比,以逐层方式制造近净形状的部件可以提供节省时间和成本的巨大潜力。目前,所采用的方法包括依靠提供精确粉末聚焦的特殊喷嘴设计。提供了每道在20-100微米厚度范围内具有小层建造的小珠粒尺寸。然而,这些方法为了产生高精度,付出了沉积速率非常缓慢的代价。由于沉积速率非常缓慢,相对于更传统的制造方法,增材制造丧失了一定的优势。
发明内容
在本发明的一个方面,一种增材制造组件的方法,该方法包括:选取粉末特征;沉积用于制造组件的粉末材料;就地检验沉积的粉末材料,以确定层特性;基于检验结果选择激光加工的工艺和激光参数;激光加工粉末材料;对激光加工的粉末材料进行层清理;就地额外检验激光加工的粉末材料,以确定材料特性;经由超声测量检验激光加工的粉末材料,以确定残留应力;在确定残留应力小于阈值时,用额外的粉末材料从沉积步骤开始重复以上步骤,直到完成组件的建造。
参考以下附图、说明书和权利要求书,将更好地理解本发明的这些和其他特征、方面和优点。
附图说明
本发明借助于附图得以更详细地示出。附图示出了优选的构造,并且不限制本发明的范围。
图1是描述本发明的增材制造工艺的示例性实施例的流程图;
图2示出本发明的示例性实施例的激光增材制造工艺;
图3示出本发明的示例性实施例的闪光灯激励热成像法特性检测过程;
图4是基于本发明的示例性实施例的闪光灯激励热成像法特性检过程的粉末堆积厚度;
图5是示出基于本发明的示例性实施例的闪光灯激励热成像法特性检测过程的样本的像素数量与厚度的曲线图;
图6示出本发明的示例性实施例的闪光灯激励热成像法特性检测过程;
图7是基于本发明的示例性实施例的闪光灯激励热成像法特性检测过程的金属沉积物的热导率;
图8示出本发明的示例性实施例的激光超声残留应力检验过程;以及
图9示出选择在本发明的示例性实施例的激光超声物理特性检验过程之后执行残留应力减轻过程。
具体实施方式
在以下对优选实施例的详细描述中,参考了构成本发明一部分的附图,并且在附图中,通过说明而非限制性的方式示出了可以实施本发明的具体实施例。应当理解的是,可以使用其他实施例,并且可以在不背离本发明的精神和范围的情况下进行改变。
广义地讲,本发明涉及一种增材制造组件的方法。该方法包括选择粉末特征、沉积粉末材料、检验粉末材料、选择激光加工的工艺和激光参数、激光加工粉末材料、进行层清理、额外检验激光加工的粉末材料,并且重复这些步骤直到完成组件的建造。
需要包括高沉积速率和大体积的增材制造工艺。下文所述工艺的实施例包括可应用于闭合的实施例(例如在选择性激光熔化(SLM)中)和露天的实施例(例如在包层、沉积系统中)。这些实施例可在最终的建造内产生各层之间的高度差。
典型地,对于制造工艺,选择性激光融化(例如SLM)和选择性激光烧结(SLS)会产生物理特性,例如缺陷和/或残留应力的累积。可以在激光处理之前进行模拟。然而,当在增材制造工艺中处理可变高度时,模拟是无效的。
为了开始增材制造工艺的实施例,选取粉末特征。每层的尺寸、总高度要求、所用材料以及其他粉末特性在初始步骤中被确定。这些特性决定了激光的相互作用。粉末进料和堆积开始沉积粉末材料。当沉积后,层厚度和粉末层密度对于整个过程中根据需要进行识别和保持非常重要。这些层特性通过如图3至5所示的检验来评估。该检验可以通过粉末材料的闪光灯激励热成像法(flash thermography)或类似读数进行。除非另有说明,术语“闪光灯激励热成像法”可与术语“检验”互换使用。
层特性例如导电性还可以通过该工艺中的闪光灯激励热成像步骤来评估。此外,闪光灯激励热成像法还可以对缺陷绘图,例如层中的孔隙或层中的裂缝。基于对闪光灯激励热成像法结果的评估,可以选择激光加工工艺和工艺参数。此外,如果存在任何缺陷或未获得的参数,这些值可能会影响工艺参数。这些工艺参数可以从预设参数的数据库中选择。
随后进行激光加工。在激光加工之后,进行层清理以去除多余的材料等。进行另一轮闪光灯激励热成像法,以获得和评价沉积特性,例如但不限于厚度、导电性和分层/开裂。图6和7示出闪光灯激励热成像法和碰巧具有如图所示缺陷的样本结果。沉积材料的热导率可与材料的密度相关。
在该工艺中的这个阶段,经过对闪光灯激励热成像法结果的评估,如果不满足要求,则工艺循环回到选择工艺和激光加工参数,以再次进行激光加工。
在激光加工期间,在扫描层中出现快速的温度循环和陡峭的温度梯度。温度梯度引起热应力,该热应力在工艺完成后可能保留在部件中,即残留应力。这些残留应力可能会损害所建造的部件的功能性和结构完整性。激光超声可以是一种可包括在工艺过程中的残留应力的就地和非破坏性测量方法。通过对层中的残留应力的测量和评估,可以实现对残留应力水平的控制。控制残留应力可以避免部件的翘曲以及过早开裂。如果在评估之后,残留应力水平低于某一阈值,则该工艺可以循环重复以设置粉末进料和层叠,以继续建造额外的粉末材料层。如果该值等于或高于阈值,则可以执行残留应力降低过程。残留应力降低过程,例如激光冲击喷丸技术,可以用来减轻这些应力。一旦残留应力被减轻,工艺循环回到设置粉末进料和层叠的步骤,即粉末材料的沉积。
实施例包括专门在粉末特性、沉积特性和残留应力方面的工作,从而形成完整的闭环。针对最终产品的大块区域可以产生较厚的层,而针对具有精细细节的区域,可以产生较薄的层。由于闭环控制,层厚度可随每层而变化。如上所述,典型的层建造尺寸为20-100微米。利用本文所述的实施例,层尺寸可以增加到150微米-4毫米。较厚的层尺寸可以用于如上所述的大块区域,而精细细节的区域可以减小为典型的较薄层尺寸。传统增材制造工艺的典型速度为30至40小时。由于能够改变层厚度,包括本文所描述的实施例的工艺现在运行大约4小时。
图1示出采用本文所公开的步骤的增材制造工艺的示例性实施例的流程图。步骤100具有针对增材制造选择的粉末特性。在步骤102中,设置粉末进料和层叠。在该步骤中粉末材料会被沉积。在步骤104中,对层特性进行闪光灯激励热成像。在步骤106中评估结果,并纳入步骤108中工艺参数和激光加工参数的选择中。步骤110包括执行激光处理。步骤112包括激光处理后的层清理。在步骤114中,对材料特性进行额外的闪光灯激励热成像法。在步骤116中评估材料特性并将其与预定阈值进行比较。如果材料特性超过阈值,则工艺返回到待执行的步骤108。如果材料特性在阈值范围内,则步骤118作为超声残留应力测量方法执行。在步骤120中将测量的残留应力与阈值进行比较。如果残留应力超过阈值,即未通过测试,则执行步骤122。步骤122执行残留应力降低工艺,例如激光冲击喷丸。如果残留应力低于阈值,则在步骤124中确定是否完成了整个组件的建造。如果没有,则从步骤102开始重复该过程。如果完成了完整的组件建造,则可以完成该过程。
该过程能够针对就地组件建造实现闭环控制的精确度同时还可以快速决定组件的建造。在层被建造或在层之间建造时,作出快速决定的能力能够在更短的时间内创建出组件。此外,通过在建造层的同时处理任何缺陷,在较早阶段便清除了该工艺的缺陷,因此,重做工件的工作量变少。这种工艺节省了成本和时间,改善了现有技术。
在建造组件后,可以完成组件的热处理。此外,可对组件进行机械加工或抛光。本领域技术人员将认识到,为了简单和清楚起见,本文没有描绘或描述适用于本发明的所有激光加工的完整结构和操作。相反,仅描绘和描述了对于本公开独有的或对于理解本发明所必需的激光加工系统。激光加工的其余构造和操作可能符合本领域已知的各种当前实施和实践。
应理解,本文所公开的增材制造方法的各方面可以由任何适当的处理器系统使用任何适当的编程语言或编程技术来实现。该系统可以采用任何适当的电路的形式,例如可能涉及硬件实施例、软件实施例或包括硬件和软件元件的实施例。在一个实施例中,系统可以通过软件和硬件(例如处理器、传感器等)来实现,其可以包括但不限于固件、驻留软件、微代码等。
此外,处理器系统的某些部分可以采用计算机程序产品的形式,从处理器可用或处理器可读介质访问,该介质提供由处理器或任何指令执行系统使用或与之相关的程序代码。处理器可读介质的示例可以包括非暂时性有形处理器可读介质,诸如半导体或固态存储器、磁带、可移动计算机磁盘、随机存取存储器(RAM)、只读存储器(ROM)、硬盘和光盘。光盘的当前示例包括:光盘—只读存储器(CD-ROM)、光盘—读/写(CD-R/W)和DVD以及其他已知的光、电或磁存储设备驱动器和介质。
过程参数可以在数据库中提供并对应于主记录存储,该主记录存储包括来自多个不同源数据集的数据。用于填充过程参数的数据可能源自其他数据库、XML结构和/或其他数据存储结构。同样,提供数据以生成过程参数的过程可能涉及提取/转换/加载(ETL)过程。
尽管已经详细描述了具体实施例,但本领域的普通技术人员将理解,根据本发明的总体教导可以开发对细节的各种修改和替代。因此,所公开的特定装置仅为说明性的,而不限制本发明的范围,本发明的范围仅由所附权利要求书及其任何和所有等效物的全部范围限定。

Claims (8)

1.一种增材制造组件的方法,所述方法包括:
选取粉末特征;
沉积用于制造所述组件的粉末材料;
就地检验沉积的所述粉末材料,以确定层特性;
基于检验结果,选择激光加工的工艺和激光参数;
激光加工所述粉末材料;
对激光加工的所述粉末材料进行层清理;
就地额外检验经激光加工的所述粉末材料,以确定材料特性;
经由超声测量检验经激光加工的所述粉末材料,确定残留应力;
在确定所述残留应力小于阈值时,用额外的粉末材料从沉积步骤开始重复以上步骤,直到完成所述组件的建造。
2.根据权利要求1所述的方法,其中所述额外检验是通过利用先前激光加工产生的热的闪光灯激励热成像法进行的。
3.根据权利要求1或2所述的方法,其中沉积的粉末层的厚度不同于沉积的额外粉末材料层。
4.根据权利要求1或2所述的方法,其中检验结果识别不可接受的特性,并且其中所述方法还包括在继续通过超声测量工序进行检验之前,重复选择、激光加工和进行层清理步骤,以减少或消除所述不可接受的特性。
5.根据权利要求1或2所述的方法,其中通过超声测量过程进行的检验识别所述残留应力是否等于或大于阈值,并且其中所述方法还包括,在继续重复使用额外的粉末材料从沉积步骤开始直到完成所述组件的建造之前,执行残留应力降低工序。
6.根据权利要求5所述的方法,其中所述执行残留应力降低工序包括激光冲击喷丸。
7.根据权利要求1或2所述的方法,还包括在完成所需的组件后,对所述组件进行热处理。
8.根据权利要求1或2所述的方法,还包括在完成所需的组件后,对所述组件进行机械加工或抛光。
CN201880009051.7A 2017-01-30 2018-01-30 组件的增材制造的方法 Active CN110352105B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762452124P 2017-01-30 2017-01-30
US62/452,124 2017-01-30
PCT/US2018/015865 WO2018140919A1 (en) 2017-01-30 2018-01-30 Method of additive manufacturing of components

Publications (2)

Publication Number Publication Date
CN110352105A CN110352105A (zh) 2019-10-18
CN110352105B true CN110352105B (zh) 2021-11-30

Family

ID=61224555

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201880009051.7A Active CN110352105B (zh) 2017-01-30 2018-01-30 组件的增材制造的方法
CN201880009053.6A Pending CN110268098A (zh) 2017-01-30 2018-01-30 与覆盖层兼容的热障涂层系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201880009053.6A Pending CN110268098A (zh) 2017-01-30 2018-01-30 与覆盖层兼容的热障涂层系统

Country Status (6)

Country Link
US (2) US11359290B2 (zh)
EP (2) EP3562971A1 (zh)
JP (2) JP6980022B2 (zh)
CN (2) CN110352105B (zh)
SA (1) SA519402328B1 (zh)
WO (2) WO2018140918A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10857735B1 (en) * 2017-04-25 2020-12-08 Hrl Laboratories, Llc Apparatus and method for additive manufacturing and determining the development of stress during additive manufacturing
JP7160759B2 (ja) * 2019-05-23 2022-10-25 株式会社神戸製鋼所 構造体の製造システム及び製造方法
CN111041401B (zh) * 2019-12-02 2022-02-11 北京工业大学 一种铁基非晶-陶瓷叠层隔热涂层及其制备方法和应用
US11491718B2 (en) * 2019-12-20 2022-11-08 Nutech Ventures Hybrid additive manufacturing method
KR102236149B1 (ko) * 2019-12-31 2021-04-06 한국과학기술원 3d 프린팅 시스템 및 이의 실시간 피드백 공정제어 방법
CN112059179B (zh) * 2020-08-04 2021-11-02 北京航空航天大学 用于大型金属构件制造的激光增材制造设备及方法
WO2022036591A1 (zh) * 2020-08-19 2022-02-24 西门子股份公司 增材制造中的打印工艺制定方法及装置
US11661861B2 (en) 2021-03-03 2023-05-30 Garrett Transportation I Inc. Bi-metal variable geometry turbocharger vanes and methods for manufacturing the same using laser cladding
AU2022204785A1 (en) * 2021-07-09 2023-02-02 Howmedica Osteonics Corp. Closed-loop automatic setting adjustments for additive manufacturing based on layer imaging

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1528110A1 (en) * 2003-10-31 2005-05-04 General Electric Company Monitored laser shock peening
US6925346B1 (en) * 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
CN101392382A (zh) * 2008-10-15 2009-03-25 江苏大学 一种激光熔覆结合激光喷丸强化表面改性的方法和装置
CN102962452A (zh) * 2012-12-14 2013-03-13 沈阳航空航天大学 基于红外测温图像的金属激光沉积制造扫描路径规划方法
CN104226988A (zh) * 2014-08-25 2014-12-24 深圳光韵达光电科技股份有限公司 一种大尺寸零部件的3d打印制造方法
CN104400998A (zh) * 2014-05-31 2015-03-11 福州大学 一种基于红外光谱分析的3d打印检测方法
CN104959600A (zh) * 2015-06-25 2015-10-07 武汉大学 基于飞秒激光复合技术的平板式氧传感器制备方法
CN105154870A (zh) * 2015-09-01 2015-12-16 广东工业大学 一种金属零件应力控制3d打印再制造方法
CN105204791A (zh) * 2015-09-11 2015-12-30 合肥阿巴赛信息科技有限公司 一种基于应力分析的优化三维打印物体结构的算法
CN105195742A (zh) * 2015-11-03 2015-12-30 西安赛隆金属材料有限责任公司 一种高能束选区熔化成形的熔化路径设计方法
CN105239080A (zh) * 2015-09-01 2016-01-13 广东工业大学 一种应力控制3d打印再制造装置及再制造方法
CN105745060A (zh) * 2013-09-23 2016-07-06 瑞尼斯豪公司 增材制造设备和方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996031687A1 (en) * 1995-04-06 1996-10-10 General Electric Company Method and composite for protection of thermal barrier coating with an impermeable barrier coating
JP3475258B2 (ja) * 1994-05-23 2003-12-08 株式会社海水化学研究所 セラミック被膜形成剤およびその製造方法
KR100436256B1 (ko) 1995-04-03 2004-07-16 제너럴 일렉트릭 캄파니 희생적인 표면피막에 의해 열차단 피복물을 보호하기 위한 방법 및 복합재
US5660885A (en) 1995-04-03 1997-08-26 General Electric Company Protection of thermal barrier coating by a sacrificial surface coating
US5773141A (en) 1995-04-06 1998-06-30 General Electric Company Protected thermal barrier coating composite
US5851678A (en) * 1995-04-06 1998-12-22 General Electric Company Composite thermal barrier coating with impermeable coating
US5871820A (en) 1995-04-06 1999-02-16 General Electric Company Protection of thermal barrier coating with an impermeable barrier coating
WO1997001436A1 (en) * 1995-06-26 1997-01-16 General Electric Company Protected thermal barrier coating composite with multiple coatings
US6465090B1 (en) 1995-11-30 2002-10-15 General Electric Company Protective coating for thermal barrier coatings and coating method therefor
US6261643B1 (en) * 1997-04-08 2001-07-17 General Electric Company Protected thermal barrier coating composite with multiple coatings
US6720038B2 (en) 2002-02-11 2004-04-13 General Electric Company Method of forming a coating resistant to deposits and coating formed thereby
US6627323B2 (en) * 2002-02-19 2003-09-30 General Electric Company Thermal barrier coating resistant to deposits and coating method therefor
JP2005154885A (ja) * 2003-03-26 2005-06-16 Mitsubishi Heavy Ind Ltd 遮熱コーティング材料
US20070116883A1 (en) * 2005-11-22 2007-05-24 General Electric Company Process for forming thermal barrier coating resistant to infiltration
US7807231B2 (en) 2005-11-30 2010-10-05 General Electric Company Process for forming thermal barrier coating resistant to infiltration
US8528339B2 (en) * 2007-04-05 2013-09-10 Siemens Energy, Inc. Stacked laminate gas turbine component
JP2008274357A (ja) 2007-04-27 2008-11-13 Japan Fine Ceramics Center 耐久性に優れる柱状構造遮熱コーティング部材及びその製造方法
EP2128306B1 (en) * 2008-05-26 2015-04-29 Siemens Aktiengesellschaft Ceramic thermal barrier coating system with two ceramic layers
EP2196559A1 (en) 2008-12-15 2010-06-16 ALSTOM Technology Ltd Thermal barrier coating system, components coated therewith and method for applying a thermal barrier coating system to components
US8658291B2 (en) * 2008-12-19 2014-02-25 General Electric Company CMAS mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same
DE102009051551A1 (de) * 2009-10-31 2011-05-05 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Herstellung eines Bauteils einer Strömungsmaschine
DE102011009624A1 (de) * 2011-01-28 2012-08-02 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Prozessüberwachung
JP2013028464A (ja) * 2011-07-29 2013-02-07 Izumi Food Machinery Co Ltd 粉体供給装置及び吸引式混合システム
US9238738B2 (en) * 2012-08-22 2016-01-19 Thermatin Industries, LLC Germanate-containing thermal barrier coating
CN102888605A (zh) 2012-10-29 2013-01-23 中国科学院上海硅酸盐研究所 一种镀Al-CoNiCrAlY高温抗氧化复合涂层及其制备方法与应用
US9995169B2 (en) * 2013-03-13 2018-06-12 General Electric Company Calcium-magnesium-aluminosilicate resistant coating and process of forming a calcium-magnesium-aluminosilicate resistant coating
WO2014178834A1 (en) 2013-04-30 2014-11-06 Hewlett-Packard Development Company, L.P. Three-dimensional object construction
JP6241244B2 (ja) 2013-12-10 2017-12-06 セイコーエプソン株式会社 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物
JP6291269B2 (ja) 2014-01-31 2018-03-14 三菱重工業株式会社 成膜装置及び成膜方法
JP5888826B1 (ja) 2015-04-27 2016-03-22 株式会社ソディック 積層造形装置
CN105033408B (zh) 2015-05-28 2017-05-17 西南交通大学 Gma增材制造双被动视觉传感检测装置及其检测方法
CN107921536A (zh) 2015-07-18 2018-04-17 伏尔肯模型公司 通过空间控制的材料熔合的增材制造
US9989495B2 (en) 2015-11-19 2018-06-05 General Electric Company Acoustic monitoring method for additive manufacturing processes
CN105437549B (zh) 2015-12-18 2017-11-03 天津清研智束科技有限公司 一种增材制造中粉末分配量的控制装置及方法
US10596754B2 (en) 2016-06-03 2020-03-24 The Boeing Company Real time inspection and correction techniques for direct writing systems
CN106041076B (zh) 2016-07-06 2018-06-19 中北大学 一种激光快速成形铺粉均匀性检测系统及检测方法
US20180099333A1 (en) 2016-10-11 2018-04-12 General Electric Company Method and system for topographical based inspection and process control for additive manufactured parts

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6925346B1 (en) * 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
EP1528110A1 (en) * 2003-10-31 2005-05-04 General Electric Company Monitored laser shock peening
CN101392382A (zh) * 2008-10-15 2009-03-25 江苏大学 一种激光熔覆结合激光喷丸强化表面改性的方法和装置
CN102962452A (zh) * 2012-12-14 2013-03-13 沈阳航空航天大学 基于红外测温图像的金属激光沉积制造扫描路径规划方法
CN105745060A (zh) * 2013-09-23 2016-07-06 瑞尼斯豪公司 增材制造设备和方法
CN104400998A (zh) * 2014-05-31 2015-03-11 福州大学 一种基于红外光谱分析的3d打印检测方法
CN104226988A (zh) * 2014-08-25 2014-12-24 深圳光韵达光电科技股份有限公司 一种大尺寸零部件的3d打印制造方法
CN104959600A (zh) * 2015-06-25 2015-10-07 武汉大学 基于飞秒激光复合技术的平板式氧传感器制备方法
CN105154870A (zh) * 2015-09-01 2015-12-16 广东工业大学 一种金属零件应力控制3d打印再制造方法
CN105239080A (zh) * 2015-09-01 2016-01-13 广东工业大学 一种应力控制3d打印再制造装置及再制造方法
CN105204791A (zh) * 2015-09-11 2015-12-30 合肥阿巴赛信息科技有限公司 一种基于应力分析的优化三维打印物体结构的算法
CN105195742A (zh) * 2015-11-03 2015-12-30 西安赛隆金属材料有限责任公司 一种高能束选区熔化成形的熔化路径设计方法

Also Published As

Publication number Publication date
US20200009656A1 (en) 2020-01-09
JP2020507676A (ja) 2020-03-12
JP6926213B2 (ja) 2021-08-25
EP3558571B1 (en) 2022-12-14
JP6980022B2 (ja) 2021-12-15
US11359290B2 (en) 2022-06-14
CN110268098A (zh) 2019-09-20
EP3562971A1 (en) 2019-11-06
WO2018140918A1 (en) 2018-08-02
WO2018140919A1 (en) 2018-08-02
SA519402328B1 (ar) 2022-12-11
CN110352105A (zh) 2019-10-18
JP2020507475A (ja) 2020-03-12
US11174557B2 (en) 2021-11-16
EP3558571A1 (en) 2019-10-30
US20190368051A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
CN110352105B (zh) 组件的增材制造的方法
JP6723285B2 (ja) 金属構成要素の加法的製造および修復
CN109284524B (zh) 一种创建高精度增材制造有限元模型的方法
Mani et al. A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes
US20170059529A1 (en) Adaptive additive manufacturing process using in-situ laser ultrasonic testing
JP6707649B2 (ja) 付加製造されるべき部材を検査するための方法及び装置
US20180143147A1 (en) Optical-coherence-tomography guided additive manufacturing and laser ablation of 3d-printed parts
Hagedorn-Hansen et al. The effects of selective laser melting scan strategies on deviation of hybrid parts
AU2014204284A1 (en) Object production using an additive manufacturing process and quality assessment of the object
JP2011121364A (ja) 三次元物体の製造方法
US11733678B2 (en) Method for determining building instructions for an additive manufacturing method, method for generating a database with correction measures for controlling the process of an additive manufacturing method
CA3056838A1 (en) Test specimen for validating operating parameters of a method for the additive manufacturing of a part by laser melting on powder beds
Świłło et al. Automatic inspection of surface defects in die castings after machining
Quintana et al. A PERSPECTIVE OF THE NEEDS AND OPPORTUNITIES FOR COUPLING MATERIALS SCIENCE AND NONDESTRUCTIVE EVALUATION FOR METALS-BASED ADDITIVE MANUFACTURING.
US20230166457A1 (en) Methods and Apparatus for Additive Manufacture of a Workpiece
TWI769872B (zh) 積層製造方法
KR101974722B1 (ko) 3차원 적층 가공의 실시간 가공 상태 검사와 보정 장치 및 이를 적용한 방법
Witvrouw et al. Precision additive metal manufacturing
Walker Multi-sensor approach to determine the effect of geometry on microstructure in additive manufacturing
Pierce Defect Detection in Additive Manufacturing Utilizing Long Pulse Thermography
Fayed et al. Multi-objective optimization for alumina laser sintering process
Wasmer et al. In situ and real-time monitoring of powder-bed AM by combining acoustic emission and machine learning
EP3944953A1 (en) Additive manufacturing systems and methods including build characteristic contribution profile
Wang et al. Durability Assessment of Additive Manufactured Compressor Disk Considering Material Defects Distribution
JP2021109401A (ja) 強度予測方法及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Florida, USA

Applicant after: Siemens energy USA

Address before: Florida, USA

Applicant before: SIEMENS ENERGY, Inc.

GR01 Patent grant
GR01 Patent grant