CN110344768B - 一种基于3d打印的热沉取心金刚石钻头及其制备方法 - Google Patents

一种基于3d打印的热沉取心金刚石钻头及其制备方法 Download PDF

Info

Publication number
CN110344768B
CN110344768B CN201910447575.0A CN201910447575A CN110344768B CN 110344768 B CN110344768 B CN 110344768B CN 201910447575 A CN201910447575 A CN 201910447575A CN 110344768 B CN110344768 B CN 110344768B
Authority
CN
China
Prior art keywords
tungsten
copper
heat sink
powder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910447575.0A
Other languages
English (en)
Other versions
CN110344768A (zh
Inventor
周燕
甘杰
段隆臣
谭松成
杨展
方小红
高辉
刘凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences
Original Assignee
China University of Geosciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences filed Critical China University of Geosciences
Priority to CN201910447575.0A priority Critical patent/CN110344768B/zh
Publication of CN110344768A publication Critical patent/CN110344768A/zh
Application granted granted Critical
Publication of CN110344768B publication Critical patent/CN110344768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels, core extractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明公开了一种基于3D打印的热沉取心金刚石钻头及其制备方法,属于增材制造技术、粉末冶金及金刚石工具领域。本发明中的热沉取心金刚石钻头包括依次连接的胎体工作层、热沉材料层和钻头钢体三大基本结构,其中热沉材料层为钨铜梯度材料,其先由3D打印制备钨骨架,然后通过渗铜法制得钨铜梯度材料,该材料有三个梯度,钨铜质量分布分别为W75Cu25,W50Cu50,W25Cu75。本发明采用3D打印技术成形钨铜梯度材料,并将其通过热压烧结工艺结合在取心金刚石钻头的胎体工作层与钻头钢体之间,为及时吸收钻头胎体工作层热量、有效预防井内发生烧钻事故提供了技术新方法和新思路。

Description

一种基于3D打印的热沉取心金刚石钻头及其制备方法
技术领域
本发明属于增材制造技术、粉末冶金以及金刚石工具领域,尤其涉及一种基于3D打印的热沉取心金刚石钻头及其制备方法。
背景技术
在煤田地质施工过程中,往往需要通过钻探从地下取出岩心样品。目前,煤田地质施工普遍采用金刚石钻头钻进,在金刚石钻进过程中,金刚石钻头在孔底高速旋转,与岩石磨擦会产生大量的热能,如果没有冲洗液进行及时冷却或孔底热量聚集无法散开,金刚石就会碳化,出现烧钻事故。烧钻后,轻则钻头不能继续使用,重则使钻头、钻具和岩石烧成一体,发生严重的井内事故,使得生产经营无法正常进行,造成重大的经济损失。在钻探施工过程中,如何防止出现烧钻事故,处理好发生的烧钻事故,始终是钻探工作者面临的重要课题。
在孔底这种特殊的工作条件下,一旦冲洗液冷却不良,热量逐渐聚集,普通结构、材料组成的金刚石钻头将因无法承受较高的热负荷而发生烧钻事故。钨铜功能梯度材料是近年来兴起的一种新型钨铜复合材料,其一端是高熔点、高硬度、低热膨胀系数的金属钨或低含铜的钨铜;另一端是高导热、高导电、塑性好的金属铜或是高含铜的钨铜;中间是组成呈梯度变化的过渡层,这种新型非均质复合材料将钨、铜的不同性能溶于一体,能够很好的解决因熔点相差较大而存在的连接问题,很好的缓和了钨、铜之间的热应力,有利于钨、铜充分发挥各自的本征特征,承受高能热流的冲击,获得较好的力学、抗烧蚀性、抗热震性等综合性能。钨铜功能梯度材料的这些优点拓展了其应用领域,鉴于此,将综合性能较高的钨铜功能梯度材料应用于金刚石钻头中有望减少烧钻事故的发生。
虽然钨铜功能梯度材料应用范围广,但其制备工艺情况不太乐观,传统的烧结、有机溶蚀以及水煮溶解造孔难以精确控制W骨架的孔隙分布,难以获得严格意义上的梯度材料,从而导致成形的复合材料难以满足设计要求,应用于金刚石钻头中工作时容易产生功能缺陷。3D打印技术的出现为解决上述问题提供了难得的机会。3D打印技术是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术,通过这种技术,具有复杂几何结构的零件易于准确成形。在成形的过程中,系统的工作过程是将三维模型切片离散及扫描路径规划,得到可控制激光束扫描的切片轮廓信息,然后计算机逐层调入切片轮廓信息,通过扫描振镜,控制高能激光束有选择地熔化金属粉末,逐层堆积成与模型相同的实体。可见,3D打印技术由于其在电脑的精确控制下,以及对于成形材料以及复杂结构的包容性,可以严格准确地制备出钨铜功能梯度材料,这也为制备适应于井底复杂工况的金刚石钻头提供了材料设计以及结构设计的技术新方法。
发明内容
有鉴于此,本发明结合3D打印技术以及热压烧结技术制得了一种适应于井底复杂工况的热沉取心金刚石钻头。
本发明提供了一种热沉取心金刚石钻头,该热沉取心金刚石钻头包括从一端依次连接到另一端的胎体工作层、热沉材料层和钻头钢体,胎体工作层与岩石接触,用于钻进岩层;热沉材料层连接于胎体工作层和钻头钢体之间,用于吸收和传导胎体工作层产生的热量;所述胎体工作层由胎体材料和金刚石颗粒组成;所述热沉材料层为钨铜复合材料,其一端为纯钨,另一端为纯铜,两端之间由多孔钨骨架渗铜形成的梯度材料过渡。
进一步地,所述胎体工作层中胎体材料配方和金刚石颗粒的浓度为:
按重量百分含量,胎体材料配方包括:WC 25%、Ni 10%、Co 20%、Cu-Sn10 40%;金刚石颗粒的浓度为100%;
或按重量百分含量,胎体材料配方包括:WC 10%、Co 90%;金刚石颗粒的浓度为100%。
进一步地,金刚石颗粒的目数组成为40/45目组合或30/35目组合或25/30目组合或20/25目组合。
进一步地,所述钨铜复合材料的多孔钨骨架由空间十字架组成单元构成。
进一步地,所述钨铜复合材料的多孔钨骨架渗铜形成的梯度材料有三个梯度:
第一梯度中钨、铜元素质量百分含量为:钨,75%;铜,25%;
第二梯度中钨、铜元素质量百分含量为:钨,50%;铜,50%;
第三梯度中钨、铜元素质量百分含量为:钨,25%;铜,75%。
本发明还提供了一种制备上述热沉取心金刚石钻头的制备方法,包括以下步骤:
1)制备钨铜复合材料作为热沉材料层;
2)将胎体工作层中胎体配方材料和金刚石颗粒进行球磨,混合均匀,制成胎体工作层粉料;
3)先将胎体工作层粉料装入模具中,初步压实,再先后放上制备好的热沉材料层以及钻头钢体,压紧即可送炉烧结;
4)烧结完成后降温卸压出炉,冷却退模后进行机加工,最终制得热沉取心金刚石钻头。
进一步地,在步骤1)中,制备钨铜复合材料作为热沉材料层包括以下步骤:
(1)对钨粉进行3D打印,形成一方向上具有连续性、质量梯度性的多层孔隙均匀的钨骨架结构;
(2)称取与步骤(1)中钨粉相同质量的铜粉,铜粉为球形或近球形,平均粒径为60μm,将其压制成为无氧铜块;
(3)将步骤(1)中的钨骨架码放在铺有Al2O3粉末的石墨舟中,所述Al2O3粉末为球形或近球形,平均粒径为40μm~80μm,将步骤(2)中的无氧铜块放在钨骨架上,并用Al2O3粉末将其保护好;
(4)将步骤(3)中装好料的石墨舟放入渗铜炉内,关好炉门;向渗铜炉内通入氢气,试爆鸣点燃后,排出炉内的废气;启动加热电源对钨骨架进行渗铜处理,溶渗温度为1400℃,溶渗时间为45min;随炉体冷却后取出制品制得多孔钨骨架渗铜形成的梯度材料;
(5)将步骤(4)制得的多孔钨骨架渗铜形成的梯度材料一面与纯钨基板连接,另一面与纯铜基板连接,最终制得钨铜复合材料;
(6)将步骤(5)中制得的钨铜复合材料冷加工成环状圆环。
进一步地,所述步骤(1)具体为:
通过solidworks2015建立多孔钨骨架三维模型,将多孔钨骨架三维模型进行切片分层处理,并将数据导入3D打印设备中;称取钨粉,其为球形或近球形,平均粒径为30μm;设计成形参数:激光功率为300W,扫描速度900mm/s,扫描间距0.03mm,铺粉厚度0.03mm;再将钨粉充入3D打印设备的送粉系统中,并向成形工作腔内通入氩气,排除腔内其他气体,使得腔内氧气含量低于0.2%;最后钨粉通过送粉系统及铺粉装置均匀铺在成形工作腔的基板上,高能激光束扫描钨粉逐层叠加成形出多孔钨骨架。
进一步地,在步骤3)中,将装配好的钻头组装体送炉烧结具体包括以下步骤:
(1)钻头组装体送入电阻炉或中频炉后,先给钻头胎体工作层一定预压力,约为全压的2/3,然后通电升温,烧结温度为1000℃~1200℃,压力控制在10~15MPa;
(2)加热升温到接近粘接金属熔点,胎体工作层粉料变成似塑性状态时,中频炉中保温3~5min或电阻炉中保温10~20min,熔化的粘结金属均匀地将骨架材料、金刚石颗粒以及钨铜复合材料和钻头钢体固结在一起。
进一步地,在步骤5)中,烧结结束后,将钻头放置在烘箱中逐步冷却,以防止因降温速度过快而产生较大的内应力;待冷却后,机械加工成形为热沉取心金刚石钻头。
与现有技术相比,本发明的技术方案具有下列有益效果:本发明结合3D打印技术与热压烧结工艺,严格准确地制备出钨铜梯度材料,并将这种新型的高导热材料作为热沉材料层应用于金刚石钻头中,通过热压烧结工艺结合在工作层与钻头钢体之间,在井底冲洗液冷却不良的情况下,及时地吸收工作层产生的热量,能有效地减少金刚石因高温碳化的概率,预防烧钻事故的发生,大大提升了金刚石钻头在复杂工况下的工作性能及使用寿命。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制。
图1是本发明实施例中热沉取心金刚石钻头的结构示意图;
图2是本发明实施例中的制备热沉取心金刚石钻头的方法工艺流程图;
图3(a)是本发明实施例中多孔隙钨骨架二维平面模型图;
图3(b)是本发明实施例中多孔隙钨骨架三维模型结构示意图;
图4是本发明实施例中钨铜复合材料机械加工成的热沉材料层的结构示意图。
附图标记:
1-胎体工作层;2-热沉材料层;3-钻头刚体。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地描述。
实施例1
如图1所示,本发明实施例提供了一种热沉取心金刚石钻头,该热沉取心金刚石钻头包括从一端依次连接到另一端的胎体工作层1、热沉材料层2和钻头钢体3,胎体工作层1与岩石接触,用于钻进岩层;热沉材料层2连接于胎体工作层1和钻头钢体3之间,用于吸收和传导胎体工作层1产生的热量;所述胎体工作层1由胎体材料和金刚石颗粒组成;所述热沉材料层2为钨铜复合材料,其一端为纯钨,另一端为纯铜,两端之间由多孔钨骨架渗铜形成的梯度材料过渡。
参考图2,本发明实施例提供了一种制备上述热沉取心金刚石钻头的方法,包括以下步骤:
S1、制备钨铜复合材料作为热沉材料层;
步骤S1具体为:
(1)通过solidworks2015建立多孔钨骨架三维模型,其结构尺寸为80mm*80mm*30mm,将多孔钨骨架三维模型进行切片分层处理,并将数据导入3D打印设备中;称取钨粉,其为球形或近球形,平均粒径为30μm。设计成形参数:激光功率为300W,扫描速度900mm/s,扫描间距0.03mm,铺粉厚度0.03mm;再将钨粉充入3D打印设备的送粉系统中,并向成形工作腔内通入氩气,排除腔内其他气体,使得腔内氧气含量低于0.2%;最后钨粉通过送粉系统及铺粉装置均匀铺在成形工作腔的基板上,高能激光束扫描钨粉逐层叠加成形出多孔钨骨架。
对钨粉进行3D打印,形成一方向上具有连续性、质量梯度性的多层孔隙均匀的钨骨架结构,如图3(a)和图3(b)所示;多孔钨骨架组成单元为空间十字架。
(2)称取与步骤(1)中钨粉相同质量的铜粉,其为球形或近球形,平均粒径为60μm,将其压制成为无氧铜块。
(3)将步骤(1)中的钨骨架码放在铺有Al2O3粉末的石墨舟中,所述Al2O3粉末为球形或近球形,平均粒径为40μm~80μm,将步骤(2)中的无氧铜块放在钨骨架上,并用Al2O3粉末将其保护好。
(4)将步骤(3)中装好料的石墨舟放入渗铜炉内,关好炉门;向渗铜炉内通入氢气,试爆鸣点燃后,排出炉内的废气;启动加热电源对钨骨架进行渗铜处理,溶渗温度为1400℃,溶渗时间为45min;随炉体冷却后取出制品制得多孔钨骨架渗铜形成的梯度材料。
多孔钨骨架渗铜形成的梯度材料有三个梯度:
第一梯度中钨、铜元素质量百分含量为:钨,75%;铜,25%;
第二梯度中钨、铜元素质量百分含量为:钨,50%;铜,50%;
第三梯度中钨、铜元素质量百分含量为:钨,25%;铜,75%。
(5)将步骤(4)制得的多孔钨骨架渗铜形成的梯度材料一面与纯钨基板连接,另一面与纯铜基板连接,最终制得钨铜复合材料。
(6)将步骤(5)中制得的钨铜复合材料冷加工成外径75mm、内径49mm、厚30mm的环状圆环作为热沉材料层2,如图4所示。
S2、将胎体工作层1中胎体配方材料和金刚石颗粒进行球磨,混合均匀,制成胎体工作层1粉料;
胎体工作层1中胎体材料配方和金刚石颗粒的浓度可选为:
胎体材料配方包括WC 25%、Ni 10%、Co 20%、Cu-Sn10 40%;胎体工作层1粉料中金刚石颗粒浓度为100%,目数组合为40/45目。
或者胎体材料配方包括WC 25%、Ni 10%、Co 20%、Cu-Sn10 40%;胎体工作层1粉料中金刚石颗粒浓度为100%,目数组合为25/30目。
或者胎体材料配方包括WC 10%、Co 90%;胎体工作层1粉料中金刚石颗粒浓度为100%,目数组合为35/35目。
S3、先将胎体工作层1粉料装入模具中,初步压实,再先后放上制备好的热沉材料层2以及钻头钢体3,压紧即可送炉烧结;
将模具中装配好的钻头组件送炉烧结具体包括以下步骤:
(1)钻头组装体送入电阻炉,先给钻头胎体工作层1一定预压力,约为全压的2/3,然后通电升温,烧结温度视胎体材料配方不同有所差异,为1000℃~1200℃,压力控制在10~15MPa;
(2)加热升温到接近粘接金属熔点,胎体工作层1粉料变成似塑性状态时,保温10~20min,熔化的粘结金属均匀地将骨架材料、金刚石颗粒以及钨铜复合材料和钻头钢体3固结在一起。
S4、烧结完成后降温卸压出炉,冷却退模后进行机加工,最终制得热沉取心金刚石钻头。
冷却过程中将钻头放置在烘箱中逐步冷却,防止因降温速度过快而产生较大的内应力。
在本文中,所涉及的前、后、上、下等方位词是以附图中零部件位于图中以及零部件相互之间的位置来定义的,只是为了表达技术方案的清楚及方便。应当理解,所述方位词的使用不应限制本申请请求保护的范围。
在不冲突的情况下,本文中上述实施例及实施例中的特征可以相互结合。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种热沉取心金刚石钻头,其特征在于,该热沉取心金刚石钻头包括从一端依次连接到另一端的胎体工作层、热沉材料层和钻头钢体,胎体工作层与岩石接触,用于钻进岩层;热沉材料层连接于胎体工作层和钻头钢体之间,用于吸收和传导胎体工作层产生的热量;所述胎体工作层由胎体材料和金刚石颗粒组成;所述热沉材料层为钨铜复合材料,其一端为纯钨,另一端为纯铜,两端之间由多孔钨骨架渗铜形成的梯度材料过渡;所述胎体工作层中胎体材料配方和金刚石颗粒的浓度为:
按重量百分含量,胎体材料配方包括:WC 25%、Ni 10%、Co 20%、Cu-Sn10 40%;金刚石颗粒的浓度为100%;
或按重量百分含量,胎体材料配方包括:WC 10%、Co 90%;金刚石颗粒的浓度为100%。
2.根据权利要求1所述的一种热沉取心金刚石钻头,其特征在于,所述金刚石颗粒的目数组成为40/45目组合或30/35目组合或25/30目组合或20/25目组合。
3.根据权利要求1所述的一种热沉取心金刚石钻头,其特征在于,所述钨铜复合材料的多孔钨骨架由空间十字架组成单元构成。
4.根据权利要求3所述的一种热沉取心金刚石钻头,其特征在于,所述钨铜复合材料的多孔钨骨架渗铜形成的梯度材料有三个梯度:
第一梯度中钨、铜元素质量百分含量为:钨,75%;铜,25%;
第二梯度中钨、铜元素质量百分含量为:钨,50%;铜,50%;
第三梯度中钨、铜元素质量百分含量为:钨,25%;铜,75%。
5.一种制备权利要求1-4任一项所述的热沉取心金刚石钻头的制备方法,其特征在于,包括以下步骤:
1)制备钨铜复合材料作为热沉材料层;
2)将胎体工作层中胎体配方材料和金刚石颗粒进行球磨,混合均匀,制成胎体工作层粉料;
3)先将胎体工作层粉料装入模具中,初步压实,再先后放上制备好的热沉材料层以及钻头钢体,压紧即可送炉烧结;
4)烧结完成后降温卸压出炉,冷却退模后进行机加工,最终制得热沉取心金刚石钻头。
6.根据权利要求5所述的一种热沉取心金刚石钻头的制备方法,其特征在于,在步骤1)中,制备钨铜复合材料作为热沉材料层包括以下步骤:
(1)对钨粉进行3D打印,形成一方向上具有连续性、质量梯度性的多层孔隙均匀的钨骨架结构;
(2)称取与步骤(1)中钨粉相同质量的铜粉,铜粉为球形或近球形,平均粒径为60μm,将其压制成为无氧铜块;
(3)将步骤(1)中的钨骨架码放在铺有Al2O3粉末的石墨舟中,所述Al2O3粉末为球形或近球形,平均粒径为40μm~80μm,将步骤(2)中的无氧铜块放在钨骨架上,并用Al2O3粉末将其保护好;
(4)将步骤(3)中装好料的石墨舟放入渗铜炉内,关好炉门;向渗铜炉内通入氢气,试爆鸣点燃后,排出炉内的废气;启动加热电源对钨骨架进行渗铜处理,溶渗温度为1400℃,溶渗时间为45min;随炉体冷却后取出制品制得多孔钨骨架渗铜形成的梯度材料;
(5)将步骤(4)制得的多孔钨骨架渗铜形成的梯度材料一面与纯钨基板连接,另一面与纯铜基板连接,最终制得钨铜复合材料;
(6)将步骤(5)中制得的钨铜复合材料冷加工成环状圆环。
7.根据权利要求6所述的一种热沉取心金刚石钻头的制备方法,其特征在于,步骤(1)具体为:
通过solidworks2015建立多孔钨骨架三维模型,将多孔钨骨架三维模型进行切片分层处理,并将数据导入3D打印设备中;称取钨粉,其为球形或近球形,平均粒径为30μm;设计成形参数:激光功率为300W,扫描速度900mm/s,扫描间距0.03mm,铺粉厚度0.03mm;再将钨粉充入3D打印设备的送粉系统中,并向成形工作腔内通入氩气,排除腔内其他气体,使得腔内氧气含量低于0.2%;最后钨粉通过送粉系统及铺粉装置均匀铺在成形工作腔的基板上,高能激光束扫描钨粉逐层叠加成形出多孔钨骨架。
8.根据权利要求5所述的一种热沉取心金刚石钻头的制备方法,其特征在于,在步骤3)中,将装配好的钻头组装体送炉烧结具体包括以下步骤:
(1)钻头组装体送入电阻炉或中频炉后,先给钻头胎体工作层一定预压力,约为全压的2/3,然后通电升温,烧结温度为1000℃~1200℃,压力控制在10~15MPa;
(2)加热升温到接近粘接金属熔点,胎体工作层粉料变成似塑性状态时,中频炉中保温3~5min或电阻炉中保温10~20min,熔化的粘结金属均匀地将骨架材料、金刚石颗粒以及钨铜复合材料和钻头钢体固结在一起。
9.根据权利要求5所述的一种热沉取心金刚石钻头的制备方法,其特征在于,在步骤4)中,烧结结束后,将钻头放置在烘箱中逐步冷却,待冷却后,机械加工制得热沉取心金刚石钻头。
CN201910447575.0A 2019-05-27 2019-05-27 一种基于3d打印的热沉取心金刚石钻头及其制备方法 Active CN110344768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910447575.0A CN110344768B (zh) 2019-05-27 2019-05-27 一种基于3d打印的热沉取心金刚石钻头及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910447575.0A CN110344768B (zh) 2019-05-27 2019-05-27 一种基于3d打印的热沉取心金刚石钻头及其制备方法

Publications (2)

Publication Number Publication Date
CN110344768A CN110344768A (zh) 2019-10-18
CN110344768B true CN110344768B (zh) 2020-11-27

Family

ID=68174123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910447575.0A Active CN110344768B (zh) 2019-05-27 2019-05-27 一种基于3d打印的热沉取心金刚石钻头及其制备方法

Country Status (1)

Country Link
CN (1) CN110344768B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451492B (zh) * 2020-03-23 2021-09-07 陕西斯瑞新材料股份有限公司 一种采用球形钨粉制备CuW90材料的方法
CN111922343B (zh) * 2020-10-19 2020-12-29 陕西斯瑞新材料股份有限公司 一种采用球形钨粉制备CuW60-CuW90材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068072A (en) * 1998-02-09 2000-05-30 Diamond Products International, Inc. Cutting element
CN101353946A (zh) * 2008-09-11 2009-01-28 吉林大学 可再生水口的金刚石取芯钻头
CN202900050U (zh) * 2012-10-30 2013-04-24 中国海洋石油总公司 一种孕镶金刚石井壁取芯钻头
CN109702200A (zh) * 2019-02-28 2019-05-03 中国地质大学(武汉) 一种W/Cu功能梯度材料及其制备方法
CN109736712A (zh) * 2019-01-08 2019-05-10 江苏友美工具有限公司 激光焊接金刚石取芯钻头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068072A (en) * 1998-02-09 2000-05-30 Diamond Products International, Inc. Cutting element
CN101353946A (zh) * 2008-09-11 2009-01-28 吉林大学 可再生水口的金刚石取芯钻头
CN202900050U (zh) * 2012-10-30 2013-04-24 中国海洋石油总公司 一种孕镶金刚石井壁取芯钻头
CN109736712A (zh) * 2019-01-08 2019-05-10 江苏友美工具有限公司 激光焊接金刚石取芯钻头
CN109702200A (zh) * 2019-02-28 2019-05-03 中国地质大学(武汉) 一种W/Cu功能梯度材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
新型梯度结构金刚石-硬质合金复合球齿的研究;刘宝昌;《中国优秀硕博士学位论文全文数据库(博士)基础科学辑》;20060315;第6章 金刚石定位仿生取芯钻头制造工艺 *
金刚石定位仿生取芯钻头研究;马银龙;《中国博士学位论文全文数据库基础科学辑》;20130815;4.3 梯度结构金刚石-硬质合金复合球齿的设计 *

Also Published As

Publication number Publication date
CN110344768A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CA2668192C (en) Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
CA2668416C (en) Earth-boring rotary drill bits including bit bodies comprising reinforced titanium or titanium-based alloy matrix materials, and methods for forming such bits
AU2010328286B2 (en) Coated metallic powder and method of making the same
CN110344768B (zh) 一种基于3d打印的热沉取心金刚石钻头及其制备方法
US8881791B2 (en) Earth-boring tools and methods of forming earth-boring tools
CA2747738C (en) Methods of forming bodies for earth-boring drilling tools comprising molding and sintering techniques, and bodies for earth-boring tools formed using such methods
WO2010053736A2 (en) High pressure sintering with carbon additives
US20140272446A1 (en) Wear-resistant claddings
CN109694977B (zh) 孕镶金刚石及其制备方法、孕镶钻头及其制备方法
CN111411254B (zh) 一种钨增强铜复合材料及其制备方法
CN106180732B (zh) 金刚石复合片及制作方法
CN102389962A (zh) 一种制备硬质合金/钢层合复合材料的颗粒熔浸铸造工艺
CN111014669A (zh) 一种原位纳米TiB晶须增强钛基复合材料的制备方法
US20180185916A1 (en) Fabrication Method Using Foam Elements, and Structures Fabricated Using The Method
CN105624505A (zh) 一种金属基超硬复合材料及其制备方法
CN112207288A (zh) 一种金属陶瓷复合部件及其制备方法
CN109812494B (zh) 推力轴承及制备方法
EP2857140B1 (en) Brazing rod for forming a wear resistant coating and wear resistant coating
CN111545759B (zh) 一种钻头胎体粉末、钻头胎体材料及其制备方法与应用、钻头胎体
CN100446912C (zh) 热压法制造金刚石复合片钻头体工艺及钻头体
CN106285671B (zh) 矿山掘进机用连续梯度结构的金属陶瓷复合截齿及制造方法
CN112899510B (zh) 一种TiC/Ni复合材料的原位反应合成方法
CN109630027B (zh) 薄壁钻地工具及其制造方法
US20100230177A1 (en) Earth-boring tools with thermally conductive regions and related methods
CN115288615A (zh) 一种钻头胎体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant