CN110340361A - 快速直接制造热作模具的工艺方法 - Google Patents

快速直接制造热作模具的工艺方法 Download PDF

Info

Publication number
CN110340361A
CN110340361A CN201910695964.5A CN201910695964A CN110340361A CN 110340361 A CN110340361 A CN 110340361A CN 201910695964 A CN201910695964 A CN 201910695964A CN 110340361 A CN110340361 A CN 110340361A
Authority
CN
China
Prior art keywords
mold
blank
work die
quickly
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910695964.5A
Other languages
English (en)
Other versions
CN110340361B (zh
Inventor
李峰
张华健
孙中刚
常辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910695964.5A priority Critical patent/CN110340361B/zh
Publication of CN110340361A publication Critical patent/CN110340361A/zh
Application granted granted Critical
Publication of CN110340361B publication Critical patent/CN110340361B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/30Stress-relieving
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明提供一种快速制造热作模具的工艺方法,利用激光增材制造技术快速成型模具几何特征,同时针对模具的使用性能即耐高温耐磨高硬度高强度的特性利用激光增材制造急冷急热快速凝固的特性,将低硬度的铁基合金粉末与一定量的高硬度铁基合金粉末混合,使用增材制造技术最大限度的减少增强相的析出保留低硬度合金的特性,减少模具打印过程中因材料本身硬度和线膨胀系数低以及热应力过大等因素造成的开裂等问题,使其能无缺陷成形。最后再通过热处理技术使沉积态中混合高硬度铁基合金中的增强相析出达到模具的使用性能。

Description

快速直接制造热作模具的工艺方法
技术领域
本发明属于增材制造和材料加工领域,涉及模具的制作技术,特别是制作模具制作材料的工艺方法。
背景技术
20世纪80年代以来,我国模具工业发展迅速,模具每年消耗近百亿元。模具工业是国民经济的基础工业,而模具生产技术水平的高低则是衡量一个国家制造水平高低的重要标志。目前,国内制造的模具的寿命仅是进口的1/2-1/5,大型、复杂、重要的高端模具钢仍然向国外进口。因此,开发出具有自主知识产权的高寿命模具模具钢具有重大的经济效益与社会效益。
增材制造(Additive Manufacturing)也称为3D打印,金属零件的增材制造目前大多使用激光作为光源并且利用计算机辅助设计、材料加工与成形等技术配合数控系统将专用的金属材料烧结、熔融制造出三维实体零件的制造技术。是一种从无到有的快速成型技术,相对于传统的零件制造技术对原材料切削、组装的加工模式不同加工方法更加灵活,可对复杂的结构件进行快速的成形。
虽然增材制造技术可对所需工件快速成型但由于模具本身的使用性能和要求关于直接成型制造模具目前鲜有报道,尤其是模具方面,一般集中在表层修复强化的研究较多。模具一般具有高强度和高硬度,如若直接用高硬度合金粉末通过增材制造的方式制造模具,由于打印过程中持续的热输入使得每层之间形成过高的热应力加之高硬度的合金粉末线膨胀系数较低,导致制备过程中易发生开裂。
发明内容
本发明提供一种低成本的基于激光增材制造的快速制备模具的工艺方法,通过预先调控合金粉末组分及比例使用增材制造技术快速成型并通过热处理技术达到模具使用性能的工艺方法。
为达成上述目的,本发明提供的快速直接制造热作模具的工艺方法包括以下步骤:
步骤1:将低硬度铁基合金粉末和高硬度铁基合金粉末组分粉末进行配置并进行混合,前者和后者的混合比例比值根据模具的使用性能进行调整区间为5:5~8:2之间,所使用的合金粉末为球形,粒径为50~200μm;
步骤2:将混合好后的铁基合金粉末用于增材制造,得到打印后的铁基合金坯件即模具坯件;
步骤3:将增材制造后的模具坯件进行低温退火处理,目的是去除坯件中残余应力,热处理工艺为:将打印的坯件工件放进真空热处理炉内,抽真空至1.5×10-3Pa,内,10-20℃/min的速度加热至400~500℃,保温0.5~1h;
步骤4:随后进行固溶处理,处理工艺为10-20℃/min的速度加热至850±20℃,保温0.5~1h,然后空冷;
步骤5:将固溶后打印坯件工件进行时效热处理,处理工艺为将打印的坯件工件放进真空热处理炉内,速度加热至500~600℃,保温2~4h,然后空冷至室温;
步骤6:对热处理后的坯件进行机加工,切削预留的加工余量满足模具型腔形状使用要求。
如此,增材制造过程中采用送粉或者铺粉工艺进行打印,混合均匀后的铁基粉末在由于急冷急热的特性,粉末材熔化的同时又快速凝固使铁基合金中原本应析出的碳化物等硬质相而未能析出导致其性能特征呈现出低硬度合金的特征,保证了其在增材制造过程中坯件良好的成形型,避免了开裂的问题。
由此,本发明的快速直接制造热作模具的工艺通过调控合金粉末的组分及比例,利用激光增材制造急冷急热快速凝固的特性,最大限度的减少增强相的析出使其能无缺陷成形。最后再通过热处理的技术使沉积态中混合高硬度铁基合金中的增强相析出以此来达到模具的使用性能;同时可近净成形模具几何特征,减少材料浪费,充分利用了增材制造快速成型的特点大大减少了传统模具开模制坯的材料和周期。
本发明的方案中,增材制造模具使用的混合合金粉末,可一定程度上降低原材料的价格且取材易得;利用增材制造熔化金属快速凝固的特性结合热处理工艺可将打印制造的模具坯件满足其使用的要求。
应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。
结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。
附图说明
附图不意在按比例绘制。在附图中,各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1是本发明提供的低成本的快速直接制造热作模具的工艺流程图。
图2是激光增材制造坯件沉积态(左图)和热处理后(右图)的显微组织图。
具体实施方式
为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。
在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。
根据本发明的实施例,本发明公开一种低成本的基于激光增材制造的快速直接制造热作模具的工艺,通过调控合金粉末的组分及比例利用激光增材制造快速凝固的特性限制冶金组织中强化相的析出打印的组织具有较低的显微硬度较低线膨胀系数避免打印制备工件过程中的开裂,确保模具几何特征无缺陷成形。将成形的坯件通过热处理技术将合金组织中的强化相析出以此达到模具的使用要求。即通过预先合金粉末组分及比例调控使用增材制造技术快速成型并通过热处理技术达到模具使用性能的工艺方法。
结合图1所示,作为本发明的示例性实施,前述实施例的直接制造热作模具的工艺包括以下混合、3D打印、低温退火、固溶、时效热处理以及最后的机加工步骤。下面将更加具体的说明其实施。
步骤1:将低硬度铁基合金粉末和高硬度铁基合金粉末组分粉末进行配置并进行混合,前者和后者的混合比例比值根据模具的使用性能进行调整区间为5:5~8:2之间。
优选地,所使用的合金粉末为球形,粒径为50~200μm。
步骤2:将混合好后的铁基合金粉末用于增材制造,得到打印后的铁基合金坯件即模具坯件。
其中铺粉工艺和送粉工艺均可以,例如:
铺粉工艺:铺粉厚度20μm~80μm,激光功率200W~500W;扫描速度1~15m/s;
送粉工艺:送粉0.2-5r/min,激光功率1500W~8000W,扫描速度1-30mm/s。
步骤3:将增材制造后的坯件进行低温退火处理,目的是去除坯件中残余应力。
优选地,热处理工艺为:将打印的坯件工件放进真空热处理炉内,抽真空至1.5×10-3Pa,内,10-20℃/min的速度加热至400~500℃,保温0.5~1h。
步骤4:随后进行固溶处理,处理工艺为10-20℃/min的速度加热至850±20℃,保温0.5~1h,然后空冷;
步骤5:将固溶后打印坯件工件进行时效热处理,处理工艺为将打印的坯件工件放进真空热处理炉内,速度加热至500~600℃,保温2h~4h,然后空冷至室温。
步骤6:对热处理后的坯件进行机加工,切削预留的加工余量满足模具型腔形状使用要求。
为了便于更好的理解,下面结合具体实例对本发明进行进一步说明,但实例并非对该方法进行限制。
【实施一】
(1)低硬度和高硬度铁合金粉末混合,使用的低硬度的合金粉末为Fe-1,其元素重量百分比为C:0.15%,Cr:22%,Ni:13%,Mo:2%,Si:4.5%,B:1.6%,Fe:余;高硬度的合金粉末为M2,其元素重量百分比为C:0.8%,Cr:4.0%,Ni:0.3%,Mo:4.5%,Si:0.3%,Mn:0.3%,W:5.0,V:2.0,Fe:余。所使用合金粉末粒径分布为150~200μm,即大部分粉末粒径集中的区间。
低硬度合金与高硬度混合比例分别为8:2、7:3、6:4、5:5。
(2)将混合的铁基合金粉末用于增材制造,采用同轴送粉的方式,即激光熔融沉积技术,使用参数为:激光功率为1500W,扫描速度为450mm/min,送粉量为1.2g/min,搭接率为30%,熔池氩气保护气流量为20L/min。
(3)将增材制造后的坯件进行低温退火处理,目的是去除坯件中残余应力,热处理工艺为:将打印的坯件工件放进真空热处理炉内,抽真空至1.5×10-3Pa,内,15℃/min的速度加热至450℃,保温0.5h。随后进行固溶处理,处理工艺为20℃/min的速度加热至850℃,保温1h,然后空冷。
(4)步骤5:将固溶后打印坯件工件进行时效热处理,处理工艺为将打印的坯件工件放进真空热处理炉内,速度加热至550℃,保温3h,然后空冷至室温。
力学性能测试结果见表1;
表1实施实例力学性能对比
【实施二】
(1)低硬度和高硬度铁合金粉末混合,使用的低硬度的合金粉末为Fe-1,其元素重量百分比为C:0.15%,Cr:22%,Ni:13%,Mo:2%,Si:4.5%,B:1.6%,Fe:余;高硬度的合金粉末为M2,其元素重量百分比为C:0.8%,Cr:4.0%,Ni:0.3%,Mo:4.5%,Si:0.3%,Mn:0.3%,W:5.0,V:2.0,Fe:余。
所使用合金粉末粒径分布为15~20μm(大部分粉末粒径集中的区间)低硬度合金与高硬度混合比例分别为8:2、7:3、6:4、5:5。
(2)将混合的铁基合金粉末用于增材制造,采用铺粉打印的方式,即激光选区融化技术,使用激光功率为:250W,扫描速度为1000mm/s,扫描间距为0.08mm/s,单层铺粉厚度为50微米,箱体内氧气含量为1000ppm。
(3)将增材制造后的坯件进行低温退火处理,目的是去除坯件中残余应力,热处理工艺为:将打印的坯件工件放进真空热处理炉内,抽真空至1.5×10-3Pa,内,15℃/min的速度加热至450℃,保温0.5h。随后进行固溶处理,处理工艺为20℃/min的速度加热至850℃,保温1h,然后空冷。
(4)步骤5:将固溶后打印坯件工件进行时效热处理,处理工艺为将打印的坯件工件放进真空热处理炉内,速度加热至550℃,保温3h,然后空冷至室温。
力学性能测试结果见表2;
表2实施实例力学性能对比
由以上方案和测试结果可见,增材制造过程中,混合均匀后的铁基粉末在由于急冷急热的特性,粉末材熔化的同时又快速凝固使铁基合金中原本应析出的碳化物等硬质相而未能析出导致其等性能特征呈现出低硬度合金的特征,保证了其在增材制造过程中坯件良好的成形型,避免了开裂的问题,确保模具几何特征无缺陷成形。坯件成形后进行热处理使其析出碳化物第二相提高金属的强度及硬度如图2。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (7)

1.一种快速直接制造热作模具的工艺方法,其特征在于,包括以下步骤:
步骤1:将低硬度铁基合金粉末和高硬度铁基合金粉末组分粉末进行配置并进行混合,前者和后者的混合比例比值根据模具的使用性能进行调整区间为5:5~8:2之间;
步骤2:将混合好后的铁基合金粉末用于增材制造,得到打印后的铁基合金坯件即模具坯件;
步骤3:将增材制造后的模具坯件进行低温退火处理;
步骤4:随后进行固溶处理,将模具坯件加热到预定稳定后空冷;
步骤5:将固溶后打印坯件工件进行时效热处理;
步骤6:对热处理后的坯件进行机加工,切削预留的加工余量满足模具型腔形状使用要求。
2.根据权利要求1所述的快速直接制造热作模具的工艺方法,其特征在于,所述步骤3中低温退火处理的热处理工艺为:将打印的坯件工件放进真空热处理炉内,抽真空至1.5×10-3Pa内,以10-20℃/min的速度加热至400~500℃,保温0.5~1h。
3.根据权利要求1所述的快速直接制造热作模具的工艺方法,其特征在于,所述步骤3中,所述低温退火处理的处理工艺包括:以10-20℃/min的速度加热至850±20℃,保温0.5~1h。
4.根据权利要求1所述的快速直接制造热作模具的工艺方法,其特征在于,所述步骤4的固溶处理工艺包括:以10-20℃/min的速度加热至850±20℃,保温0.5~1h。
5.根据权利要求1所述的快速直接制造热作模具的工艺方法,其特征在于,所述步骤5中,时效热处理的工艺包括:快速加热至500~600℃,保温2h~4h,然后空冷至室温。
6.根据权利要求1-5中任意一项所述的快速直接制造热作模具的工艺方法,其特征在于,步骤1中所使用的合金粉末为球形,粒径为50~200μm。
7.根据权利要求1所述的快速直接制造热作模具的工艺方法,其特征在于,所述步骤2的增材制造工艺采用下述之一:
铺粉工艺:铺粉厚度20μm~80μm,激光功率200W~500W;扫描速度1~15m/s;
送粉工艺:送粉0.2-5r/min,激光功率1500W~8000W,扫描速度1-30mm/s。
CN201910695964.5A 2019-07-30 2019-07-30 快速直接制造热作模具的工艺方法 Active CN110340361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910695964.5A CN110340361B (zh) 2019-07-30 2019-07-30 快速直接制造热作模具的工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910695964.5A CN110340361B (zh) 2019-07-30 2019-07-30 快速直接制造热作模具的工艺方法

Publications (2)

Publication Number Publication Date
CN110340361A true CN110340361A (zh) 2019-10-18
CN110340361B CN110340361B (zh) 2020-06-26

Family

ID=68179085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910695964.5A Active CN110340361B (zh) 2019-07-30 2019-07-30 快速直接制造热作模具的工艺方法

Country Status (1)

Country Link
CN (1) CN110340361B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947972A (zh) * 2019-12-31 2020-04-03 广东省新材料研究所 一种随形水冷注塑模具钢件及其制备方法
CN113414404A (zh) * 2021-05-21 2021-09-21 西安建筑科技大学 一种增材制造h13钢的方法
CN115026305A (zh) * 2022-05-20 2022-09-09 华南理工大学 一种4Cr5Mo2SiV模具钢的增材制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108179295A (zh) * 2017-12-28 2018-06-19 华中科技大学 一种增强型随形冷却模具铜的快速制造方法
CN108788148A (zh) * 2018-06-15 2018-11-13 江苏理工学院 激光选区熔化制造具有随形冷却系统的h13钢模具的方法
CN108950464A (zh) * 2018-09-03 2018-12-07 北京易加三维科技有限公司 一种提高金属3D打印18Ni300模具钢表面硬度的方法
CN109550954A (zh) * 2018-12-20 2019-04-02 西安铂力特增材技术股份有限公司 一种热作模具钢的激光选区熔化成形方法
KR20190041729A (ko) * 2017-10-13 2019-04-23 한국해양대학교 산학협력단 프레스 금형의 표면 강화 방법
CN109848422A (zh) * 2019-02-25 2019-06-07 南昌航空大学 选区激光熔化成形gh4169合金的热处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041729A (ko) * 2017-10-13 2019-04-23 한국해양대학교 산학협력단 프레스 금형의 표면 강화 방법
CN108179295A (zh) * 2017-12-28 2018-06-19 华中科技大学 一种增强型随形冷却模具铜的快速制造方法
CN108788148A (zh) * 2018-06-15 2018-11-13 江苏理工学院 激光选区熔化制造具有随形冷却系统的h13钢模具的方法
CN108950464A (zh) * 2018-09-03 2018-12-07 北京易加三维科技有限公司 一种提高金属3D打印18Ni300模具钢表面硬度的方法
CN109550954A (zh) * 2018-12-20 2019-04-02 西安铂力特增材技术股份有限公司 一种热作模具钢的激光选区熔化成形方法
CN109848422A (zh) * 2019-02-25 2019-06-07 南昌航空大学 选区激光熔化成形gh4169合金的热处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947972A (zh) * 2019-12-31 2020-04-03 广东省新材料研究所 一种随形水冷注塑模具钢件及其制备方法
CN113414404A (zh) * 2021-05-21 2021-09-21 西安建筑科技大学 一种增材制造h13钢的方法
CN115026305A (zh) * 2022-05-20 2022-09-09 华南理工大学 一种4Cr5Mo2SiV模具钢的增材制造方法

Also Published As

Publication number Publication date
CN110340361B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN108213422B (zh) 一种含碳高熵合金复合材料的制备方法
CN103949639B (zh) 一种激光选区熔化技术制备Nb-Si基超高温合金的方法
EP4134459A1 (en) Nickel-based superalloy and manufacturing method therefor, and component and application
EP2987877B1 (en) Methods for producing alloy forms from alloys containing one or more extremely reactive elements and for fabricating a component therefrom
CN110340361A (zh) 快速直接制造热作模具的工艺方法
CN105950947B (zh) 用于3d打印的富铁高熵合金粉体材料及其制备方法
CN108441705A (zh) 一种高强度镍基变形高温合金及其制备方法
CN105714209A (zh) 一种3d打印用金属基陶瓷相增强合金工具钢粉末、其制备方法及应用
KR20180040513A (ko) 적층조형용 Ni계 초합금분말
CN104325128A (zh) 一种3d打印用耐热模具钢材料及其制备方法
CN107671289B (zh) 一种低元素烧损稀土改性增强铝合金激光3d打印的工艺调控方法
CN111304552A (zh) 一种3d打印高耐磨不锈钢材料、制备方法及其应用
CN103205605A (zh) 一种抗高温氧化的铸造镍基合金及其制备方法
CN104911428B (zh) 一种耐磨钼合金顶头及其制备方法
KR101736108B1 (ko) 써멧의 주조식 제조방법 및 그에 의해 제조된 써멧
CN104946925B (zh) 一种母线槽用铜铝合金材料的处理工艺
CN114262854A (zh) 一种高强度的锡青铜合金的制备方法
CN104004976A (zh) 锆基、铜基非晶合金及其制备方法、及由其制得的电子产品结构件及加工方法
CN112899549A (zh) 3d打印用高熵合金粉末及其制备方法和应用
CN104789873A (zh) 一种轧机切分轮及其再生制造工艺
CN115747603B (zh) 多孔高温合金材料及其制备方法
CN114559054A (zh) 一种激光粉末床熔融制备gh99镍基合金成形工艺
CN103540858B (zh) 一种精密铸造的导辊及其制造方法
CN103526127B (zh) 一种导辊及其制造方法
CN112935620B (zh) 一种焊接用金属组合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant