CN110323311B - 一种基于石墨烯/ZnO纳米线/p-GaN薄膜的LED点光源及其制备方法 - Google Patents
一种基于石墨烯/ZnO纳米线/p-GaN薄膜的LED点光源及其制备方法 Download PDFInfo
- Publication number
- CN110323311B CN110323311B CN201910504881.3A CN201910504881A CN110323311B CN 110323311 B CN110323311 B CN 110323311B CN 201910504881 A CN201910504881 A CN 201910504881A CN 110323311 B CN110323311 B CN 110323311B
- Authority
- CN
- China
- Prior art keywords
- zno nanowire
- thin film
- groove
- layer
- film layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 117
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 63
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000010410 layer Substances 0.000 claims abstract description 107
- 239000010409 thin film Substances 0.000 claims abstract description 75
- 239000002356 single layer Substances 0.000 claims abstract description 41
- 238000002347 injection Methods 0.000 claims abstract description 22
- 239000007924 injection Substances 0.000 claims abstract description 22
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000010408 film Substances 0.000 claims abstract description 11
- 230000006798 recombination Effects 0.000 claims description 13
- 238000005215 recombination Methods 0.000 claims description 13
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 229920002120 photoresistant polymer Polymers 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 238000005566 electron beam evaporation Methods 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 6
- 239000000969 carrier Substances 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 238000012546 transfer Methods 0.000 claims description 6
- 238000004528 spin coating Methods 0.000 claims description 5
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000001259 photo etching Methods 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 239000003990 capacitor Substances 0.000 abstract description 2
- 230000010354 integration Effects 0.000 abstract description 2
- 238000003860 storage Methods 0.000 abstract description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 201
- 239000011787 zinc oxide Substances 0.000 description 101
- 229910002601 GaN Inorganic materials 0.000 description 82
- 239000010931 gold Substances 0.000 description 13
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 13
- 239000004926 polymethyl methacrylate Substances 0.000 description 13
- 238000005401 electroluminescence Methods 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MHYQBXJRURFKIN-UHFFFAOYSA-N C1(C=CC=C1)[Mg] Chemical compound C1(C=CC=C1)[Mg] MHYQBXJRURFKIN-UHFFFAOYSA-N 0.000 description 2
- 235000005811 Viola adunca Nutrition 0.000 description 2
- 240000009038 Viola odorata Species 0.000 description 2
- 235000013487 Viola odorata Nutrition 0.000 description 2
- 235000002254 Viola papilionacea Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 238000001194 electroluminescence spectrum Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0095—Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/14—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/24—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Led Devices (AREA)
Abstract
本发明公开了一种基于石墨烯/ZnO纳米线/p‑GaN薄膜的LED点光源及其制备方法。本发明采用生长衬底、p‑GaN薄膜层、正电极、绝缘层、凹槽、ZnO纳米线、负电极和单层石墨烯;单根ZnO纳米线放置在p‑GaN薄膜层上的凹槽内,形成ZnO纳米线/p‑GaN异质结,单层石墨烯覆盖在ZnO纳米线和负电极上;单层石墨烯与ZnO纳米线接触面积大,有效增加了载流子注入面积,提高了注入效率;同时,采取此种方法得到的器件对ZnO纳米线不造成损伤,使得发光效率大幅度提升;本发明在ZnO纳米线的一端形成纳米尺度点光源,将有效减小光电子器件的尺寸,在光电子器件的精确单片集成、超高分辨生物医学和超级电容信息储存等领域应用广泛。
Description
技术领域
本发明涉及半导体光学领域,具体涉及一种基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源及其制备方法。
背景技术
氧化锌(ZnO)是一种II-VI族直接带隙半导体,禁带宽度3.37eV,室温下具有较大的激子束缚能(60meV),生长温度低,化学性质稳定。当其尺寸为纳米级时,常表现出独特的光活性、电活性和催化活性,这些性质在光电子器件领域里有着重要应用前景。由于p-ZnO难以合成,器件中常用同为纤锌矿结构的p-GaN与ZnO接触形成异质结。氮化镓(GaN)是一种Ⅲ-Ⅴ族直接带隙半导体,禁带宽度3.39eV,常用于蓝光发射或紫外发光器件中。为了得到微米或纳米级的激光发射源,波导性较好的一维ZnO纳米线与p-GaN薄膜层的异质结构成为关注热点。
2003年,Lieber基于n-CdS纳米线/p-Si异质结构研究了单纳米线电驱动激光光源的特性,如图1所示,其中A~D依次为p-Si层、Al2O3绝缘层、CdS纳米线、Ti/Au电极,其中电子e-和空穴分别从顶部金属电极与纳米线接触点(图中虚线箭头所指处)和底部p-Si层沿着整根纳米线注入。2010年,别亚青首次采用ZnO纳米线与p-GaN薄膜层异质结构研究其紫外电致发光性能,其中载流子通过ZnO纳米线一端的铂电极注入,此结构中载流子注入面积受纳米线横截面积限制。2011年,戴军设计了直径约6μm的ZnO棒与p-GaN薄膜层接触的垂直结构,如图2所示,①~⑥依次为p+-GaN层、ZnO薄膜层、聚甲基丙烯酸甲酯(PMMA)层、ZnO棒、Au电极、Ni电极,其中电子和空穴分别从顶部金属电极和底部p-GaN层沿着整根纳米线注入,有效提高了载流子注入效率。此器件制备过程为:先在p+-GaN层上形成Zn薄膜层,将ZnO棒转移至Zn薄膜层上,在O2中退火形成良好接触;然后旋涂PMMA,使其覆盖整个ZnO棒;然后采用反应离子刻蚀(RIE)暴露出ZnO棒;最后采用电子束蒸发镀膜制备Ni/Au电极和Au电极。此过程中涉及到离子刻蚀,不可避免对ZnO棒造成较大损伤,从而影响了异质结电致发光性能。
发明内容
针对以上现有技术中存在的问题,本发明提出了一种基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源及其制备方法。
本发明的一个目的在于提出一种基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源。
本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源包括:生长衬底、p-GaN薄膜层、正电极、绝缘层、凹槽、ZnO纳米线、负电极和单层石墨烯;其中,在生长衬底上形成p-GaN薄膜层,p-GaN薄膜层完全覆盖生长衬底;在p-GaN薄膜层上设置有正电极;在p-GaN薄膜层上除正电极以外的部分形成绝缘层;在绝缘层上设置有凹槽,凹槽至p-GaN薄膜层的上表面暴露出p-GaN薄膜层;单根ZnO纳米线放入凹槽中,形成ZnO纳米线/p-GaN异质结,ZnO纳米线为n区,p-GaN薄膜层为p区;ZnO纳米线的直径小于凹槽的宽度,并大于凹槽的深度,ZnO纳米线的顶端高于绝缘层的上表面露出凹槽;在绝缘层上凹槽的一侧区域形成负电极;单层石墨烯覆盖在ZnO纳米线和负电极上,单层石墨烯的宽度大于凹槽的另一侧与负电极之间的距离,单层石墨烯的一端接触负电极,中间部分覆盖ZnO纳米线的三个上表面,另一端跨过凹槽的另一侧接触绝缘层,并且单层石墨烯不与p-GaN薄膜层和正电极接触;正电极和负电极分别连接外电源的正极和负极,外电源通过正电极和负电极向ZnO纳米线/p-GaN异质结进行空穴和电子注入,在正向偏压下,电子从n区注入p区,空穴从p区注入n区,在异质结附近有高于平衡浓度的非平衡载流子,因此电子和空穴会在空间电荷区发生辐射复合产生光子,当所加正向偏压增大时,空穴和电子注入增强,从而发光强度增强;单层石墨烯与ZnO纳米线接触面积大,增加载流子注入面积,提高注入效率,从而提升发光效率。
单层石墨烯具有柔韧性,ZnO纳米线的形状为六棱柱,单层石墨烯覆盖ZnO纳米线能够完全接触ZnO纳米线的三个上表面。ZnO纳米线的直径为50~300nm。
生长衬底采用蓝宝石。
p-GaN薄膜层掺杂为镁Mg。
正电极采用金属电极,金属为Ni/Au。
绝缘层采用氧化铝Al2O3或聚甲基丙烯酸甲酯(PMMA)。
凹槽的宽度大于ZnO纳米线的直径,宽度为1~5μm,长度大于ZnO纳米线的长度,ZnO纳米线沿长度方向平放在凹槽中。
负电极采用金属电极,金属为Au。
单层石墨烯的长度小于ZnO纳米线的长度,长度越长与ZnO纳米线接触面积越大,注入效率越高;宽度大于负电极至凹槽另一侧的距离,小于整个绝缘层的宽度。
本发明的另一个目的在于提供一种基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的制备方法。
本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的制备方法,包括以下步骤:
1)在生长衬底上生长p-GaN薄膜层;
2)在p-GaN薄膜层上制备正电极,然后进行高温退火,形成欧姆接触;
3)在p-GaN薄膜层上旋涂光刻胶,光刻出凹槽图案,显影后在表面形成绝缘层,覆盖除正电极以外的p-GaN薄膜层;
4)剥离光刻胶在绝缘层内形成凹槽,凹槽至p-GaN薄膜层的上表面暴露出p-GaN薄膜层;
5)将单根ZnO纳米线沿着凹槽放入凹槽中,形成ZnO纳米线/p-GaN异质结,ZnO纳米线为n区,p-GaN薄膜层为p区,其中ZnO纳米线的直径小于凹槽宽度,并大于凹槽深度,ZnO纳米线的顶端高于p-GaN薄膜层的上表面露出凹槽;
6)在绝缘层上凹槽一侧区域形成负电极;
7)将单层石墨烯覆盖在ZnO纳米线和负电极上,单层石墨烯的宽度大于凹槽与负电极之间的距离,单层石墨烯的一端接触负电极,中间部分覆盖ZnO纳米线的三个上表面,另一端跨过凹槽的另一侧接触绝缘层,并且单层石墨烯不与p-GaN薄膜层接触;
8)正电极和负电极分别连接外电源的正极和负极,外电源通过正电极和负电极向ZnO纳米线/p-GaN异质结进行空穴和电子注入,在正向偏压下,电子从n区注入p区,空穴从p区注入n区,在异质结附近有高于平衡浓度的非平衡载流子,因此电子和空穴会在空间电荷区发生辐射复合产生光子,当所加正向偏压增大时,空穴和电子注入增强,从而发光强度增强;单层石墨烯与ZnO纳米线接触面积大,增加载流子注入面积,提高注入效率,从而提升发光效率。
其中,在步骤1)中,生长衬底采用蓝宝石。p-GaN薄膜层掺杂为镁。在生长衬底上生长p-GaN薄膜层采用金属-有机化学气相沉积法MOCVD。
在步骤2)中,制备正电极采用电子束蒸发镀膜。高温退火的温度为550℃~650℃,时间为5min~10min。
在步骤3)中,所用光刻胶为聚甲基丙烯酸甲酯(PMMA)。形成绝缘层采用电子束蒸发镀膜。绝缘层的厚度小于ZnO纳米线的直径,最好近似于ZnO纳米线的半径。
在步骤4)中,凹槽的宽度为1~5μm。
在步骤5)中,ZnO纳米线的制备采用化学气相沉积CVD法或水热合成法。
在步骤6)中,制备负电极采用电子束曝光或电子束蒸发镀膜方式,并采用定点转移技术将负电极转移至绝缘层上。负电极采用金电极。
在步骤7)中,单层石墨烯采用定点转移技术转移至相应位置。
本发明的电致发光主要分为三部分:第一部分为ZnO纳米线中近带边复合,这是主要工作部分;第二部分为p-GaN薄膜层中电子从导带或某未知浅能级向深层杂质的受体能级跃迁;第三部分为ZnO纳米线与p-GaN薄膜层接触界面电子和空穴复合。
本发明的优点:
本发明采用生长衬底、p-GaN薄膜层、正电极、绝缘层、凹槽、ZnO纳米线、负电极和单层石墨烯;单根ZnO纳米线放置在p-GaN薄膜层上的凹槽内,形成ZnO纳米线/p-GaN异质结,单层石墨烯覆盖在ZnO纳米线和负电极上;单层石墨烯与ZnO纳米线接触面积大,有效增加了载流子注入面积,提高了注入效率;同时,采取此种方法得到的器件对ZnO纳米线不造成损伤,使得发光效率大幅度提升;本发明在ZnO纳米线的一端形成纳米尺度点光源,将有效减小光电子器件的尺寸,在光电子器件的精确单片集成、超高分辨生物医学和超级电容信息储存等领域应用广泛。
附图说明
图1为现有技术的n-CdS纳米线/p-Si异质结单纳米线电驱动激光光源的剖面图;
图2为现有技术的ZnO棒与p-GaN薄膜层接触的垂直结构的剖面图;
图3为本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的一个实施例的示意图,其中,(a)为俯视图,(b)为剖面图;
图4为根据本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的一个实施例得到的ZnO纳米线/p-GaN异质结的光学图像;
图5为根据本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的一个实施例得到的为100V正向偏压下,ZnO纳米线/p-GaN异质结的光学图像;
图6为根据本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的一个实施例得到的不同正向偏压下的电致发光EL谱图;
图7为根据本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的一个实施例得到的100V正向偏压下的电致发光EL谱高斯分解图;
图8为根据本发明的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的一个实施例得到的为EL谱综合强度I随正向偏压U变化拟合曲线图。
具体实施方式
下面结合附图,通过具体实施例,进一步阐述本发明。
如图3和4所示,本实施例的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源包括:生长衬底、p-GaN薄膜层a、正电极f、绝缘层b、凹槽、ZnO纳米线c、负电极e和单层石墨烯d;其中,在生长衬底上形成厚约1.75μm的Mg掺杂的p-GaN薄膜层a,p-GaN薄膜层完全覆盖生长衬底;在p-GaN薄膜层上设置有Ni(10nm)/Au(50nm)的正电极f;在p-GaN薄膜层上除正电极以外的部分形成厚约100nm Al2O3的绝缘层b,绝缘层覆盖除正电极以外的部分p-GaN薄膜层;在绝缘层上设置有凹槽,凹槽至p-GaN薄膜层的上表面暴露出p-GaN薄膜层,深度约120nm;直径约300nm的ZnO纳米线c放入凹槽中,形成ZnO纳米线/p-GaN异质结;ZnO纳米线直径小于凹槽宽度,并大于凹槽深度,ZnO纳米线的顶端高于p-GaN薄膜层的上表面露出凹槽;在绝缘层上凹槽一侧区域形成Au(50nm)的负电极e;单层石墨烯d覆盖在ZnO纳米线和负电极上,单层石墨烯的宽度大于凹槽另一侧与负电极之间的距离,单层石墨烯的一端接触负电极,中间部分包裹ZnO纳米线的三个上表面,另一端跨过凹槽的另一侧接触绝缘层,并且单层石墨烯不与p-GaN薄膜层和正电极接触。
本实施例中,ZnO纳米线采用化学气相沉积(CVD)法制备而成。其具体步骤为:以高纯碳粉和ZnO粉末混合物(原子比C:O=1:1)为锌源,氧气为氧源(流速3.0sccm),氩气为载气(流速100sccm),在1070℃高温下持续2h,以200℃/h的速率降温至常温得到直径300nm的ZnO纳米线。
本实施例中,Mg掺杂p-GaN薄膜层采用金属-有机化学气相沉积(MOCVD)法制备而成。其具体步骤为:以三甲基镓(TGMa)为前驱体,二茂基镁(Cp2Mg)为p型掺杂物,氨气(NH3)为氮源,氢气(H2)为载气,在1050℃、200Torr压强下生长2μm厚的p-GaN,然后在750℃下退火20min形成1.75μm厚的Mg掺杂p-GaN薄膜层。
本实施例的基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的制备方法,包括以下步骤:
1)采用金属-有机化学气相沉积法MOCVD在蓝宝石的生长衬底上生长Mg掺杂p-GaN薄膜层;
2)在p-GaN薄膜层上采用电子束蒸发镀膜方式制备Ni/Au正电极,其中Ni电极厚10nm,
Au电极厚50nm,然后在500℃下、O2氛围中退火5min,形成欧姆接触;
3)在p-GaN薄膜层上旋涂光刻胶,光刻出2μm宽的凸棱作为凹槽图案,高度800nm,然后显影,去除凹槽图案以外的光刻胶只保留凹槽图案的光刻胶,然后在p-GaN薄膜层和凹槽图案的表面采用电子束蒸发镀膜Al2O3形成绝缘层,厚度约为100nm,覆盖除正电极和凹槽以外的p-GaN薄膜层;
4)剥离光刻胶,在绝缘层内形成2μm宽的凹槽,深度约100nm,暴露出p-GaN薄膜层;
5)用玻璃针挑选出直径约300nm、形态较好的单根ZnO纳米线转移至凹槽中,单根ZnO纳米线沿着凹槽放置,形成ZnO纳米线/p-GaN异质结;
6)以聚甲基丙烯酸甲酯(PMMA)为载体,采用定点转移技术将Au作为负电极转移至绝缘层上凹槽一侧区域;
7)以PMMA为载体,采用定点转移技术将适当大小的单层石墨烯转移至ZnO纳米线和负电极上;
8)正电极和负电极分别连接外电源的正极和负极,外电源通过正电极和负电极向ZnO纳米线/p-GaN异质结进行空穴和电子注入,在正向偏压下,电子从n区注入p区,空穴从p区注入n区,在异质结附近有高于平衡浓度的非平衡载流子,因此电子和空穴会在空间电荷区发生辐射复合产生光子,当所加正向偏压增大时,空穴和电子注入增强,从而发光强度增强;单层石墨烯与ZnO纳米线接触面积大,增加载流子注入面积,提高注入效率,从而提升发光效率。
本实施例中,定点转移技术具体步骤为:在铜衬底上生长的Au或石墨烯表面旋涂PMMA胶;采用电子束曝光制作适当大小的图形;用FeCl3/HCl混合液将铜衬底溶解,使得PMMA/Au层或PMMA/石墨烯层悬浮在刻蚀液表面;用去离子水清洗三次,用铜网将其捞起;在灯下烘干后即可用玻璃针将其精确转移至任意指定位置。
在100V正向偏压下在ZnO纳米线/p-GaN薄膜层异质结区域(实线箭头所指区域)和ZnO纳米线端点处(虚线箭头所指区域)均能观察到明显的蓝紫可见光发射,如图5所示。由此可见,ZnO纳米线/p-GaN薄膜层异质结界面接触良好,且增大载流子注入面积对LED发光效率有显著提升,且ZnO纳米线光波导性能很好,ZnO纳米线的端点即可作为纳米尺度的点光源。除异质结接触面和ZnO纳米线外的发光点均是由于玻璃针转移ZnO纳米线过程中对ZnO纳米线造成的部分损伤引起的漏光。
如图6所示,为在不同正向偏压下,对其电致发光(EL)谱测量结果,Ⅰ~Ⅸ依次为20V、30V、40V、50V、60V、70V、80V、90V、100V正向偏压下EL谱线,由图6中明显可见发光强度I随着正向偏压增大而不断增大,且集中在蓝紫光区域,λ为波长。如图7所示,为100V正向偏压下,对EL谱线进行高斯处理结果,ⅰ为原始测量EL谱线,ⅱ~ⅳ为高斯分解后的结果,ⅱ曲线峰值对应波长为393nm,源于最强的n-ZnO近带边复合;ⅱi曲线峰值对应波长为411nm,源于较弱的ZnO纳米线与p-GaN薄膜层界面电子和空穴复合;ⅳ曲线峰值对应波长为438nm,源于最弱的Mg掺杂p-GaN薄膜层中电子从导带或某未知浅能级向深层Mg受主能级跃迁。如图8所示,为EL谱综合强度I随正向偏压U变化趋势及拟合曲线,根据曲线图分析,该曲线符合I∝Um关系,其中m为幂指数,其值取决于非辐射复合对光激发特性的影响。由图中可见当外加偏压小于50V时,m=3.99,辐射复合率增速比非辐射复合率快得多,当外加偏压大于50V时,m=0.56,此时非辐射复合达到饱和状态,俄歇复合、焦耳热效应等原因导致电子-光子转换率降低,从而导致发光效率有所降低。
综合各项结果及原理分析,本发明基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源采用石墨烯作为电极,有效增大载流子注入面积,提高了发光效率,且几乎不对ZnO纳米线造成损伤,利用ZnO良好的光波导性,其端点处即可作为纳米级点光源。
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。
Claims (5)
1.一种基于石墨烯/单根ZnO纳米线/p-GaN薄膜垂直结构的LED点光源的制备方法,其特征在于,所述制备方法包括以下步骤:
1)在生长衬底上生长p-GaN薄膜层;
2)在p-GaN薄膜层上制备正电极,然后进行高温退火,形成欧姆接触;
3)在p-GaN薄膜层上旋涂光刻胶,光刻出凹槽图案,显影后在表面形成绝缘层,覆盖除正电极以外的p-GaN薄膜层;
4)剥离光刻胶在绝缘层内形成凹槽,凹槽至p-GaN薄膜层的上表面暴露出p-GaN薄膜层;
5)将单根ZnO纳米线沿着凹槽放入凹槽中,形成ZnO纳米线/p-GaN异质结,ZnO纳米线为n区,p-GaN薄膜层为p区,其中ZnO纳米线的直径小于凹槽宽度,并大于凹槽深度,ZnO纳米线的顶端高于p-GaN薄膜层的上表面露出凹槽;
6)在绝缘层上凹槽一侧区域形成负电极;
7)将单层石墨烯覆盖在ZnO纳米线和负电极上,单层石墨烯的宽度大于凹槽与负电极之间的距离,单层石墨烯的一端接触负电极,中间部分覆盖ZnO纳米线的三个上表面,另一端跨过凹槽的另一侧接触绝缘层,并且单层石墨烯不与p-GaN薄膜层接触;
8)正电极和负电极分别连接外电源的正极和负极,外电源通过正电极和负电极向ZnO纳米线/p-GaN异质结进行空穴和电子注入,在正向偏压下,电子从n区注入p区,空穴从p区注入n区,在异质结附近有高于平衡浓度的非平衡载流子,因此电子和空穴会在空间电荷区发生辐射复合产生光子,在ZnO纳米线的一端形成纳米尺度点光源,当所加正向偏压增大时,空穴和电子注入增强,从而发光强度增强;单层石墨烯与ZnO纳米线接触面积大,增加载流子注入面积,提高注入效率,从而提升发光效率。
2.如权利要求1所述的制备方法,其特征在于,在步骤1)中,生长衬底采用蓝宝石,p-GaN薄膜层掺杂为镁,在生长衬底上生长p-GaN薄膜层采用金属-有机化学气相沉积法MOCVD。
3.如权利要求1所述的制备方法,其特征在于,在步骤2)中,制备正电极采用电子束蒸发镀膜;高温退火的温度为550℃~650℃,时间为5min~10min。
4.如权利要求1所述的制备方法,其特征在于,在步骤5)中,ZnO纳米线的制备采用化学气相沉积CVD法或水热合成法。
5.如权利要求1所述的制备方法,其特征在于,在步骤6)中,制备负电极采用电子束曝光或电子束蒸发镀膜方式,并采用定点转移技术将负电极转移至绝缘层上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910504881.3A CN110323311B (zh) | 2019-06-12 | 2019-06-12 | 一种基于石墨烯/ZnO纳米线/p-GaN薄膜的LED点光源及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910504881.3A CN110323311B (zh) | 2019-06-12 | 2019-06-12 | 一种基于石墨烯/ZnO纳米线/p-GaN薄膜的LED点光源及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110323311A CN110323311A (zh) | 2019-10-11 |
CN110323311B true CN110323311B (zh) | 2020-11-03 |
Family
ID=68119498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910504881.3A Active CN110323311B (zh) | 2019-06-12 | 2019-06-12 | 一种基于石墨烯/ZnO纳米线/p-GaN薄膜的LED点光源及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110323311B (zh) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102570304A (zh) * | 2012-01-17 | 2012-07-11 | 东南大学 | 一种微纳米激光二极管的制备方法 |
CN102623604B (zh) * | 2012-04-11 | 2014-06-25 | 中国科学院半导体研究所 | ZnO纳米棒发光二极管及其制作方法 |
CN102904158B (zh) * | 2012-10-19 | 2015-01-28 | 东南大学 | 一种构筑电泵浦回音壁模ZnO紫外微激光器的制备方法 |
CN103346199B (zh) * | 2013-07-10 | 2015-09-16 | 合肥工业大学 | 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法 |
CN104051589B (zh) * | 2014-06-24 | 2017-02-01 | 东南大学 | 一种横向氧化锌纳米棒阵列发光二极管 |
CN106848007A (zh) * | 2017-01-12 | 2017-06-13 | 东南大学 | 一种增强氧化锌‑氮化镓异质结构电致发光的方法 |
CN107634125B (zh) * | 2017-09-07 | 2020-03-31 | 东南大学 | 一种双向发光二极管及其制备方法 |
CN108063171B (zh) * | 2017-12-20 | 2020-06-02 | 东南大学 | 一种ZnO纳米棒阵列发光二极管及其制备方法 |
-
2019
- 2019-06-12 CN CN201910504881.3A patent/CN110323311B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110323311A (zh) | 2019-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications | |
Rahman | Zinc oxide light-emitting diodes: a review | |
Lupan et al. | Low‐voltage UV‐electroluminescence from ZnO‐Nanowire array/p‐GaN light‐emitting diodes | |
KR100663745B1 (ko) | 인듐갈륨나이트라이드 양자 웰을 가지는 나노막대 어레이구조의 고휘도 발광 다이오드 및 그 제조방법 | |
US6881602B2 (en) | Gallium nitride-based semiconductor light emitting device and method | |
US8525198B2 (en) | Ultraviolet light emitting diode devices and methods for fabricating the same | |
KR101416663B1 (ko) | 산화아연 나노로드를 이용한 레이저 다이오드 및 그 제조 방법 | |
KR101217210B1 (ko) | 발광소자 및 그 제조방법 | |
Chang et al. | Effects of strains and defects on the internal quantum efficiency of InGaN/GaN nanorod light emitting diodes | |
CN102214748A (zh) | 一种氮化镓基垂直结构led外延结构及制造方法 | |
Zhao et al. | Al (Ga) N nanowire deep ultraviolet optoelectronics | |
Sankaranarayanan et al. | Catalytic growth of gallium nitride nanowires on wet chemically etched substrates by chemical vapor deposition | |
Yadav et al. | Electroluminescence study of InGaN/GaN QW based pin and inverted pin junction based short-wavelength LED device using laser MBE technique | |
Wang et al. | An individual ZnO microwire homojunction LED with ultraviolet electroluminescence spectrally purified using Pt nanoparticles cladding | |
CN1964081A (zh) | 氧化锌基的蓝光发光二极管及其制备方法 | |
CN110323311B (zh) | 一种基于石墨烯/ZnO纳米线/p-GaN薄膜的LED点光源及其制备方法 | |
KR100974626B1 (ko) | 접촉 구조의 나노로드 반도체 소자 및 그 제조 방법 | |
Lin et al. | Thermal annealing effects on the performance of a Ga-doped ZnO transparent-conductor layer in a light-emitting diode | |
Chen et al. | Improved performance of a back-illuminated GaN-based metal-semiconductor-metal ultraviolet photodetector by in-situ modification of one-dimensional ZnO nanorods on its screw dislocations | |
Lin et al. | Blue light-emitting diodes with an embedded native gallium oxide pattern structure | |
KR20140017432A (ko) | 금속입자층 형성 방법 및 이를 이용하여 제조된 발광소자 | |
KR100693129B1 (ko) | pn 접합 GaN 나노막대 LED 제조방법 | |
Li et al. | Structural and optical properties of position-controlled n-ZnO nanowire arrays: Potential applications in optoelectronics | |
KR101696889B1 (ko) | 그래핀 전극을 갖는 발광다이오드와 그 제조방법 | |
CN109166953B (zh) | 一种发光二极管芯片及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |