CN110323291B - 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法 - Google Patents

基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法 Download PDF

Info

Publication number
CN110323291B
CN110323291B CN201910324339.XA CN201910324339A CN110323291B CN 110323291 B CN110323291 B CN 110323291B CN 201910324339 A CN201910324339 A CN 201910324339A CN 110323291 B CN110323291 B CN 110323291B
Authority
CN
China
Prior art keywords
gay
film
amorphous
blind ultraviolet
ultraviolet detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910324339.XA
Other languages
English (en)
Other versions
CN110323291A (zh
Inventor
何云斌
王其乐
黎明锴
黄攀
卢寅梅
常钢
李派
张清风
陈俊年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Ruilian Zhichuang Photoelectric Co ltd
Hubei University
Original Assignee
Wuhan Ruilian Zhichuang Photoelectric Co ltd
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Ruilian Zhichuang Photoelectric Co ltd, Hubei University filed Critical Wuhan Ruilian Zhichuang Photoelectric Co ltd
Priority to CN201910324339.XA priority Critical patent/CN110323291B/zh
Publication of CN110323291A publication Critical patent/CN110323291A/zh
Priority to US16/855,931 priority patent/US11201254B2/en
Application granted granted Critical
Publication of CN110323291B publication Critical patent/CN110323291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法。所述器件从下至上依次为c面蓝宝石、有源层、一对平行电极,所述有源层为非晶(GaY)2O3薄膜。本发明利用Y3+离子部分取代Ga2O3中的Ga3+离子,在提高Ga2O3带隙的同时使薄膜由单晶转化为非晶。更高带隙的非晶(GaY)2O3薄膜能够有效地降低器件的暗电流,并使截止波长蓝移至280nm以内。同时非晶(GaY)2O3薄膜具有更高的缺陷浓度,缺陷不仅能提高增益还能作为复合中心促进载流子复合,得益于此,非晶(GaY)2O3器件相对于纯Ga2O3器件其响应度显著提高且弛豫时间明显降低,极大提高了对深紫外光的探测能力。

Description

基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备 方法
技术领域
本发明属于半导体探测器技术领域,具体涉及一种具有MSM结构的日盲紫外光探测器,更具体地说,本发明涉及一种基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法。
背景技术
由于太阳光中的深紫外部分(200~280nm)在到达地球表面前会被臭氧层强烈吸收,日盲紫外光电探测器在地球表面工作具有抗干扰能力强,灵敏度高等特点。在导弹预警,紫外通讯,火灾防控,环境监测等军事及民生领域有着十分重要的应用。传统的真空紫外光电倍增管探测器功耗高且价格高昂,基于宽禁带半导体材料的日盲紫外光电探测器由于具有体积小,增益大,能耗低等特点,成为了世界各国研究和竞争的焦点。其中研究主要集中在MgZnO、AlGaN和Ga2O3等宽禁带半导体材料上。但是要实现日盲紫外光的探测,有源层半导体材料的带隙必须要大于4.4eV,而MgZnO和AlGaN在通过分别提高Mg和Al含量来提高带隙达到4.4eV的同时会使得晶体质量显著下降,会极大降低器件的性能和稳定性。Ga2O3是一种具有4.9eV的直接带隙的半导体材料,且激子束缚能较高,具有很好的物理和化学稳定性,是一种理想的日盲紫外光探测材料。
虽然纯氧化镓基日盲紫外光电探测器的峰值响应波长在255nm附近,但是它的截止波长大于280nm,也即对UVB波段的紫外光(280~315nm)仍有较明显的响应,而且由于深紫外光比较微弱,降低器件的暗电流能有效降低噪音对信号探测的影响。基于以上原因,我们通过使用Y3+离子部分取代Ga2O3中的Ga3+离子,得到非晶的(GaY)2O3薄膜来提高Ga2O3的带隙,从而能够有效地降低器件的暗电流,并使截止波长蓝移至 280nm以内。同时非晶(GaY)2O3薄膜具有更高的缺陷浓度,缺陷不仅起到束缚空穴极大提高增益的作用还能作为复合中心促进载流子的复合。得益于此,非晶(GaY)2O3薄膜器件相对于纯Ga2O3器件其响应度显著提高且弛豫时间明显降低,极大提高了其对深紫外光的探测能力。
金属-半导体-金属(MSM)结构探测器特别有利于表面光吸收,具有结构简单、效率高和便于集成等优点,能通过控制金属类型、沟道宽度等参数来调控所得探测器的性能。所以我们选择制备一种基于(GaY)2O3非晶薄膜的高增益MSM型日盲紫外光探测器。
发明内容
本发明的目的在于提供一种基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法。本发明通过利用Y3+离子的掺杂来提高氧化镓薄膜的带隙并使薄膜由单晶转化为非晶,从而导致氧化镓日盲紫外光探测器的截止波长蓝移,暗电流和弛豫时间明显降低并且响应度显著提高,极大提高了其对深紫外光的探测能力。
为了实现本发明的上述第一个目的,本发明采用如下技术方案:
一种基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器,所述探测器从下至上依次包括c面蓝宝石衬底、有源层、一对平行电极,其中:所述有源层为(GaY)2O3薄膜。
进一步地,上述技术方案,所述有源层的厚度为150~300nm。
进一步地,上述技术方案,所述平行电极的厚度为30~70nm。
进一步地,上述技术方案,所述平行电极的间距为10~100μm。
进一步地,上述技术方案,所述平行电极材料可以为Pt、Au、Al或ITO中的任一种,优选为Au。
本发明的另一目的在于提供上述所述基于(GaY)2O3非晶薄膜的高增益MSM型日盲紫外光探测器的制备方法,所述方法包括以下步骤:
(1)以c面蓝宝石作为薄膜生长的衬底,使用清洗液对所述衬底进行超声清洗后用氮气吹干,随后立即置于真空腔内;
(2)使用(GaY)2O3陶瓷靶材,采用脉冲激光烧蚀沉积、磁控溅射或电子束蒸发方法在步骤(1)预处理后的c面蓝宝石衬底表面沉积形成非晶(GaY)2O3薄膜;
(3)利用蒸镀法、光刻法或溅射法,在所述(GaY)2O3薄膜表面制备平行电极,获得本发明所述的基于(GaY)2O3非晶薄膜的高增益MSM型日盲紫外光探测器。
进一步地,上述技术方案,步骤(1)中所述清洗液包括丙酮、乙醇、去离子水,所述各清洗液超声清洗时间分别优选为15min。
进一步地,上述技术方案,步骤(2)中非晶(GaY)2O3薄膜具体是采用脉冲激光烧蚀沉积方法制得,具体工艺如下:
利用(GaY)2O3陶瓷作为靶材,控制衬底温度为300~800℃,脉冲激光能量为200~600mJ/Pulse,氧压为1~8Pa,在步骤(1)预处理后的c面蓝宝石衬底表面沉积形成非晶(GaY)2O3薄膜。
进一步,上述技术方案,所述沉积时间为10~60min。
进一步地,上述技术方案,步骤(2)中所述(GaY)2O3陶瓷靶材是采用固相烧结法制得,具体方法如下:
(a)按摩尔比为95:5~70:30的称量Ga2O3、Y2O3粉体,将粉料置于球磨罐中,加入超纯水后进行球磨,得到均匀混合粉末;
(b)将所述混合粉末溶液筛除锆球后置于真空干燥箱中,干燥后冷却至室温,然后碾碎,压成圆片;
(c)在空气氛围中,将步骤(b)所得圆片置于真空管式炉中,于1000~1500℃条件下烧制1~4h,得到本发明所述的(GaY)2O3陶瓷。
更进一步地,上述技术方案,步骤(b)所述真空干燥箱温度为100~120℃,干燥时间为10~12h。
本发明的原理如下:
本发明利用Y2O3的带隙(5.6eV)大于Ga2O3的带隙(4.9eV)以及Y3+离子半径
Figure BDA0002035715460000031
远大于Ga3+的离子半径
Figure BDA0002035715460000032
使用Y3+离子部分取代Ga2O3中的Ga3+离子,在提高Ga2O3带隙的同时使薄膜由单晶转化为非晶,得到非晶的(GaY)2O3薄膜。更高带隙的非晶(GaY)2O3薄膜能够有效地降低器件的暗电流,并使截止波长蓝移至280nm以内。同时非晶(GaY)2O3薄膜具有更高的缺陷浓度,缺陷不仅起到束缚空穴显著提高增益的作用还能作为复合中心促进载流子的复合。得益于此,非晶(GaY)2O3薄膜器件相对于纯 Ga2O3器件其响应度显著提高且弛豫时间明显降低,极大提高了其对深紫外光的探测能力。
本发明的有益效果为:
1、通过Y3+离子部分取代Ga2O3中得Ga3+离子,得到的(GaY)2O3可以明显提高 Ga2O3的带隙并使薄膜由单晶转化为非晶。
2、带隙更高的(GaY)2O3薄膜中载流子浓度更低,从而可以有效的降低其日盲紫外光电探测器的暗电流,并能使截止波长蓝移。
3、非晶(GaY)2O3薄膜具有更高的缺陷浓度,缺陷不仅起到束缚空穴显著提高增益的作用还能作为复合中心促进载流子的复合。得益于此,非晶(GaY)2O3薄膜器件相对于纯Ga2O3器件其响应度显著提高且弛豫时间明显降低,极大提高了其对深紫外光的探测能力。
4、本发明的(GaY)2O3三元合金半导体材料可采用常规脉冲激光烧蚀沉积、磁控溅射、电子束蒸发等多种方法进行生长,电极材料可以采用金属铝、金、铂等或者透明电极ITO,电极形状以及沟道宽度均可以自由调整和优化。本发明电极既可以采用蒸镀法蒸镀,也可以采用光刻法或溅射法制作。蒸镀法工艺简单,方便大规模制备;光刻法十分有利于高精度、微尺寸器件的发展。
5、本发明制得的MSM结构的日盲紫外光电探测器结构和制作工艺简单,另外本发明制得的探测器对245nm波长的深紫外光具有优秀的探测能力,且暗电流极小、响应速度快,增益大。
附图说明
图1是本发明基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器的结构示意图;
图2是本发明实施例1中非晶(GaY)2O3和对比例1中纯Ga2O3薄膜的X射线衍射(XRD)全谱图;
图3是本发明实施例1中(GaY)2O3基日盲紫外光电探测器的I-V曲线;
图4是本发明实施例1中(GaY)2O3基日盲紫外光电探测器的时间t-电流I响应曲线图;
图5是本发明实施例2中(GaY)2O3基日盲紫外光电探测器的时间t-电流I响应曲线图;
图6是本发明对比例1中纯Ga2O3基日盲紫外光电探测器的I-V曲线;
图7是本发明对比例1中纯Ga2O3基日盲紫外光电探测器的时间t-电流I响应曲线图;
图8是本发明实施例1中(GaY)2O3和对比例1中纯Ga2O3基日盲紫外光电探测器的光谱响应度测试结果。
具体实施方式
下面结合附图对本发明的实施案例作详细说明。本实施案例在本发明技术方案的前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施案例。
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。
本发明下述各实施例中采用的蓝宝石衬底,其主要成分是氧化铝(Al2O3),c-Al2O3表示c面蓝宝石。本发明中蓝宝石衬底的厚度优选为0.35~0.45mm。
实施例1
如图1所示,本实施例的一种基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器,所述探测器从下至上依次包括c面蓝宝石衬底、有源层、一对平行金属Au电极,其中:所述有源层为非晶(GaY)2O3薄膜。所述衬底的厚度为0.43mm,所述有源层的厚度为 150nm,所述Au电极的厚度为50nm,所述平行电极的间距为10μm。
本实施例上述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法烧制制备(GaY)2O3三元陶瓷靶材
1.1按摩尔比Ga2O3:Y2O3=70:30,称取6.595g Ga2O3粉末和3.401gY2O3粉末,混合后,加入15g去离子水,然后置于行星式球磨机中的球磨罐(球磨介质为氧化锆陶瓷球)中,球磨4h,得到混合粉末;
1.2将所述混合粉末溶液筛去锆球后置于真空干燥箱中,在110℃条件下真空干燥12h,取出后自然冷却至室温,加入1g去离子水,用碾钵充分研磨均匀后使用压片机在8M Pa压强下压成直径27.5mm、厚度2mm的圆形坯片;
1.3将所述坯片置于真空管式炉中的坩埚内,并在其周围放上成分相同的粉料(15.000g)。将管式炉升温至1300℃并保温3h,随后自然冷却至室温,得到本发明所述的(GaY)2O3三元陶瓷靶材。
步骤2利用(GaY)2O3三元陶瓷靶材制备日盲紫外光探测器
2.1以步骤1制得的(GaY)2O3三元陶瓷作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声清洗15min的蓝宝石衬底一起装入真空室,并抽真空至10-4 Pa;
2.2待将衬底温度升温至700℃后,通入氧气,使得气压在整个薄膜沉积过程中维持在4Pa;然后开启衬底和靶台自转,设定激光器输出能量为300mJ/pulse,脉冲重复频率为5Hz,再开启激光开始沉积薄膜。沉积30min后关闭氧气与加热,最后将样品在真空中自然冷却至室温后取出;
2.3将得到的薄膜置于掩模板上并安装到真空蒸镀机的真空腔内,随后安装钨舟并放入蒸发源——金属Au 0.15g,关闭真空腔,开启机械泵、前级阀、分子泵,将真空度抽至10-4Pa以下,然后开启蒸发电源,缓慢地将电流提高,直到金属Au融化后保持电流恒定,打开挡板开始蒸镀。金属蒸发完毕后缓慢降低电流,关闭蒸发源,关闭分子泵、前级阀、机械泵,并打开空气阀,最后得到目标MSM日盲紫外光电探测器。
图2为(GaY)2O3和纯Ga2O3薄膜的全谱。如图所示,对于(GaY)2O3薄膜,除了c 面蓝宝石衬底的衍射峰外,没有发现其他衍射峰,说明本实施例成功得到了非晶的 (GaY)2O3薄膜。图3是本实施例制得的(GaY)2O3日盲紫外光电探测器的I-V曲线,可以明显看出在光照下的I-V曲线是非线性的,说明Au与(GaY)2O3薄膜之间形成了肖特基接触。图4为该器件在10V工作电压下的时间电流响应曲线。由图可知,在10V偏压下,该器件的暗电流非常小(~0.4pA),远小于纯Ga2O3基探测器的暗电流(~10.6pA)。这是因为Y2O3的带隙(5.6eV)大于Ga2O3的带隙(4.9eV),Y3+离子的掺入能明显提高Ga2O3的带隙,从而使得具有更宽带隙的(GaY)2O3基探测器的暗电流显著降低。同时,我们使用双指数弛豫方程
Figure BDA0002035715460000061
对曲线进行拟合,得到器件弛豫响应时间τd2仅为0.019s,远远快于纯Ga2O3基探测器的弛豫响应时间(τd2=0.661s)。这是因为 Y3+离子与O2-离子之间的结合能比Ga3+离子与O2-离子之间的结合能更强,从而使得 (GaY)2O3三元合金薄膜相对于纯Ga2O3薄膜具有更低氧空位浓度,更低的氧空位浓度导致薄膜中更少的陷阱中心,从而促使器件的弛豫响应速度明显加快。同时,不同于单晶的纯Ga2O3薄膜,非晶的(GaY)2O3薄膜中存在许多的缺陷,缺陷能够作为载流子的复合中心来促进载流子的复合,因此能大大降低探测器的弛豫响应时间。图8是(GaY)2O3和纯Ga2O3基探测器的波长响应度曲线,得益于(GaY)2O3相对更宽的带隙,(GaY)2O3基探测器的峰值响应波长为245nm,短于纯Ga2O3基探测器的峰值响应波长(255nm)。此外,(GaY)2O3基探测器的峰值响应度Rmax=691.3A/W,远远高于纯Ga2O3基探测器的峰值响应度(Rmax=20.9A/W)。
综上所述,(GaY)2O3基探测器相对于纯Ga2O3基探测器具有更低的暗电流,显著加快的回复速度,更短的峰值响应波长,以及明显增大的峰值响应度,表现出了对日盲紫外光更为敏感和快速的探测能力。
实施例2
本实施例的一种基于(GaY)2O3三元合金的日盲紫外光探测器,所述探测器从下至上依次包括c面蓝宝石衬底、有源层、一对平行金属Au电极,其中:所述有源层为(GaY)2O3薄膜,所述衬底的厚度为0.43mm,所述有源层的厚度为150nm,所述电极的厚度为55 nm,所述平行电极的间距为10μm。
本实施例上述的基于(GaY)2O3薄膜的日盲紫外光探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法烧制制备(GaY)2O3三元陶瓷靶材
1.1按摩尔比Ga2O3:Y2O3=95:5,称取9.403g Ga2O3粉末和0.596g Y2O3粉末,混合后,加入15g去离子水,然后置于行星式球磨机中的球磨罐(球磨介质为氧化锆陶瓷球)中,球磨4h,得到混合粉末;
1.2将所述混合粉末溶液筛去锆球后置于真空干燥箱中,在110℃条件下真空干燥12h,取出后自然冷却至室温,加入1g去离子水,用碾钵充分研磨均匀后使用压片机在8M Pa压强下压成直径27.5mm、厚度2mm的圆形坯片;
1.3将所述坯片置于真空管式炉中的坩埚内,并在其周围放上成分相同的粉料(15.000g)。将管式炉升温至1300℃并保温3h,随后自然冷却至室温,得到本发明所述的(GaY)2O3三元陶瓷靶材。
步骤2利用(GaY)2O3三元陶瓷靶材制备日盲紫外光探测器
2.1以步骤1制得的(GaY)2O3三元陶瓷作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声清洗15min的蓝宝石衬底一起装入真空室,并抽真空至10-4 Pa;
2.2待将衬底温度升温至700℃后,通入氧气,使得气压在整个薄膜沉积过程中维持在4Pa;然后开启衬底和靶台自转,设定激光器输出能量为300mJ/pulse,脉冲重复频率为5Hz,再开启激光开始沉积薄膜。沉积30min后关闭氧气与加热,最后将样品在真空中自然冷却至室温后取出;
2.3将得到的薄膜置于掩模板上并安装到真空蒸镀机的真空腔内,随后安装钨舟并放入蒸发源——金属Au 0.15g,关闭真空腔,开启机械泵、前级阀、分子泵,将真空度抽至10-4Pa以下,然后开启蒸发电源,缓慢地将电流提高,直到金属Au融化后保持电流恒定,打开挡板开始蒸镀。金属蒸发完毕后缓慢降低电流,关闭蒸发源,关闭分子泵、前级阀、机械泵,并打开空气阀,最后得到目标MSM日盲紫外光电探测器。
在本实施例制得的器件电极之间施加10V的电压并用单色光照射样品表面进行光电性能测试。结果表明该器件暗电流很低(Idark=1.5pA),响应速度较快,器件弛豫响应时间τd2仅为0.037s,表现出对日盲紫外光较好的探测能力。测试结果见图5。
实施例3
本实施例的一种基于(GaY)2O3三元合金的日盲紫外光探测器,所述探测器从下至上依次包括c面蓝宝石衬底、有源层、一对平行金属Al电极,其中:所述有源层为(GaY)2O3三元合金薄膜,所述衬底的厚度为0.43mm,所述有源层的厚度为300nm,所述电极的厚度为30nm,所述平行电极的间距为50μm。
本实施例上述的基于(GaY)2O3薄膜的日盲紫外光探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用与实施例1相同的固相烧结法制备(GaY)2O3三元陶瓷靶材。
步骤2:利用(GaY)2O3三元陶瓷靶材制备日盲紫外光探测器
2.1以步骤1制得的(GaY)2O3三元陶瓷作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声清洗15min的蓝宝石衬底一起装入真空室,并抽真空至10-4 Pa;
2.2待将衬底温度升温至500℃后,通入氧气,使得气压在整个薄膜沉积过程中维持在1Pa;然后开启衬底和靶台自转,设定激光器输出能量为500mJ/pulse,脉冲重复频率为5Hz,再开启激光开始沉积薄膜。沉积30min后关闭氧气与加热,最后将样品在真空中自然冷却至室温后取出;
2.3将得到的薄膜置于掩模板上并安装到真空蒸镀机的真空腔内,随后安装钨舟并放入蒸发源——金属Al 0.10g,关闭真空腔,开启机械泵、前级阀、分子泵,将真空度抽至10-4Pa以下,然后开启蒸发电源,缓慢地将电流提高,直到金属Al融化后保持电流恒定,打开挡板开始蒸镀。金属蒸发完毕后缓慢降低电流,关闭蒸发源,关闭分子泵、前级阀、机械泵,并打开空气阀,最后得到目标MSM日盲紫外光电探测器。
实施例4
本实施例的一种基于(GaY)2O3三元合金的日盲紫外光探测器,所述探测器从下至上依次包括c面蓝宝石衬底、有源层、一对平行金属Pt电极,其中:所述有源层为(GaY)2O3三元合金薄膜,所述衬底的厚度为0.43mm,所述有源层的厚度为200nm,所述电极的厚度为70nm,所述平行电极的间距为100μm。
本实施例上述的基于(GaY)2O3薄膜的日盲紫外光探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用与实施例1相同的固相烧结法制备(GaY)2O3三元陶瓷靶材。
步骤2:利用(GaY)2O3三元陶瓷靶材制备日盲紫外光探测器
2.1以步骤1制得的(GaY)2O3三元陶瓷作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声清洗15min的蓝宝石衬底一起装入真空室,并抽真空至10-4 Pa;
2.2待将衬底温度升温至300℃后,通入氧气,使得气压在整个薄膜沉积过程中维持在8Pa;然后开启衬底和靶台自转,设定激光器输出能量为600mJ/pulse,脉冲重复频率为5Hz,再开启激光开始沉积薄膜。沉积30min后关闭氧气与加热,最后将样品在真空中自然冷却至室温后取出;
2.3将得到的薄膜置于掩模板上并安装到真空蒸镀机的真空腔内,随后安装钨舟并放入蒸发源——金属Pt 0.25g,关闭真空腔,开启机械泵、前级阀、分子泵,将真空度抽至10-4Pa以下,然后开启蒸发电源,缓慢地将电流提高,直到金属Pt融化后保持电流恒定,打开挡板开始蒸镀。金属蒸发完毕后缓慢降低电流,关闭蒸发源,关闭分子泵、前级阀、机械泵,并打开空气阀,最后得到目标MSM日盲紫外光电探测器。
对比例1
本对比例的一种基于Ga2O3薄膜的日盲紫外光探测器,所述探测器从下至上依次包括c面蓝宝石衬底、有源层、一对平行金属Au电极,其中:所述有源层为Ga2O3薄膜, 所述衬底的厚度为0.43mm,所述有源层的厚度为150nm,所述电极的厚度为55nm,所述平行电极的间距为10μm。
本对比例上述的基于Ga2O3薄膜的日盲紫外光探测器采用如下方法制备而成,包括如下步骤:
步骤1:采用固相烧结法烧制制备Ga2O3陶瓷靶材
1.1称取10g Ga2O3粉末,加入15g去离子水,然后置于行星式球磨机中的球磨罐(球磨介质为氧化锆陶瓷球)中,球磨4h,得到分散均匀的粉末;
1.2将所述混合粉末溶液筛去锆球后置于真空干燥箱中,在110℃条件下真空干燥12h,取出后自然冷却至室温,加入1g去离子水,用碾钵充分研磨均匀后使用压片机在8M Pa压强下压成直径27.5mm、厚度2mm的圆形坯片;
1.3将所述坯片置于真空管式炉中的坩埚内,并在其周围放上成分相同的粉料(15.000g)。将管式炉升温至1300℃并保温3h,随后自然冷却至室温,得到本发明所述的Ga2O3陶瓷靶材。
步骤2利用Ga2O3陶瓷靶材制备日盲紫外光探测器
2.1以步骤1制得的Ga2O3陶瓷作为激光烧蚀靶材,与经过丙酮、无水乙醇和去离子水等分别超声清洗15min的蓝宝石衬底一起装入真空室,并抽真空至10-4Pa;
2.2待将衬底温度升温至700℃后,通入氧气,使得气压在整个薄膜沉积过程中维持在4Pa;然后开启衬底和靶台自转,设定激光器输出能量为300mJ/pulse,脉冲重复频率为5Hz,再开启激光开始沉积薄膜。沉积30min后关闭氧气与加热,最后将样品在真空中自然冷却至室温后取出;
2.3将得到的薄膜置于掩模板上并安装到真空蒸镀机的真空腔内,随后安装钨舟并放入蒸发源—金属Au 0.15g,关闭真空腔,开启机械泵、前级阀、分子泵,将真空度抽至10-4Pa以下,然后开启蒸发电源,缓慢地将电流提高,直到金属Au融化后保持电流恒定,打开挡板开始蒸镀。金属蒸发完毕后缓慢降低电流,关闭蒸发源,关闭分子泵、前级阀、机械泵,并打开空气阀,最后得到目标MSM日盲紫外光电探测器。
在本对比例制得的器件电极之间施加10V的电压并用单色光照射样品表面进行光电性能测试。结果表明该器件暗电流Idark=10.6pA,弛豫响应时间τd2为0.661s,峰值响应度Rmax=20.9A/W。可见该器件的暗电流明显要高于上述非晶(GaY)2O3基的探测器,且响应速度更慢,响应度更低。对比该实施例,体现出了本发明(GaY)2O3基探测器更为优异的日盲紫外光探测能力。测试结果分别见图6、图7和图8。

Claims (9)

1.一种基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器,其特征在于:所述探测器从下至上依次包括c面蓝宝石衬底、有源层、一对平行电极,其中:所述有源层为(GaY)2O3非晶薄膜。
2.根据权利要求1所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器,其特征在于:所述有源层的厚度为150~300nm。
3.根据权利要求1所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器,其特征在于:所述平行电极的厚度为30~70nm。
4.根据权利要求1所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器,其特征在于:所述平行电极的间距为10~100μm。
5.根据权利要求1所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器,其特征在于:所述平行电极材料为Pt、Au、Al或ITO中的任一种。
6.权利要求1所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器的制备方法,其特征在于:所述方法包括以下步骤:
(1)以c面蓝宝石作为薄膜生长的衬底,利用清洗液对所述衬底进行超声清洗后用氮气吹干,立即置于脉冲激光沉积系统的真空腔内;
(2)采用脉冲激光烧蚀沉积、磁控溅射或电子束蒸发方法在步骤(1)预处理后的c面蓝宝石衬底表面沉积形成非晶(GaY)2O3薄膜;
(3)利用蒸镀法、光刻法或溅射法,在所述(GaY)2O3三元合金薄膜表面制备平行电极,获得所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器。
7.根据权利要求6所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器的制备方法,其特征在于:步骤(2)中非晶(GaY)2O3薄膜具体是采用脉冲激光烧蚀沉积方法制得,具体工艺如下:
利用(GaY)2O3陶瓷作为靶材,控制衬底温度为300~800℃,脉冲激光能量为200~600mJ/Pulse,氧压为1~8Pa,在步骤(1)预处理后的c面蓝宝石衬底表面沉积形成非晶(GaY)2O3薄膜。
8.根据权利要求7所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器的制备方法,其特征在于:所述沉积时间为10~60min。
9.根据权利要求6所述的基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器的制备方法,其特征在于:步骤(2)中所述(GaY)2O3陶瓷靶材是采用固相烧结法制得,具体方法如下:
(a)按摩尔比为95:5~70:30的称量Ga2O3、Y2O3粉体,将粉料置于球磨罐中,加入超纯水后进行球磨,得到均匀混合粉末;
(b)将所述混合粉末溶液筛除锆球后置于真空干燥箱中,干燥后冷却至室温,然后碾碎,压成圆片;
(c)在空气氛围中,将步骤(b)所得圆片置于真空管式炉中,于1000~1500℃条件下烧制1~4h,得到本发明所述的(GaY)2O3陶瓷。
CN201910324339.XA 2019-04-22 2019-04-22 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法 Active CN110323291B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910324339.XA CN110323291B (zh) 2019-04-22 2019-04-22 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法
US16/855,931 US11201254B2 (en) 2019-04-22 2020-04-22 (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910324339.XA CN110323291B (zh) 2019-04-22 2019-04-22 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110323291A CN110323291A (zh) 2019-10-11
CN110323291B true CN110323291B (zh) 2020-07-10

Family

ID=68112939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910324339.XA Active CN110323291B (zh) 2019-04-22 2019-04-22 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110323291B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276573B (zh) * 2020-02-18 2021-03-23 湖北大学 基于非晶(GaLu)2O3薄膜的日盲紫外光探测器
CN112038427B (zh) * 2020-06-16 2022-06-28 杭州紫芯光电有限公司 氧化镓基异质结集成光电芯片、远程紫外阵列监测器及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013056803A (ja) * 2011-09-08 2013-03-28 Tamura Seisakusho Co Ltd β−Ga2O3系単結晶膜の製造方法
JP6376600B2 (ja) * 2015-03-20 2018-08-22 株式会社タムラ製作所 結晶積層構造体の製造方法
CN108396288B (zh) * 2018-03-30 2020-04-24 湖北大学 超宽禁带ZrxSn1-xO2合金半导体外延薄膜材料及其制备方法、应用和器件
CN108666395A (zh) * 2018-05-24 2018-10-16 北京邮电大学 基于非晶氧化镓薄膜的日盲紫外光电探测器及其制备方法
CN109585593B (zh) * 2018-12-06 2020-02-18 湖北大学 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法

Also Published As

Publication number Publication date
CN110323291A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
CN111293181B (zh) 一种MSM型α-Ga2O3基日盲紫外光探测器
US11201254B2 (en) (GaMe)2O3 ternary alloy material, its preparation method and application in solar-blind ultraviolet photodetector
CN106340551B (zh) 一种基于Mg:β-Ga2O3/NSTO异质结的零功耗日盲紫外探测器及其制备方法
CN110459640B (zh) 一种基于Cs3Cu2I5钙钛矿的自供能光电探测器及其制备方法
CN105655434B (zh) 一种基于氧化镓纳米线阵列的紫外探测器件及其制备方法
CN101807619B (zh) 一种透明柔性紫外探测器及其制备方法
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Mridha et al. Thickness dependent photoconducting properties of ZnO films
CN108396288B (zh) 超宽禁带ZrxSn1-xO2合金半导体外延薄膜材料及其制备方法、应用和器件
CN110323291B (zh) 基于(GaY)2O3非晶薄膜的高增益日盲紫外光探测器及其制备方法
CN107119258A (zh) p型掺杂氧化镓薄膜及其制备方法
CN110335914B (zh) 一种MSM型(GaMe)2O3三元合金日盲紫外光探测器及其制备方法
CN109065661A (zh) 基于铝酸镁衬底的氧化镓薄膜光电探测器及其制造方法
CN105806487B (zh) 基于表面等离激元增强Ga2O3薄膜的紫外火焰探测器及其制备方法
CN109585593B (zh) 一种基于BeZnOS四元合金的自发极化场增强型紫外光探测器及其制备方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
CN107845700A (zh) 一种高灵敏的ZnO/AlN核鞘纳米棒阵列紫外光探测器及其制备方法
CN111276573B (zh) 基于非晶(GaLu)2O3薄膜的日盲紫外光探测器
CN112201711B (zh) ZnO基同质结自驱动紫外光光电探测器及其制备方法
CN110265501B (zh) 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法
CN112086532B (zh) SnO2基同质结自驱动紫外光光电探测器及其制备方法
CN108546918B (zh) 一种超宽禁带氧化物合金半导体外延薄膜材料及其制备方法和应用
CN109616535B (zh) 基于m面BeMgZnO薄膜的自发极化增强型光电探测器及其制备方法
CN111926304B (zh) 一种vo2合金半导体薄膜及制备方法和应用
CN109585591B (zh) 非极性面型BeZnOS合金晶体基MSM紫外光探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant