CN110320678A - Terahertz wave modulator and preparation method thereof based on strontium titanates all dielectric Meta Materials - Google Patents
Terahertz wave modulator and preparation method thereof based on strontium titanates all dielectric Meta Materials Download PDFInfo
- Publication number
- CN110320678A CN110320678A CN201910697425.5A CN201910697425A CN110320678A CN 110320678 A CN110320678 A CN 110320678A CN 201910697425 A CN201910697425 A CN 201910697425A CN 110320678 A CN110320678 A CN 110320678A
- Authority
- CN
- China
- Prior art keywords
- layer
- strontium titanates
- strontium titanate
- sio
- strontium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/0009—Materials therefor
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0102—Constructional details, not otherwise provided for in this subclass
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本发明涉及基于钛酸锶全介质超材料的太赫兹波调制器及其制备方法,太赫兹波调制器包括:聚合物柔性衬底层;掺杂半导体外延层:生长在聚合物柔性衬底层表面;生长在半导体硅外延层上的SiO2绝缘‑钛酸锶微结构复合层:其包括位于下方的SiO2绝缘层,以及生长在SiO2绝缘层上的钛酸锶微结构层。与现有技术相比,本发明的制得的调制器的品质因子高、可调性能好和调制深度大,且制备工艺相对简单,适合于规模化生产应用。
The invention relates to a terahertz wave modulator based on a strontium titanate all-dielectric metamaterial and a preparation method thereof. The terahertz wave modulator includes: a polymer flexible substrate layer; a doped semiconductor epitaxial layer: grown on the surface of the polymer flexible substrate layer; SiO 2 insulating-strontium titanate microstructure composite layer grown on semiconductor silicon epitaxial layer: it includes SiO 2 insulating layer located below, and strontium titanate microstructure layer grown on SiO 2 insulating layer. Compared with the prior art, the prepared modulator of the present invention has high quality factor, good adjustability and large modulation depth, and the preparation process is relatively simple, which is suitable for large-scale production application.
Description
技术领域technical field
本发明属于半导体光电材料与器件技术领域,涉及一种基于钛酸锶全介质超材料的太赫兹波调制器及其制备方法。The invention belongs to the technical field of semiconductor photoelectric materials and devices, and relates to a terahertz wave modulator based on strontium titanate all-dielectric metamaterial and a preparation method thereof.
背景技术Background technique
太赫兹(terahertz,THz)波在电磁波谱中介于微波和红外辐射之间,处于宏观电磁理论向微观量子理论的过渡区域,具有频带宽、传输速率高、方向性强以及安全性高等诸多优势,在基础研究和实际应用中都具有广阔的前景。例如,相比于微波波段,THz波具有频率高、信号带宽大和分辨率高等特点,适合于超宽带、超高速的5G通信技术,0.12THz和0.22THz已被作为下一代地面无线通信和卫星间通信。调制技术及器件是THz通信系统的关键组成,发展室温工作、结构紧凑和性能卓越的调制器对于推动太赫兹技术的应用发展有重大意义。近年来人们对THz调制器件进行了广泛研究,但仍有很多技术瓶颈需要解决。例如量子阱调制器需在低温下工作,而液晶调制器对温度敏感、损耗较大、调制速度较慢(KHz),并且频率调节范围较小(液晶材料在THz波段的双折射率较低)。Terahertz (THz) waves are between microwave and infrared radiation in the electromagnetic spectrum, and are in the transition zone from macroscopic electromagnetic theory to microscopic quantum theory. It has broad prospects in both basic research and practical application. For example, compared with the microwave band, THz wave has the characteristics of high frequency, large signal bandwidth and high resolution, which is suitable for ultra-wideband and ultra-high-speed 5G communication technology. communication. Modulation technology and devices are the key components of THz communication systems. The development of modulators that work at room temperature, have a compact structure and excellent performance is of great significance to promote the application and development of THz technology. In recent years, people have conducted extensive research on THz modulation devices, but there are still many technical bottlenecks to be solved. For example, the quantum well modulator needs to work at low temperature, while the liquid crystal modulator is sensitive to temperature, has a large loss, a slow modulation speed (KHz), and a small frequency adjustment range (the liquid crystal material has a low birefringence in the THz band) .
超材料(Metamaterials,MMs)又称为“超结构”、“异向介质”或“特异电磁介质”,是通过人工加工或合成的具有周期或准周期结构及特异电磁性质的复合材料结构体系。MMs利用人造谐振胞元(unit cell,meta-molecular)形成新的电磁响应介质,具有天然材料所不具备的异常物理特性,如负磁导率、负电导率等。超材料的性质和功能主要取决于亚波长构造单元的几何形状及其空间分布,可以根据实际需求设计出不同与自然媒质物理性能的功能材料器件。超材料调制器件通常由金属材料构成,损耗主要来自构成材质的欧姆损耗和共振单元的辐射损耗;加之太赫兹波的波长较长,亚波长尺寸的结构单元很难对THz波进行有效束缚。因此,THz波段调制器的品质因子(Q-factor)值一般不高(<5),在很大程度上限制了THz超材料调制器在诸多领域方面的发展应用,如传感器的传感能力,滤波器的滤波特性以及分辨能力等。为满足在波形控制、生物样品分析和无线通讯等众多实际应用领域的需求,迫切需要研制出调制深度大、调制速度快和品质因子高的可调谐THz调制器件。Metamaterials (MMs), also known as "superstructure", "heterotropic medium" or "specific electromagnetic medium", are composite material structural systems with periodic or quasi-periodic structures and specific electromagnetic properties through artificial processing or synthesis. MMs use artificial resonant cells (unit cell, meta-molecular) to form a new electromagnetic response medium, which has abnormal physical properties that natural materials do not have, such as negative magnetic permeability and negative electrical conductivity. The properties and functions of metamaterials mainly depend on the geometry and spatial distribution of subwavelength structural units, and functional material devices with different physical properties from natural media can be designed according to actual needs. Metamaterial modulation devices are usually composed of metal materials, and the loss mainly comes from the ohmic loss of the material and the radiation loss of the resonant unit; in addition, the wavelength of the terahertz wave is long, and it is difficult for the sub-wavelength structural unit to effectively restrain the THz wave. Therefore, the quality factor (Q-factor) value of THz band modulators is generally not high (<5), which largely limits the development and application of THz metamaterial modulators in many fields, such as the sensing ability of sensors, Filtering characteristics and resolving power of the filter, etc. In order to meet the needs of many practical applications such as waveform control, biological sample analysis and wireless communication, it is urgent to develop tunable THz modulation devices with large modulation depth, fast modulation speed and high quality factor.
目前超材料大多采用金属材料进行设计和加工制备,虽然具有易于加工成形的优势,但存在高温烧蚀、高频损耗大和功率承载小等诸多问题。金属MMs主要依靠表面的传导电流实现对电磁波频率选择特性的调控,但根据麦克斯韦方程位移电流在入射波的作用下也具有类似功能作用。如果入射波长与结构尺寸相匹配,高介电常数(Si、Ge)的全介质超材料(all-dielectric metamaterials,ADMs)在外加电磁波的作用下可以激发起谐振很强的位移电流,形成所谓的Mie谐振。类似于金属超材料中的LC谐振和偶极子谐振,ADMs中的Mie谐振也可以产生等效的电偶极子和磁偶极子,并且可以避免金属的色散吸收和能量损耗,有助于品质因子的提高。全介质材料也较易加工出更厚的微结构,在传播方向上相位控制能力方面高于金属结构,容易实现2π的相位调制和高效率的波前控制。总之,相比于金属超材料结构,ADMs中的位移电流损耗很小,有利于获得窄带、高品质因子的共振谱线,还可以支持电偶极子、磁偶极子和多极子共振等多种共振模式,为THz可调谐器件的研制提供了良好的设计平台和灵活多样的调节方法。At present, most metamaterials are designed and processed by metal materials. Although they have the advantages of easy processing and forming, they have many problems such as high temperature ablation, high frequency loss and low power carrying capacity. Metal MMs mainly rely on the conduction current on the surface to control the frequency-selective characteristics of electromagnetic waves, but according to Maxwell's equations, the displacement current also has a similar function under the action of incident waves. If the incident wavelength matches the structure size, all-dielectric metamaterials (ADMs) with high dielectric constant (Si, Ge) can excite a strong resonance displacement current under the action of an external electromagnetic wave, forming the so-called Mie resonance. Similar to the LC resonance and dipole resonance in metallic metamaterials, the Mie resonance in ADMs can also generate equivalent electric dipoles and magnetic dipoles, and can avoid the dispersion absorption and energy loss of metals, which contributes to Improvement of the quality factor. The all-dielectric material is also easier to process a thicker microstructure, and its phase control ability in the propagation direction is higher than that of a metal structure, and it is easy to achieve 2π phase modulation and high-efficiency wavefront control. In conclusion, compared with metal metamaterial structures, the displacement current loss in ADMs is small, which is beneficial to obtain narrow-band, high-quality factor resonance lines, and can also support electric dipole, magnetic dipole, and multipole resonances, etc. A variety of resonance modes provide a good design platform and flexible and diverse adjustment methods for the development of THz tunable devices.
中国专利ZL201310547214.6公开了一种基于铁电薄膜的太赫兹调制器及其制作方法。所述太赫兹调制器包括:介质基板,其对太赫兹波具有较高的透过率;多个铁电薄膜单元,阵列排布在所述介质基板上;太赫兹滤波结构,设置在所述介质基板和所述多个铁电薄膜单元上。该专利采用整片钛酸锶作为调节介质,通过电控方法实现对入射THz的调制,当外加偏压在0-10V范围内调节的时候,幅值调制深度为21%,频率调制深度约为3.8%,幅值调制深度与频率调制深度均较浅。Chinese patent ZL201310547214.6 discloses a terahertz modulator based on a ferroelectric thin film and its fabrication method. The terahertz modulator includes: a dielectric substrate, which has a high transmittance to terahertz waves; a plurality of ferroelectric thin film units arranged in an array on the dielectric substrate; a terahertz filter structure, arranged on the on the dielectric substrate and the plurality of ferroelectric thin film units. This patent uses the whole piece of strontium titanate as the adjustment medium, and realizes the modulation of the incident THz through the electronic control method. When the external bias voltage is adjusted within the range of 0-10V, the amplitude modulation depth is 21%, and the frequency modulation depth is about 3.8%, amplitude modulation depth and frequency modulation depth are shallow.
发明内容Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于钛酸锶全介质超材料的太赫兹波调制器及其制备方法。The object of the present invention is to provide a terahertz wave modulator based on strontium titanate all-dielectric metamaterial and a preparation method thereof in order to overcome the above-mentioned defects in the prior art.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
本发明的技术方案之一在于提供了一种基于钛酸锶全介质超材料的太赫兹波调制器,包括:One of the technical solutions of the present invention is to provide a terahertz wave modulator based on strontium titanate all-dielectric metamaterial, including:
聚合物柔性衬底层;polymer flexible substrate layer;
掺杂半导体外延层:生长在聚合物柔性衬底层表面;Doped semiconductor epitaxial layer: grown on the surface of the polymer flexible substrate layer;
生长在半导体硅外延层上的SiO2绝缘-钛酸锶微结构复合层:其包括位于下方的SiO2绝缘层,以及生长在SiO2绝缘层上的钛酸锶微结构层。 SiO2 insulation-strontium titanate microstructure composite layer grown on semiconductor silicon epitaxial layer: it includes SiO2 insulation layer located below, and strontium titanate microstructure layer grown on SiO2 insulation layer.
进一步的,所述的聚合物柔性衬底层由塑料柔性衬底溶液制成,其厚度为1-50μm。更进一步的,所述的聚合物柔性衬底层的厚度为2-10μm。Further, the polymer flexible substrate layer is made of a plastic flexible substrate solution, and its thickness is 1-50 μm. Furthermore, the thickness of the polymer flexible substrate layer is 2-10 μm.
进一步的,所述的掺杂半导体外延层为Si层,其厚度为1-10μm,载流子掺杂浓度为1015-1018cm-3,电导率为1-10Ω·cm。更进一步的,所述的掺杂半导体外延层的厚度为1-5μm,掺杂浓度为1×1016-5×1016cm-3。Further, the doped semiconductor epitaxial layer is a Si layer with a thickness of 1-10 μm, a carrier doping concentration of 10 15 -10 18 cm -3 , and an electrical conductivity of 1-10Ω·cm. Furthermore, the thickness of the doped semiconductor epitaxial layer is 1-5 μm, and the doping concentration is 1×10 16 -5×10 16 cm -3 .
进一步的,所述的SiO2绝缘层的厚度为10-100nm,钛酸锶微结构层的厚度为1-5μm。更进一步的,厚度为10-50nm。Further, the thickness of the SiO 2 insulating layer is 10-100 nm, and the thickness of the strontium titanate microstructure layer is 1-5 μm. Furthermore, the thickness is 10-50nm.
进一步的,钛酸锶微结构层呈椭圆形。入射波极化方向沿着椭圆长半轴的方向。Further, the strontium titanate microstructure layer is oval. The polarization direction of the incident wave is along the direction of the semi-major axis of the ellipse.
进一步的,钛酸锶微结构层的制备方法可参照技术方案二中的溶胶凝胶法。Further, the preparation method of the strontium titanate microstructure layer can refer to the sol-gel method in the second technical solution.
本发明的技术方案之二在于提供了一种基于钛酸锶微结构的THz调制器的制备方法,包括以下步骤:The second technical solution of the present invention is to provide a method for preparing a THz modulator based on strontium titanate microstructure, comprising the following steps:
(1)制作聚合物柔性衬底层:(1) Make polymer flexible substrate layer:
以普通Si作为牺牲层,将含有塑料柔性衬底的溶液喷涂在牺牲层上,烘干固化后,得到聚合物柔性衬底层;Using ordinary Si as a sacrificial layer, spraying a solution containing a plastic flexible substrate on the sacrificial layer, drying and curing, to obtain a polymer flexible substrate layer;
(2)制作掺杂半导体外延层:(2) Making doped semiconductor epitaxial layer:
通过外延生长法在聚合物柔性衬底层上形成掺杂半导体外延层;Forming a doped semiconductor epitaxial layer on a polymer flexible substrate layer by an epitaxial growth method;
(3)制作SiO2绝缘-钛酸锶微结构复合层:(3) Making SiO 2 insulation-strontium titanate microstructure composite layer:
(3-1)在掺杂半导体外延层上原子层沉积SiO2,冲洗干净,制得SiO2绝缘层;(3-1) Atomic layer deposition of SiO 2 on the doped semiconductor epitaxial layer, rinsed to obtain a SiO 2 insulating layer;
(3-2)在SiO2绝缘层上沉积钛酸锶薄膜,然后加热退火完成结晶化过程,并消除缺陷;(3-2) Deposit a strontium titanate thin film on the SiO2 insulating layer, then heat and anneal to complete the crystallization process and eliminate defects;
(3-3)除去多余部分的钛酸锶,形成钛酸锶微结构层;(3-3) removing excess strontium titanate to form a strontium titanate microstructure layer;
(4)剥离牺牲层,即得到在聚合物柔性衬底层上的钛酸锶微结构THz调制器。(4) The sacrificial layer is peeled off, that is, the strontium titanate microstructure THz modulator on the polymer flexible substrate layer is obtained.
进一步的,步骤(1)中,烘干的工艺条件为:在150-200℃内干燥20-40min,固化的工艺条件为:在惰性气体保护下加热到300-400℃。Further, in step (1), the drying process conditions are: drying at 150-200° C. for 20-40 minutes, and the curing process conditions are: heating to 300-400° C. under the protection of an inert gas.
进一步的,步骤(3-1)中,原子层沉积SiO2的温度为180-220℃。Further, in step (3-1), the temperature of atomic layer deposition SiO 2 is 180-220°C.
进一步的,步骤(3-2)中:钛酸锶薄膜的退火温度为600-1200℃,时间为2-4小时。Further, in step (3-2): the annealing temperature of the strontium titanate thin film is 600-1200° C., and the time is 2-4 hours.
更进一步的,步骤(3-2)中:钛酸锶薄膜的退火温度为800-1000℃。Furthermore, in step (3-2): the annealing temperature of the strontium titanate thin film is 800-1000°C.
进一步的,钛酸锶薄膜的沉积方法为溶胶凝胶法或磁控溅射法,其中,溶胶凝胶法的过程具体为:Further, the deposition method of the strontium titanate thin film is a sol-gel method or a magnetron sputtering method, wherein the process of the sol-gel method is specifically:
(a)先取醋酸锶溶解于醋酸溶液中,并加热至沸腾,保温15分钟后冷却至室温,再加入溶解于2,4-戊二酮中的钛酸四丁酯溶液,搅拌均匀,接着加入醋酸调节,留存备用;(a) Dissolve strontium acetate in acetic acid solution, heat to boiling, keep warm for 15 minutes, then cool to room temperature, then add tetrabutyl titanate solution dissolved in 2,4-pentanedione, stir evenly, then add Adjust with acetic acid and save for later use;
(b)取步骤(a)配制的溶液并采用自旋喷涂方式沉积到掺杂半导体外延层表面,烘干、加热后,得到去除有机杂质的钛酸锶薄膜;(b) taking the solution prepared in step (a) and depositing it on the surface of the doped semiconductor epitaxial layer by spin spraying, drying and heating to obtain a strontium titanate film from which organic impurities have been removed;
更进一步的,溶胶凝胶法中,步骤(a)中,醋酸钡与钛酸四丁酯的添加量的摩尔比为1:1,醋酸锶和钛酸四丁酯的浓度均0.3M;Furthermore, in the sol-gel method, in step (a), the molar ratio of the added amount of barium acetate to tetrabutyl titanate is 1:1, and the concentrations of strontium acetate and tetrabutyl titanate are both 0.3M;
步骤(b)中,烘干的温度为250℃,烘干时间为5min,加热温度为500℃,加热时间为10min;In step (b), the drying temperature is 250°C, the drying time is 5 minutes, the heating temperature is 500°C, and the heating time is 10 minutes;
相比于金属中的传导电流,钛酸锶介质层中的位移电流较弱,因此需要较厚的尺度(金属层的厚度一般100纳米)来激发起明显的共振,但是如果钛酸锶厚度太大,不仅会带来制备上的困难,同时损耗也会增加,因此我们选取1-5μm。SiO2绝缘层厚度太大,对于透射型调制器不利,会降低透射率和调制性能。之所以选用椭圆型微结构,一方面是由于在实际加工过程中圆形微结构由于误差存在难以实现;另一方面真正起到主要作用的沿着入射波极化方向的微结构尺度,采用椭圆型微结构可以在同样样品面积的情况下获得更好的激发效果,共振谱线更加明显。Compared with the conduction current in the metal, the displacement current in the strontium titanate dielectric layer is weak, so a thicker scale (the thickness of the metal layer is generally 100 nanometers) is required to excite obvious resonance, but if the strontium titanate thickness is too large Large, it will not only bring difficulties in preparation, but also increase the loss, so we choose 1-5μm. If the thickness of the SiO2 insulating layer is too large, it is unfavorable for the transmissive modulator, and will reduce the transmittance and modulation performance. The reason why the elliptical microstructure is selected is that, on the one hand, it is difficult to realize the circular microstructure due to errors in the actual processing process; on the other hand, the microstructure scale along the polarization direction of the incident wave that really plays a major role uses The type microstructure can obtain better excitation effect under the same sample area, and the resonance line is more obvious.
本发明制得的基于钛酸锶椭圆型微结构的THz调制工作原理如下所示:The working principle of the THz modulation based on the strontium titanate elliptical microstructure obtained by the present invention is as follows:
入射THz波与钛酸锶椭圆型微结构调制器后,由于钛酸锶介电常数较高,形成较强的位移电流,产生明显的共振谱线。其中,钛酸锶微结构的光电特性可以通过温度改变加以调节。当温度较低,如70K,钛酸锶介电常数较高,共振响应较强;随着温度的升高,如300K,钛酸锶介电常数降低,共振响应降低,并且谱线的共振频率和幅值随着温度的改变而不同。After the incident THz wave and the strontium titanate elliptical microstructure modulator, due to the high dielectric constant of strontium titanate, a strong displacement current is formed and obvious resonance lines are generated. Among them, the photoelectric properties of the strontium titanate microstructure can be adjusted by changing the temperature. When the temperature is low, such as 70K, the dielectric constant of strontium titanate is high, and the resonance response is strong; as the temperature increases, such as 300K, the dielectric constant of strontium titanate decreases, the resonance response decreases, and the resonance frequency of the spectral line and amplitudes vary with temperature.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
(1)相比于传统的整片钛酸锶,本发明采用钛酸锶椭圆型微结构,当入射波的极化方向沿着长半轴的时候,可以形成的明显的共振谱线,通过适当调节温度,可以改变共振谱线的波形;(1) Compared with the traditional whole piece of strontium titanate, the present invention adopts strontium titanate elliptical microstructure, when the polarization direction of the incident wave is along the semi-major axis, it can form obvious resonance spectral lines, through Properly adjusting the temperature can change the waveform of the resonance line;
(2)本发明采用钛酸锶超材料结构,基于椭圆形这种非对称的微结构,通过改变入射波极化方向,可以很方便地实现对共振谱线波形和幅值的调节;(2) The present invention adopts the strontium titanate metamaterial structure, based on the asymmetric microstructure of ellipse, by changing the polarization direction of the incident wave, the adjustment of the resonance spectrum line waveform and amplitude can be easily realized;
(3)本发明还可以对柔性衬底的材料尺寸,背电极半导体层的厚度等进行选择优化,从而进一步获得较大的调制深度和较低的损耗;(3) The present invention can also select and optimize the material size of the flexible substrate, the thickness of the back electrode semiconductor layer, etc., thereby further obtaining larger modulation depth and lower loss;
(4)最后制得的调制器的品质因子高、可调性能好和调制深度大(幅值调制深度大于90%)。(4) The final modulator has high quality factor, good tunability and large modulation depth (amplitude modulation depth greater than 90%).
(5)制备工艺相对简单,适合于规模化生产应用。(5) The preparation process is relatively simple and suitable for large-scale production applications.
附图说明Description of drawings
图1为本发明基于铁电材料钛酸锶椭圆形微结构可调谐温控高品质因子THz调制器原理示意图;Figure 1 is a schematic diagram of the principle of the tunable temperature-controlled high-quality factor THz modulator based on the ferroelectric material strontium titanate elliptical microstructure of the present invention;
图2为本发明基于铁电材料钛酸锶椭圆形微结构的THz调制器结构示意图的俯视图;Fig. 2 is the top view of the structure diagram of the THz modulator based on the ferroelectric material strontium titanate elliptical microstructure of the present invention;
图3为本发明基于铁电材料钛酸锶椭圆形微结构调制器的温控原理示意图;3 is a schematic diagram of the temperature control principle of the present invention based on the ferroelectric material strontium titanate elliptical microstructure modulator;
图4为本发明的基于铁电材料钛酸锶椭圆形微结构THz调制器件的模拟结果图,温度对共振谱线的影响;Fig. 4 is the simulation result figure of the ferroelectric material strontium titanate elliptical microstructure THz modulation device based on the present invention, the influence of temperature on the resonant spectrum line;
图5为本发明的基于铁电材料钛酸锶椭圆形微结构THz调制器件的模拟结果图,入射波不同极化角度对共振谱线波形的影响;Fig. 5 is the simulation result diagram of the ferroelectric material strontium titanate elliptical microstructure THz modulation device based on the present invention, the influence of different polarization angles of the incident wave on the resonant spectral line waveform;
图6为基于钛酸锶椭圆型微结构的THz调制器件的共振谱线品质因子和优化因子的模拟结果;Fig. 6 is the simulation result of the resonance spectral line quality factor and optimization factor of the THz modulation device based on the strontium titanate elliptical microstructure;
图中,1-聚合物柔性衬底层,2-掺杂半导体外延层,3-SiO2绝缘层,4-钛酸锶微结构层。In the figure, 1-polymer flexible substrate layer, 2-doped semiconductor epitaxial layer, 3-SiO 2 insulating layer, 4-strontium titanate microstructure layer.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments. This embodiment is carried out on the premise of the technical solution of the present invention, and detailed implementation and specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
本发明的技术方案之一中,提出了一种基于钛酸锶全介质超材料的太赫兹波调制器,包括:In one of the technical solutions of the present invention, a terahertz wave modulator based on strontium titanate all-dielectric metamaterial is proposed, including:
聚合物柔性衬底层1;polymer flexible substrate layer 1;
掺杂半导体外延层2:生长在聚合物柔性衬底层表面,绝缘性较好,以达到降低损耗的目的;Doped semiconductor epitaxial layer 2: grown on the surface of the polymer flexible substrate layer, with better insulation to achieve the purpose of reducing loss;
生长在半导体硅外延层上的SiO2绝缘-钛酸锶微结构复合层:其包括位于下方的SiO2绝缘层3,以及生长在SiO2绝缘层3上的钛酸锶微结构层4。SiO 2 insulation-strontium titanate microstructure composite layer grown on semiconductor silicon epitaxial layer: it includes SiO 2 insulation layer 3 located below, and strontium titanate microstructure layer 4 grown on SiO 2 insulation layer 3 .
在本发明的一种具体的实施方式中,聚合物柔性衬底层由塑料柔性衬底溶液制成,其厚度为1-50μm,优选为2-10μm。In a specific embodiment of the present invention, the polymer flexible substrate layer is made of a plastic flexible substrate solution, and its thickness is 1-50 μm, preferably 2-10 μm.
在本发明的一种具体的实施方式中,所述的掺杂半导体外延层为Si层,其厚度为1-10μm,载流子掺杂浓度为1015-1018cm-3,电导率为1-10Ω·cm。更进一步的,所述的掺杂半导体外延层的厚度为1-5μm,掺杂浓度为1016-5×1016cm-3。In a specific embodiment of the present invention, the doped semiconductor epitaxial layer is a Si layer with a thickness of 1-10 μm, a carrier doping concentration of 10 15 -10 18 cm -3 , and an electrical conductivity of 1-10Ω·cm. Furthermore, the thickness of the doped semiconductor epitaxial layer is 1-5 μm, and the doping concentration is 10 16 -5×10 16 cm -3 .
在本发明的一种具体的实施方式中,所述的SiO2绝缘层的厚度为10-100nm,钛酸锶微结构层的厚度为1-5μm。更进一步的,厚度为10-50nm。In a specific embodiment of the present invention, the thickness of the SiO 2 insulating layer is 10-100 nm, and the thickness of the strontium titanate microstructure layer is 1-5 μm. Furthermore, the thickness is 10-50nm.
在本发明的一种具体的实施方式中,钛酸锶微结构层呈椭圆形。In a specific embodiment of the present invention, the strontium titanate microstructure layer is oval.
在本发明的一种具体的实施方式中,钛酸锶微结构层的制备方法可参照以下的溶胶凝胶法。In a specific embodiment of the present invention, the preparation method of the strontium titanate microstructure layer can refer to the following sol-gel method.
本发明的技术方案之二中,提供了一种基于钛酸锶微结构的THz调制器的制备方法,包括以下步骤:In the second technical solution of the present invention, a method for preparing a THz modulator based on a strontium titanate microstructure is provided, comprising the following steps:
(1)制作聚合物柔性衬底层:(1) Make polymer flexible substrate layer:
以普通Si作为牺牲层,将含有塑料柔性衬底的溶液喷涂在牺牲层上,烘干固化后,得到聚合物柔性衬底层;Using ordinary Si as a sacrificial layer, spraying a solution containing a plastic flexible substrate on the sacrificial layer, drying and curing, to obtain a polymer flexible substrate layer;
(2)制作掺杂半导体外延层:(2) Making doped semiconductor epitaxial layer:
通过外延生长法在聚合物柔性衬底层上形成掺杂半导体外延层;Forming a doped semiconductor epitaxial layer on a polymer flexible substrate layer by an epitaxial growth method;
(3)制作SiO2绝缘-钛酸锶微结构复合层:(3) Making SiO 2 insulation-strontium titanate microstructure composite layer:
(3-1)在掺杂半导体外延层上原子层沉积SiO2,冲洗干净,制得SiO2绝缘层;(3-1) Atomic layer deposition of SiO 2 on the doped semiconductor epitaxial layer, rinsed to obtain a SiO 2 insulating layer;
(3-2)在SiO2绝缘层上沉积钛酸锶薄膜,然后加热退火完成结晶化过程,并消除缺陷;(3-2) Deposit a strontium titanate thin film on the SiO2 insulating layer, then heat and anneal to complete the crystallization process and eliminate defects;
(3-3)除去多余部分的钛酸锶,形成钛酸锶微结构层;(3-3) removing excess strontium titanate to form a strontium titanate microstructure layer;
(4)剥离牺牲层,即得到在聚合物柔性衬底层上的钛酸锶微结构THz调制器。(4) The sacrificial layer is peeled off, that is, the strontium titanate microstructure THz modulator on the polymer flexible substrate layer is obtained.
在其中一个具体的实施方式中,步骤(1)中,烘干的工艺条件为:在150-200℃内干燥20-40min,固化的工艺条件为:在惰性气体保护下加热到300-400℃。In one specific embodiment, in step (1), the drying process conditions are: drying at 150-200°C for 20-40min, and the curing process conditions are: heating to 300-400°C under the protection of an inert gas .
在其中另一个具体的实施方式中,步骤(3-1)中,原子层沉积SiO2的温度为180-220℃。In another specific embodiment, in step (3-1), the temperature of atomic layer deposition SiO 2 is 180-220°C.
在其中另一个具体的实施方式中,步骤(3-2)中:钛酸锶薄膜的退火温度为600-1200℃,时间为2-4小时。In another specific embodiment, in step (3-2): the annealing temperature of the strontium titanate thin film is 600-1200° C., and the time is 2-4 hours.
更进一步的,步骤(3-2)中:钛酸锶薄膜的退火温度为800-1000℃。Furthermore, in step (3-2): the annealing temperature of the strontium titanate thin film is 800-1000°C.
在其中另一个具体的实施方式中,钛酸锶薄膜的沉积方法为溶胶凝胶法或磁控溅射法,其中,溶胶凝胶法的过程具体为:In another specific embodiment wherein, the deposition method of the strontium titanate thin film is a sol-gel method or a magnetron sputtering method, wherein the process of the sol-gel method is specifically:
(a)先取醋酸锶溶解于醋酸溶液中,并加热至沸腾,保温15分钟后冷却至室温,再加入溶解于2,4-戊二酮中的钛酸四丁酯溶液,搅拌均匀,接着加入醋酸调节至(醋酸锶和钛酸四丁酯的总浓度为0.3M,留存备用;(a) Dissolve strontium acetate in acetic acid solution, heat to boiling, keep warm for 15 minutes, then cool to room temperature, then add tetrabutyl titanate solution dissolved in 2,4-pentanedione, stir evenly, then add Acetic acid is adjusted to (the total concentration of strontium acetate and tetrabutyl titanate is 0.3M, keep for later use;
(b)取步骤(a)配制的溶液并采用自旋喷涂方式沉积到掺杂半导体外延层表面,烘干、加热后,得到去除有机杂质的钛酸锶薄膜;(b) taking the solution prepared in step (a) and depositing it on the surface of the doped semiconductor epitaxial layer by spin spraying, drying and heating to obtain a strontium titanate film from which organic impurities have been removed;
磁控溅射法的具体过程为:以SrTiO3作为靶材进行磁控溅射,溅射时通入惰性气体Ar和O2所组成的混合气体。The specific process of the magnetron sputtering method is as follows: SrTiO3 is used as the target material for magnetron sputtering, and a mixed gas composed of inert gas Ar and O2 is introduced into the sputtering process.
更进一步的,溶胶凝胶法中,步骤(a)中,醋酸钡与钛酸四丁酯的添加量之比为(请补充具体的添加量范围,并明确是质量比、摩尔比还是其他比),Furthermore, in the sol-gel method, in step (a), the ratio of the added amount of barium acetate to tetrabutyl titanate is (please add the specific range of added amount, and specify whether it is mass ratio, molar ratio or other ratio ),
步骤(b)中,烘干的温度为250℃,烘干时间为5min,加热温度为500℃,加热时间为10min。In step (b), the drying temperature is 250° C., the drying time is 5 minutes, the heating temperature is 500° C., and the heating time is 10 minutes.
以下结合具体实施例来对本发明上述实施方式进行更进一步详细的说明。The above-mentioned implementation manners of the present invention will be further described in detail below in conjunction with specific examples.
实施例1:Example 1:
一种基于钛酸锶基椭圆型微结构的THz调制器,包括:A THz modulator based on strontium titanate-based elliptical microstructure, including:
聚合物柔性衬底层;polymer flexible substrate layer;
半导体外延层:通过外延生长方法形成的掺杂半导体Si层,绝缘性较好,以达到降低损耗的目的;Semiconductor epitaxial layer: a doped semiconductor Si layer formed by epitaxial growth method, with good insulation to achieve the purpose of reducing loss;
SiO2绝缘-钛酸锶微结构复合层:生长在半导体Si外延层上,由一个SiO2绝缘-钛酸锶微结构层的结构单元组成,其具体包括位于下方的SiO2绝缘层,以及生长在SiO2绝缘层上的钛酸锶微结构层。SiO 2 insulation-strontium titanate microstructure composite layer: grown on the semiconductor Si epitaxial layer, composed of a structural unit of SiO 2 insulation-strontium titanate microstructure layer, which specifically includes the SiO 2 insulation layer located below, and the growth Strontium titanate microstructure layer on SiO2 insulating layer.
本实施例中,聚合物柔性衬底层由塑料柔性衬底溶液,例如聚亚酰胺制成,其厚度为50μm;掺杂半导体外延层为掺杂Si层,其厚度为10μm,载流子掺杂浓度为1018cm-3,电导率为10Ω·cm,掺杂Si层中的载流子浓度可以通过扩散和离子注入等常见半导体掺杂方法实现并确定。In this embodiment, the polymer flexible substrate layer is made of a plastic flexible substrate solution, such as polyimide, and its thickness is 50 μm; the doped semiconductor epitaxial layer is a doped Si layer, its thickness is 10 μm, and the carrier doped The concentration is 10 18 cm -3 , and the conductivity is 10Ω·cm. The carrier concentration in the doped Si layer can be realized and determined by common semiconductor doping methods such as diffusion and ion implantation.
SiO2绝缘-钛酸锶微结构复合层由SiO2绝缘-钛酸锶椭圆型微结构层构成。此结构的SiO2绝缘-有源区结构复合层可提高调制波形的调制深度和速度。SiO2绝缘层的厚度为30nm左右,钛酸锶微结构层呈椭圆形,其厚度为2-5μm左右。The SiO 2 insulation-strontium titanate microstructure composite layer is composed of the SiO 2 insulation-strontium titanate elliptical microstructure layer. The SiO2 insulation-active region structure composite layer of this structure can improve the modulation depth and speed of the modulation waveform. The thickness of the SiO 2 insulating layer is about 30nm, and the strontium titanate microstructure layer is oval, and its thickness is about 2-5μm.
实施例2Example 2
本实施例提供了一种钛酸锶基椭圆形微结构的高品质因子THz调制器的制备工艺,具体包括以下步骤:This embodiment provides a preparation process of a high quality factor THz modulator with a strontium titanate-based elliptical microstructure, which specifically includes the following steps:
(1)制作聚合物柔性衬底层:以普通Si片作为牺牲层,通过自旋喷涂(spincoated)的方法将含有塑料聚合物柔性衬底层的溶液喷涂在上面,然后在烘箱中烘干30分钟左右,温度范围在150-200℃左右(优选为180℃左右),再采用高温炉在惰性气体(或者N2)的保护气氛内加热至300-400℃(优选350℃),形成均匀的聚合物柔性衬底层;(1) Fabrication of polymer flexible substrate layer: ordinary Si sheet is used as a sacrificial layer, and the solution containing plastic polymer flexible substrate layer is sprayed on it by spincoating method, and then dried in an oven for about 30 minutes , the temperature range is about 150-200°C (preferably about 180°C), and then heated to 300-400°C (preferably 350°C) in a high-temperature furnace in a protective atmosphere of inert gas (or N 2 ) to form a uniform polymer Flexible substrate layer;
(2)制作掺杂半导体外延层:通过外延生长方法形成1-10μm厚度(可以为1μm、5μm或10μm,本实施例优选为5μm左右)的半导体Si外延层,掺杂浓度为3×1016cm-3,Si层电导率为1-10Ω·cm,绝缘性较好,以达到降低损耗的目的;(2) Making a doped semiconductor epitaxial layer: Form a semiconductor Si epitaxial layer with a thickness of 1-10 μm (which can be 1 μm, 5 μm or 10 μm, preferably about 5 μm in this embodiment) by epitaxial growth method, with a doping concentration of 3×10 16 cm -3 , the electrical conductivity of the Si layer is 1-10Ω·cm, and the insulation is good to achieve the purpose of reducing loss;
(3)采用原子层沉积技术在Si缓冲层上形成SiO2绝缘层,最佳厚度约为60-80nm,形成温度为200℃,然后用蒸馏水冲洗干净;(3) Form a SiO 2 insulating layer on the Si buffer layer by atomic layer deposition technology, the optimum thickness is about 60-80nm, the forming temperature is 200°C, and then rinse with distilled water;
(4)通过溶胶-凝胶法制备钛酸锶溶液:将醋酸锶(Sr(CH3COO)2)溶解于醋酸溶液中,控制其摩尔浓度为0.6mol/L,并加热至沸腾,保温15分钟后冷却至室温;(4) Prepare strontium titanate solution by sol-gel method: dissolve strontium acetate (Sr(CH 3 COO) 2 ) in acetic acid solution, control its molar concentration to 0.6mol/L, heat to boiling, and keep warm for 15 Cool to room temperature after minutes;
(5)将钛酸四丁酯(Ti(OC4H9)4)溶解于2,4-戊二酮(CH3COCH2COCH3)溶液中,控制其摩尔浓度为0.6mol/L,加入到步骤(4)中的溶液中,发生反应得到钛酸锶溶液(即STO溶液);(5) Dissolve tetrabutyl titanate (Ti(OC 4 H 9 ) 4 ) in 2,4-pentanedione (CH 3 COCH 2 COCH 3 ) solution, control its molar concentration to 0.6mol/L, add In the solution in step (4), reaction occurs to obtain strontium titanate solution (i.e. STO solution);
(6)通过自旋喷涂的方法制备钛酸锶薄膜:向上述步骤(5)中得到的STO溶液中加入醋酸,直至溶质醋酸锶和钛酸四丁酯被稀释至0.3mol/L,通过自旋喷涂的方法沉积在外延Si表面,自旋喷涂的转速为3000rpm,时间为20s;(6) Preparation of strontium titanate thin film by spin spraying method: add acetic acid to the STO solution obtained in the above step (5) until the solute strontium acetate and tetrabutyl titanate are diluted to 0.3mol/L, The method of spin spraying is deposited on the epitaxial Si surface, the spin spraying speed is 3000rpm, and the time is 20s;
(7)将步骤(6)得到的STO薄膜烘干,烘干温度为250℃,时间5分钟;加热至500℃并保温10分钟,以去除残余有机质。(7) Dry the STO film obtained in step (6) at 250° C. for 5 minutes; heat to 500° C. and hold for 10 minutes to remove residual organic matter.
(8)重复上述(6)和(7)两个过程,得到STO薄膜,直至薄膜厚度约为2-5μm。(8) Repeat the above two processes (6) and (7) to obtain the STO film until the film thickness is about 2-5 μm.
(9)将STO薄膜加热退火,温度为600-1200℃,并保温3-5个小时,完成STO的结晶化过程,同时降低薄膜的内部缺陷。(9) Heating and annealing the STO film at a temperature of 600-1200° C. and keeping it warm for 3-5 hours to complete the crystallization process of the STO and reduce the internal defects of the film.
(10)采用光刻或者等离子体刻蚀等工艺方法,去除多余的钛酸锶,得到椭圆型的钛酸锶微结构层。(10) Removing excess strontium titanate by photolithography or plasma etching to obtain an elliptical strontium titanate microstructure layer.
(11)采用蒸馏水将上述工艺过程得到的太赫兹钛酸锶微结构调制器清洗干净,3-5遍以上,然后在保护性气氛下(Ar或者N2)内吹洗干净烘干。(11) Clean the terahertz strontium titanate microstructure modulator obtained in the above process with distilled water for more than 3-5 times, and then blow it and dry it in a protective atmosphere (Ar or N 2 ).
(12)将基于钛酸锶椭圆型微结构太赫兹调制器从Si衬底上剥离,得到在聚合物柔性衬底层上的钛酸锶薄膜可调谐器件。(12) The terahertz modulator based on the strontium titanate elliptical microstructure was peeled off from the Si substrate to obtain a strontium titanate thin film tunable device on the polymer flexible substrate layer.
图1为本发明基于钛酸锶椭圆形微结构的THz调制器的原理示意图,入射THz波与钛酸锶椭圆形微结构单元调制器发生相互作用,形成强烈的共振谱线。其中,钛酸锶微结构层4作为可调谐介质层,其介电常数可以通过改变温度加以调节。如图1所示,当温度较低时,如70K,钛酸锶具有较高的介电常数,由位移电流产生的钛酸锶层共振特性显著;反之,当温度较高,钛酸锶介电常数较低,共振特性较弱,同时共振谷的位置也会随着温度的改变而不同。Figure 1 is a schematic diagram of the principle of the THz modulator based on the strontium titanate elliptical microstructure of the present invention. The incident THz wave interacts with the strontium titanate elliptical microstructure unit modulator to form strong resonance lines. Among them, the strontium titanate microstructure layer 4 is used as a tunable dielectric layer, and its dielectric constant can be adjusted by changing the temperature. As shown in Figure 1, when the temperature is low, such as 70K, strontium titanate has a high dielectric constant, and the resonance characteristics of the strontium titanate layer generated by the displacement current are remarkable; on the contrary, when the temperature is high, the strontium titanate dielectric constant The electrical constant is low, the resonance characteristics are weak, and the position of the resonance valley will also vary with temperature.
图2为本发明基于钛酸锶椭圆形微结构THz调制器结构示意图的俯视图,其中的ax和ay为钛酸锶椭圆形微结构的短半轴和长半轴,px和py为钛酸锶椭圆形微结构的沿着x方向和y方向的周期长度,Hx表示入射波的磁场方向为x方向,Ey为入射波的电场方向为y方向。Fig. 2 is the top view of the THz modulator structure schematic diagram based on the strontium titanate elliptical microstructure of the present invention, wherein a x and a y are the semi-minor axis and the semi-major axis of the strontium titanate elliptical microstructure, p x and py is the period length of the strontium titanate elliptical microstructure along the x direction and the y direction, Hx indicates that the magnetic field direction of the incident wave is the x direction, and Ey is the electric field direction of the incident wave is the y direction.
图3为本发明钛酸锶椭圆形型微结构太赫兹调制器的温控原理示意图,加热器放置在钛酸锶表面。外接电路闭合开关,加热指示灯亮起,钛酸锶微结构在加热器下温度得以改变。通过滑动变阻器和变阻箱调节电路中总电阻,从而改变电路中的电流大小,实现不同功率下的加热工作。同时,通过温度显示器可以监控钛酸锶的实时温度值。例如,当电阻较小时(如R1),电路中电流较大,加热功率较大,此时钛酸锶温度较高(如T1),介电常数较低ε1;反之,当电阻较大时(如R2),电路中电流较小,加热功率较小,此时钛酸锶温度较低(如T2),介电常数较低ε2。3 is a schematic diagram of the temperature control principle of the strontium titanate elliptical microstructure terahertz modulator of the present invention, and the heater is placed on the surface of the strontium titanate. The external circuit closes the switch, the heating indicator lights up, and the temperature of the strontium titanate microstructure is changed under the heater. The total resistance in the circuit is adjusted through the sliding rheostat and the rheostat box, thereby changing the current in the circuit and realizing heating work under different powers. At the same time, the real-time temperature value of strontium titanate can be monitored through the temperature display. For example, when the resistance is small (such as R 1 ), the current in the circuit is large and the heating power is large, at this time the temperature of strontium titanate is high (such as T 1 ), and the dielectric constant ε 1 is low; on the contrary, when the resistance is high When it is large (such as R 2 ), the current in the circuit is small, and the heating power is small. At this time, the temperature of strontium titanate is low (such as T 2 ), and the dielectric constant ε 2 is low.
图4为本发明实施例2制得的基于钛酸锶椭圆型微结构的THz调制器件的模拟结果;图中椭圆型微结构的短半轴和长半轴的长度分别为15μm和60μm。当温度在70-300K之间调节的情况下(图中,沿初始位置往右方向,五条曲线分别代表温度为70K-300K),共振谷的频率调制深度为21.9%,幅值调制深度为95.6%,其中,幅值调制深度的定义为(Tmax-Tmin)/Tmax,Tmax和Tmin分别为透射谱线共振谷值的最大值和最小值。频率调制深度的定义为:(fmax-fmin)/fmax,fmax和fmin分别为透射谱线共振频率的最大值和最小值。Fig. 4 is the simulation result of the THz modulation device based on the strontium titanate elliptical microstructure prepared in Example 2 of the present invention; in the figure, the lengths of the semi-minor axis and the semi-major axis of the elliptical microstructure are 15 μm and 60 μm, respectively. When the temperature is adjusted between 70K and 300K (in the figure, along the initial position to the right, the five curves respectively represent the temperature is 70K-300K), the frequency modulation depth of the resonance valley is 21.9%, and the amplitude modulation depth is 95.6 %, where the amplitude modulation depth is defined as (T max -T min )/T max , where T max and T min are the maximum and minimum values of the resonance valley of the transmission spectrum, respectively. The frequency modulation depth is defined as: (f max -f min )/f max , where f max and f min are the maximum and minimum values of the resonant frequency of the transmission line, respectively.
图5为本发明实施例2制得的基于钛酸锶椭圆型微结构的THz调制器件的共振谱线的模拟结果;图中椭圆型微结构的短半轴和长半轴的长度分别为15μm和60μm。当如图5框内小图所示,θ为入射波波矢k0相对于表面法线方向的角度(图中,沿初始位置往右方向,五条曲线分别代表角度θ为0-89degree),φ为入射波极化方向相对于y轴的夹角。在垂直入射的情况下,如果极化角度φ在0-90度之间变化,共振谷值的幅值调制深度可以达到89.2%。从图5可以看出,改变入射波角度的时候,共振频率变化不大,但是可以对波形产生很大影响,幅值调制深度可以达到89%,在不改变样品结构参数的情形下,通过改变入射波的极化方向可以实现对入射波波形调控。Fig. 5 is the simulation result of the resonant spectrum line of the THz modulation device based on the strontium titanate elliptical microstructure obtained in Example 2 of the present invention; the lengths of the semi-minor axis and the semi-major axis of the elliptical microstructure in the figure are respectively 15 μm and 60 μm. As shown in the small picture in the box in Figure 5, θ is the angle of the incident wave vector k 0 relative to the surface normal direction (in the figure, along the initial position to the right, the five curves represent the angle θ is 0-89degree), φ is the angle between the incident wave polarization direction and the y-axis. In the case of normal incidence, if the polarization angle φ varies between 0-90 degrees, the amplitude modulation depth of the resonance valley can reach 89.2%. It can be seen from Figure 5 that when the incident wave angle is changed, the resonance frequency does not change much, but it can have a great impact on the waveform, and the amplitude modulation depth can reach 89%. Without changing the structural parameters of the sample, by changing The polarization direction of the incident wave can realize the regulation of the incident wave waveform.
图6为基于钛酸锶椭圆型微结构的THz调制器件的共振谱线品质因子和优化因子的模拟结果;图中椭圆型微结构的短半轴和长半轴的长度分别为15μm和60μm。当如图5框内小图所示,θ为入射波波矢k0相对于表面法线方向的角度(图中,沿初始位置往右方向,五条曲线分别代表角度φ为0-89度),φ为入射波极化方向相对于y轴的夹角。在垂直入射的情况下,当极化角度φ分别为0度,30度,60度和75度的情况下,共振谱线的品质因子分别为5.575,6.514,13.36和20.39,如图6所示,品质因子Q的定义为:Q=fres/FWHW,fres为共振频率,FWHW(full width at half maximum)为谱线的半高宽。Figure 6 shows the simulation results of the resonance line quality factor and optimization factor of the THz modulation device based on the strontium titanate elliptical microstructure; the lengths of the semi-minor axis and the semi-major axis of the elliptical microstructure in the figure are 15 μm and 60 μm, respectively. As shown in the small picture in the box in Figure 5, θ is the angle of the incident wave vector k 0 relative to the surface normal direction (in the figure, along the initial position to the right, the five curves represent the angle φ is 0-89 degrees) , φ is the angle between the incident wave polarization direction and the y-axis. In the case of normal incidence, when the polarization angle φ is 0 degrees, 30 degrees, 60 degrees and 75 degrees, the quality factors of the resonance lines are 5.575, 6.514, 13.36 and 20.39, respectively, as shown in Figure 6 , the quality factor Q is defined as: Q=fres/ FWHW , where fres is the resonant frequency, and FWHW (full width at half maximum) is the full width at half maximum of the spectral line.
上书实施例中,各结构层以及工艺条件均可以在以下范围内任意调整,这些都不影响本发明的基于钛酸锶全介质超材料的太赫兹波调制器的获得,具体为:In the above embodiment, each structural layer and process conditions can be adjusted arbitrarily within the following range, which will not affect the acquisition of the terahertz wave modulator based on strontium titanate all-dielectric metamaterial of the present invention, specifically:
塑料柔性衬底溶液烘干的工艺条件为可以在以下范围内任意选择:在150-200℃内干燥20-40min;同样,固化的工艺条件也可以在以下范围内任意选择:在惰性气体保护下加热到300-400℃;The process conditions for plastic flexible substrate solution drying can be arbitrarily selected within the following range: drying at 150-200°C for 20-40 minutes; similarly, the curing process conditions can also be arbitrarily selected within the following range: under the protection of inert gas Heating to 300-400°C;
原子层沉积SiO2的温度可以分别替换为180℃、220℃等。The temperature of ALD SiO2 can be replaced by 180°C, 220°C, etc., respectively.
钛酸锶薄膜的退火温度可以在以下范围内任意选择:600-1200℃(如600、800、900、1000、1200),优选在以下范围内任意选择:800-1000℃,保温时间为2-4个小时左右。The annealing temperature of the strontium titanate film can be arbitrarily selected in the following range: 600-1200 ℃ (such as 600, 800, 900, 1000, 1200), preferably arbitrarily selected in the following range: 800-1000 ℃, the holding time is 2- 4 hours or so.
此外,最后得到的聚合物柔性衬底层厚度可以在以下范围内任意选择1-50μm;In addition, the thickness of the finally obtained polymer flexible substrate layer can be arbitrarily selected within the following range of 1-50 μm;
掺杂半导体外延层可以在以下规格范围内任意选择:厚度1-10μm,载流子掺杂浓度为1015-1018cm-3,电导率为1-10Ω·cm。The doped semiconductor epitaxial layer can be arbitrarily selected within the following specifications: thickness 1-10 μm, carrier doping concentration 10 15 -10 18 cm -3 , conductivity 1-10Ω·cm.
SiO2绝缘层的厚度可以在以下规格范围内任意选择:10-100nm,钛酸锶微结构层的厚度可以在以下规格范围内任意选择:1-5μm。The thickness of the SiO 2 insulating layer can be arbitrarily selected within the following specification range: 10-100nm, and the thickness of the strontium titanate microstructure layer can be arbitrarily selected within the following specification range: 1-5μm.
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above descriptions of the embodiments are for those of ordinary skill in the art to understand and use the invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative efforts. Therefore, the present invention is not limited to the above-mentioned embodiments. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910697425.5A CN110320678B (en) | 2019-07-30 | 2019-07-30 | Terahertz wave modulator based on strontium titanate all-dielectric metamaterial and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910697425.5A CN110320678B (en) | 2019-07-30 | 2019-07-30 | Terahertz wave modulator based on strontium titanate all-dielectric metamaterial and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110320678A true CN110320678A (en) | 2019-10-11 |
CN110320678B CN110320678B (en) | 2022-12-16 |
Family
ID=68124982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910697425.5A Active CN110320678B (en) | 2019-07-30 | 2019-07-30 | Terahertz wave modulator based on strontium titanate all-dielectric metamaterial and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110320678B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111736239A (en) * | 2020-07-21 | 2020-10-02 | 广州大学 | Flexible metamaterials with tunable terahertz wave polarization rotation and methods of using the same |
CN111796437A (en) * | 2020-07-21 | 2020-10-20 | 上海师范大学 | A method for electronically controlled modulation of terahertz waves based on Dirac semi-metallic microstructures |
CN112082968A (en) * | 2020-09-14 | 2020-12-15 | 西南科技大学 | A terahertz microfluidic sensor |
CN113985500A (en) * | 2021-09-27 | 2022-01-28 | 上海师范大学 | Adjustable terahertz wave metamaterial absorber based on strontium titanate spherical shell structure |
CN116482051A (en) * | 2023-06-14 | 2023-07-25 | 有研工程技术研究院有限公司 | Infrared frequency band biochemical sensor and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423243A (en) * | 2008-11-25 | 2009-05-06 | 北京科技大学 | La doped SrTiO3 base oxide pyroelectric material and preparation method |
CN102509743A (en) * | 2012-01-04 | 2012-06-20 | 吉林大学 | Ultraviolet detector based on titanium dioxide/strontium titanate heterojunction and preparation method |
CN106449381A (en) * | 2016-08-11 | 2017-02-22 | 上海师范大学 | THz modulator based on graphene-metal composite microstructure and preparation thereof |
CN106935398A (en) * | 2017-03-24 | 2017-07-07 | 同济大学 | A kind of bismuth strontium titanate doping thin film capacitor and preparation method thereof |
CN108539423A (en) * | 2018-03-21 | 2018-09-14 | 上海师范大学 | The asymmetric Π types structure THz modulators of graphene-based complementary type and preparation method |
CN109443541A (en) * | 2018-10-31 | 2019-03-08 | 北京邮电大学 | A kind of Terahertz grating temperature sensor and temperature checking method |
CN109683213A (en) * | 2019-02-28 | 2019-04-26 | 北京邮电大学 | The super surface of indium stibide film Terahertz and its thermal tuning method, preparation method |
-
2019
- 2019-07-30 CN CN201910697425.5A patent/CN110320678B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101423243A (en) * | 2008-11-25 | 2009-05-06 | 北京科技大学 | La doped SrTiO3 base oxide pyroelectric material and preparation method |
CN102509743A (en) * | 2012-01-04 | 2012-06-20 | 吉林大学 | Ultraviolet detector based on titanium dioxide/strontium titanate heterojunction and preparation method |
CN106449381A (en) * | 2016-08-11 | 2017-02-22 | 上海师范大学 | THz modulator based on graphene-metal composite microstructure and preparation thereof |
CN106935398A (en) * | 2017-03-24 | 2017-07-07 | 同济大学 | A kind of bismuth strontium titanate doping thin film capacitor and preparation method thereof |
CN108539423A (en) * | 2018-03-21 | 2018-09-14 | 上海师范大学 | The asymmetric Π types structure THz modulators of graphene-based complementary type and preparation method |
CN109443541A (en) * | 2018-10-31 | 2019-03-08 | 北京邮电大学 | A kind of Terahertz grating temperature sensor and temperature checking method |
CN109683213A (en) * | 2019-02-28 | 2019-04-26 | 北京邮电大学 | The super surface of indium stibide film Terahertz and its thermal tuning method, preparation method |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111736239A (en) * | 2020-07-21 | 2020-10-02 | 广州大学 | Flexible metamaterials with tunable terahertz wave polarization rotation and methods of using the same |
CN111796437A (en) * | 2020-07-21 | 2020-10-20 | 上海师范大学 | A method for electronically controlled modulation of terahertz waves based on Dirac semi-metallic microstructures |
CN111736239B (en) * | 2020-07-21 | 2021-08-24 | 广州大学 | Flexible metamaterials with tunable terahertz wave polarization rotation and methods of using the same |
CN112082968A (en) * | 2020-09-14 | 2020-12-15 | 西南科技大学 | A terahertz microfluidic sensor |
CN113985500A (en) * | 2021-09-27 | 2022-01-28 | 上海师范大学 | Adjustable terahertz wave metamaterial absorber based on strontium titanate spherical shell structure |
CN113985500B (en) * | 2021-09-27 | 2022-10-28 | 上海师范大学 | Adjustable terahertz wave metamaterial absorber based on strontium titanate spherical shell structure |
CN116482051A (en) * | 2023-06-14 | 2023-07-25 | 有研工程技术研究院有限公司 | Infrared frequency band biochemical sensor and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110320678B (en) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110320678B (en) | Terahertz wave modulator based on strontium titanate all-dielectric metamaterial and preparation method thereof | |
CN108539423B (en) | Graphene-based complementary asymmetric Π-structure THz modulator and preparation method | |
Niu et al. | Switchable bi-functional metamaterial based on vanadium dioxide for broadband absorption and broadband polarization in terahertz band | |
Shi et al. | Enhanced light absorption of thin perovskite solar cells using textured substrates | |
Shi et al. | Giant phase transition properties at terahertz range in VO2 films deposited by sol–gel method | |
CN107887511A (en) | Method for preparing perovskite solar cell based on two-dimensional material graphene phase carbon nitride | |
CN106449381B (en) | A kind of THz modulators and its preparation based on graphene-metal composite micro-structure | |
CN103050783A (en) | Artificial electromagnetic metamaterial with tunable negative refraction index based on topology and graphene materials | |
CN106200016A (en) | A kind of Terahertz Graphene microstructure Modulation device | |
CN103018925B (en) | Based on the artificial electromagnetic Meta Materials with tunable circular dichroism of topological sum grapheme material | |
CN110515224B (en) | A dual-band flexible and selectively tunable graphene-metal groove metamaterial terahertz slow-light device | |
CN102751586A (en) | Tunable left-handed metamaterial based on phase-change material | |
CN108227243B (en) | Silicon-based all-dielectric electronic control terahertz wave regulation and control device and preparation method thereof | |
CN104775101B (en) | A kind of preparation method and application of loose structure vanadium dioxide film | |
CN102707537A (en) | Tunable metamaterial absorber based on phase-change materials | |
CN110221367A (en) | A kind of Terahertz modulator and its regulation method based on vanadium dioxide film | |
CN111913329B (en) | Electrochromic thin film device with adjustable optical properties in visible to mid-infrared band and preparation method | |
CN107482121A (en) | A preparation method of perovskite thin film based on magnetic field control | |
CN108034927A (en) | VO for the more broad band absorbers of near-infrared2Film composite structure preparation method | |
CN103247862B (en) | A kind of multilayer symmetric metamaterial based on phase-change material or topological insulating material | |
CN107170894B (en) | A kind of perovskite solar cell and preparation method thereof | |
CN115911885B (en) | Terahertz broadband wave absorber based on temperature control reticular vanadium dioxide microstructure | |
Wang et al. | Properties of ITO–AZO bilayer thin films prepared by magnetron sputtering for applications in thin-film silicon solar cells | |
Tseng et al. | Synthesis of c-axis preferred orientation ZnO: Al transparent conductive thin films using a novel solvent method | |
CN108220897B (en) | Method for preparing vanadium dioxide thin film by magnetron sputtering at low temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |