CN110291387B - 在线参比校准 - Google Patents

在线参比校准 Download PDF

Info

Publication number
CN110291387B
CN110291387B CN201880011501.6A CN201880011501A CN110291387B CN 110291387 B CN110291387 B CN 110291387B CN 201880011501 A CN201880011501 A CN 201880011501A CN 110291387 B CN110291387 B CN 110291387B
Authority
CN
China
Prior art keywords
electrode
calibration
potential
electrochemical
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880011501.6A
Other languages
English (en)
Other versions
CN110291387A (zh
Inventor
史蒂文·A·加灵斯
内森·劳伦斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shi DiwenAJialingsi
ANB Sensors Ltd
Original Assignee
Shi DiwenAJialingsi
ANB Sensors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB1702349.0A external-priority patent/GB2559619B/en
Priority claimed from GBGB1716660.4A external-priority patent/GB201716660D0/en
Application filed by Shi DiwenAJialingsi, ANB Sensors Ltd filed Critical Shi DiwenAJialingsi
Publication of CN110291387A publication Critical patent/CN110291387A/zh
Application granted granted Critical
Publication of CN110291387B publication Critical patent/CN110291387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • G01N27/4165Systems checking the operation of, or calibrating, the measuring apparatus for pH meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/302Electrodes, e.g. test electrodes; Half-cells pH sensitive, e.g. quinhydron, antimony or hydrogen electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

一种用于电化学传感器的在线校准系统。该校准系统包括与氧化还原物质偶联的校准电极,氧化还原物质配置为控制校准电极局部的参比溶液的pH,使得当将伏安信号施加到校准电极时,校准系统产生的输出由局部环境pH确定。来自校准系统的输出信号用于校准由电化学传感器的参比系统产生的参比电位,以在使用电化学传感器时校准参比电位的漂移。校准电极可以设置在电化学传感器的参比电池中。

Description

在线参比校准
背景技术
本公开描述了用于电化学传感器的在线校准系统。在线校准系统包括校准电极,该校准电极配置为部署在电化学传感器的参比电池中并且与其中的参比溶液接触。校准电极包含氧化还原物质,所述氧化还原物质对pH/氢离子浓度敏感并配置成设定校准电极附近的参比溶液的pH,使得当电化学/伏安信号施加到校准电极时,校准电极产生电化学/伏安响应,其具有对应于校准电极附近的参比溶液的设定pH的恒定的特征,例如峰值电位。在部署和/或使用电化学传感器的同时,通过比较校准电极的电化学/伏安响应的恒定特征与参比电位之间的差异来校准由参比电池产生的电化学传感器的参比电位。通过重复处理这种差异,可以在线校准参比电位,无需人工干预。
通常,存在三种类型的电化学传感器,伏安传感器、电位传感器和/或电流传感器。
电流传感器通常包括至少第一电极和参比电极。在使用中,在第一电极和参比电极之间施加电压,并测量第一电极和参比电极之间产生的电流。通过传感器配置为检测的化学物质的氧化/还原产生电流,并且测量的电流指示化学物质的浓度。
为了使测量的电流有意义,在第一电极和参比电极之间施加的电位需要是已知电位。在许多电流型传感器中,参比电极与参比溶液接触,以将参比电极的电位保持为常数,参比溶液是含有氯离子的溶液,例如氯化钾(KCl)溶液、氯化钠(NaCl)溶液和/或类似物。但是,在使用中,参比溶液可能会被稀释,降低Cl离子的浓度,被污染,从而使得在第一电极和参比电极之间施加的电位可能漂移(drift),降低参比系统的精度。
伏安/电位传感器是一些最常见的电化学传感器类型。电位传感器是玻璃电极(用于测量pH,钠(Na+)、钾(K+)、锂(Li+)等)、固体膜电极(基于化学过程对于X-的AgX)、液膜电极(例如,含有用于M+络合的配体并用于钙(Ca+)和K+传感器)、基于pH计的气体检测器(例如二氧化碳(CO2)传感器、氨(NH3)传感器等)、和一些固体氧化物传感器(例如,基于氧化锆的氧气(O2)传感器)的基础。伏安测量传感器可用于测量pH,葡萄糖、氧气、硫化氢,用于生物感测,用于药物感测和/或类似物。电位/伏安传感器测量对所需分析物敏感的电极或环境与对分析物不敏感的电极或环境之间的电位差。在这样的传感器中,对分析物敏感的电极或环境被称为感测电极,并且对分析物不敏感的电极或环境被称为参比电极。
离子敏感场效应晶体管(ISFET)是新一代固态电位传感器。在ISFET中,感应电极被离子选择性场效应发射器取代,其测量源和漏之间的电压,该电压取决于被测溶液中分析物的浓度。为了处理分析物的性质,针对容纳在明确定义的环境中的参比电极的输出来测量该源-漏电压。
对于传统的电位传感器和ISFET传感器,已经进行了大量工作以开发新的感测电极以测量不同的分析物/离子和/或提高用于感测离子/分析物的准确度/灵敏度。这项工作促成了一系列商业传感器的开发,这些传感器可以实现所需的选择性和灵敏度,以测量一系列分析物/离子。
然而,尽管电位计和ISFET传感器的丰富性和重要性,但由于参比电极的不稳定性,传感器的操作是有问题的。通常,参比电极包括银/氯化银(Ag/AgCl)电极,其保持在多孔的玻璃料(frit)后含有参比溶液的限定环境中,其中所述多孔的玻璃料允许与传感器所测量的溶液的电传导。
对于典型的银-氯化银(Ag/AgCl)参比系统,当不在操作时,Ag/AgCl电极储存在具有已知性质的溶液中,因为当保持在干燥气氛中时电极可以干燥。此外,由于参比电极电位的漂移,Ag/AgCl传感器需要定期重新校准,因为电极的化学性质可能改变和/或离子可能通过玻璃料并扰乱环境。此外,电位计系统通常以连续单点测量模式运行,这是如下模式:已知电流保持在参比电极和感测电极之间(通常为0)并且恒定地测量电位差。
这种测量的本质意味着,在使用过程中参比电极的任何漂移都难以监测,因为没有办法检测漂移,因此漂移可能被错误地归因于分析物浓度的变化;通常当重新校准传感器并且在使用之前和之后显示的校准的任何变化线性地推断并根据外推法修改来自传感器的数据时,在使用后对漂移进行校准。然而,这样的假设意味着传感器可能提供不准确的结果,并且传感器操作需要手动输入。例如,出于监管目的,必须能够校准需要使用标准推断过程的传感器以确保标准化测量。更重要的是,校准要求意味着传感器需要不断校准,这可能是昂贵的或需要用户干预,这意味着传感器不能在在线过程中和/或自主地准确使用。
一些研究人员已经接受了提高参比电极稳定性的挑战,并且已经提出了许多方法来克服该问题。
美国专利号5,419,826描述了一种适用于与电位测量系统一起使用的离子选择性参比探针。参比探针是不基于氯化物的并且使用在离子活性方面是可逆的特别适合的电解质。
美国专利公开号20030024812公开了一种固态电化学参比系统,其包含两个或更多个电极,其中至少一个电极的半电池电位由预期存在于所有测试溶液中的特定离子的浓度确定。通过第一电分析技术在电池中测量的离子浓度不依赖于已知的参比电极电位,使得所述电极(其半电池电位可由所测量的离子浓度计算)可以在一个或多个后续电分析技术中用作参比电极,所述电分析技术取决于已知的参比电极电位,所述后续技术或技术在同一电池中进行。
美国专利号6,398,931详述了一种改进的组合离子选择性电极设备,其包括电极体、参比电极和离子感应电极。参比电极包括离子可透过的连接点和包含离子选择性膜的可移除的膜盖。膜盖可以从离子选择性电极设备中移除而不会危及参比电极的完整性,并且不同于离子可透过的连接点。
欧洲专利号2 932 249描述了一种用于电化学传感器的参比电极,其包括内部参比元件,其中内部参比元件已嵌入固体电化学活性复合材料中。
美国专利号7,462,267描述了一种参比电极,其由与含有阴离子或阳离子的电解质接触的金属组成,所述阴离子或阳离子的浓度部分地决定了电极的氧化还原电位。该电解质含有聚电解质,其部分地和可逆地结合化学阳离子或阴离子,因此与相同浓度的阳离子或阴离子(如果作为简单盐存在)的渗透压相比,降低了阳离子或阴离子的自由浓度。取决于氧化还原电极的化学性质,聚电解质可以是阴离子的或阳离子的,并且还可以将增稠剂添加到电解质中。
然而,迄今为止,用于稳定/校准参比电极的技术是复杂的,需要人工干预和定期维护,并使用电位操作,这可能会加重/屏蔽稳定性错误。由于需要重新校准大多数电化学传感器的参比系统,传感器不能准确地用于长时间操作,不能用于自主/网络系统,并且需要昂贵的手动校准。
发明内容
在本公开的实施例中,提供了一种校准系统,其包括校准电极,校准电极可包括工作电极,用于进行伏安/电化学测量,并且该测量用于验证/校准电位传感器的参比电极的电化学电位。以这种方式,校准系统可以对参比电极中的任何漂移提供校准,而无需人工干预。此外,关于离子选择性传感器和/或电流传感器,因为校准测量是电化学/伏安测量,漂移不被电化学传感器的电位操作掩盖,和/或独立于电化学传感器的电位操作。
出于本公开的目的,术语电化学和伏安法可互换地用于对氧化还原物质施加电位。例如,在本公开的实施例中,电位扫过校准电极,并且该扫描电位可以称为伏安或电化学信号或伏安或电化学扫描。术语“伏安法”通常用于电位扫描,术语“电化学”用于表示施加至化学物质的电位和/或由电位的施加所产生的电信号,因为它是电化学过程。
出于本公开的目的,校准电极配置为电化学电池中的工作电极。
出于本公开的目的,具有校准电极的电化学电池中的其它电极可以称为对电极(counter electrode)、参比电极和/或辅助电极。
在本公开的实施例中,校准电极用于可包括计数器和参比/辅助电极的电化学/伏安系统,以产生伏安响应。校准电极的电化学/伏安响应用于校准产生参比电位的电化学传感器的参比系统,其中,参比电位由包括参比电池的参比系统产生。
在本公开的实施例中,校准电极包含氧化还原活性物质(当施加电流/电位时进行氧化/还原的物质),该氧化还原活性物质对pH敏感(氧化/还原电流关于pH/氢离子浓度而变化),并配置成控制校准电极附近的参比溶液的pH。氧化还原活性物质可以以下列方式控制校准电极附近的局部环境的pH。首先,氧化还原活性物质可包括酸或碱和/或含有酸性部分或碱性部分。这样,氧化还原活性物质的酸性或碱性性质设定参比的局部环境的pH,因为具有低缓冲能力的参比溶液不能缓冲酸性或碱性氧化还原活性物质的作用。在第二种情况下,当对氧化还原活性物质施加电位时,氧化还原活性物质可通过向参比溶液消耗或提供质子来触发参比溶液的局部环境的pH。再次,因为参比溶液无法缓冲质子消耗或提供的影响,氧化还原活性物质设定校准电极附近的参比溶液的局部pH。
参比溶液是包含在电化学传感器的参比室中的溶液,并且如上所述,通常包含氯化钾溶液等。参比溶液提供饱和氯离子溶液以维持恒定的参比电位。氯化钾、氯化钠等是无缓冲、低缓冲能力的溶液。因为这些参比溶液具有低缓冲能力或不包含缓冲区,氧化还原物质将影响氧化还原物质附近的参比溶液的局部环境,因为没有缓冲/缓冲能力来缓冲氧化还原物质的局部效应。在本公开的实施例中,对pH敏感的氧化还原活性物质可包含:影响氢离子浓度的化学物质(在氧化/还原过程中消耗或产生质子)、碱、酸、碱性部分、酸性部分等,以将参比溶液的局部pH设定为大于或小于pH 7的值。举例来说,氧化还原物质可包括蒽醌、二茂铁、水杨酸等。事实上,所有对pH敏感的氧化还原活性系统都会在氧化/还原过程中设定低缓冲能力溶液的局部pH,这种效果只能通过使用基本上抵消效果的氧化还原活性系统来防止。虽然本公开的实施例可以使用将参比溶液的局部pH设定为7的氧化还原物质,这不是优选实施例,因为它可能使校准处理复杂化。
在本公开的实施例中,将电化学/伏安扫描应用于校准(工作)电极以从校准电极产生电化学/伏安响应,其中电化学/伏安响应包括氧化还原活性物质的氧化/还原。伏安响应包括氧化/还原电流中的奇点/峰值,并且对应于这些峰值/奇点的电位被称为峰值电位。对pH敏感的氧化还原活性物质的峰值电位由校准电极接触的溶液的pH设定。
在本公开的实施例中,校准电极附近的参比溶液的pH由氧化还原活性物质设定。因此,由校准电极产生的峰值电位是恒定值。在操作中,当对氧化还原活性物质应用电化学/伏安扫描时,氧化还原活性物质经历氧化/还原。在这种氧化/还原过程中,氧化还原活性物质会提供或消耗质子,这取决于氧化还原活性物质的化学性质,并且因为接触的溶液具有低缓冲能力,所以该效果不会被溶液缓冲,因此,氧化还原物质产生电化学/伏安响应,该响应由其产生的校准电极附近的质子/氢离子浓度控制。
在本公开的实施例中,该恒定峰值电位和/或电化学/伏安响应中的相关电位用作参比/校准值以校准电化学传感器的参比电位。这样,在本公开的实施例中,可以周期性地扫描校准/工作电极,当电化学部署/使用时,确定的峰值电位用于校准参比电位,无需人工干预。
在一些实施例中,通过测量参比电极的电位与由校准电极产生的峰值电位等之间的差异来提供参比电极电位的校准,其中所述差异的任何变化都用于校正/校准传感器的输出,因为峰值电位是恒定电位,并且任何变化都将归因于参比电位的漂移。因为大多数电化学传感器的参比溶液包含氯离子,选择校准电极的氧化还原活性物质,使其对氯离子浓度不敏感。以这种方式,校准电极和由校准电极产生的峰值电位与参比溶液的氯离子的浓度无关。
令人惊讶的是,申请人从广泛的测试中发现控制参比溶液的局部pH的氧化还原活性物质的效果,以及由氧化还原活性物质的氧化/还原产生的恒定峰值电位不受以下因素干扰:参比溶液的大稀释度(稀释度高达50%);在参比溶液中存在酸或碱;参比溶液中存在活性化学物质;碳酸盐的存在,例如硬水(碳酸盐是有问题的,因为它们影响溶液的缓冲能力,从而降低氧化还原活性物质设定局部pH的能力);和/或类似物。
虽然峰值电位(校准电极产生的电化学/伏安信号中的峰值)可用于校准参比电位,但是电化学/伏安响应中的其它电位(例如产生的扫描信号的方向变化,扫描信号的最大变化率或可通过信号处理确定的其它特征)可以用来获得校准电极的校准电位,然后其可以被用于校准参比电极。在一些实施例中,可以分析校准电极的电化学/伏安扫描响应的多个点以产生校准电位。此外,由于由参比溶液中的氧化还原活性物质设定的pH是已知的、可以计算的、或者可以通过试验/实验确定的,信号处理器可以使用该知识来分析对所施加的电位扫描的电化学/伏安响应。
由于伏安/电化学测量不是电位测量,与参比电极的测量不同,该测量提供真正独立的校准。此外,可以周期性地进行伏安/电化学测量,从而减少与连续/高频测量相关的问题/维护要求。而且,校准系统可以与稳健的参比系统(例如Ag/AgCl参比系统)一起使用,并且不依赖于电位测量离子的存在。
在本公开的实施例中,校准电极包含控制电化学传感器的在电极附近的参比溶液的局部环境的氧化还原活性物质。在一些实施例中,可以通过使电极与低缓冲/低离子强度溶液(例如水、海水、氯化钠溶液、银、氯化钾溶液和/或类似物)接触来提供对局部环境的这种控制。在这样的环境中,由于分析物的低缓冲/离子强度,校准电极“看到”由氧化还原活性物质本身控制的环境。例如,用于电化学传感器的常见氧化还原活性物质,蒽醌将在施加伏安信号时测量约10或11的pH,因为蒽醌还将在还原过程中消耗质子而引发由传感器测量的到局部环境pH值的变化。当与氧化还原物质接触的分析物是低缓冲/低离子强度分析物时,氧化还原物质的这种影响将发生在大多数氧化还原活性物质上,除非它们是特殊配置的。
在其它实施例中,氧化还原物质含有酸基团(例如水杨酸等)或碱基团,例如,含有胺基团、酸基团的物质将产生酸性或碱性的局部环境,而与被感测的流体的酸度/碱度无关。在这样的实施例中,即使接触氧化还原物质的分析物的缓冲/离子强度不低,局部环境也由酸性/碱性氧化还原物质控制。在本发明的一些实施例中,具有酸或碱基团的氧化还原物质用于使局部环境的pH远离pH为7的中性读数,从而当伏安信号施加到校准电极时从校准电极提供已知的参比电位输出。
这种方法可用于需要稳定参比电极系统的所有电化学系统中。钾离子传感器利用缬氨霉素修饰的膜与标准Ag/AgCl电极一起提供离子选择性响应。这种系统的寿命常常受到参比电极不稳定性的影响。在这样的系统中,添加使用具有受控环境的电极的校准扫描系统将消除与参比电极中的漂移相关的寿命问题。
到目前为止,控制局部环境的氧化还原物质的影响已被确定为电化学传感器操作的弱点,因为它会从传感器产生不正确的输出,由于传感器测量由氧化还原物质控制的局部环境的特性,而不是被测溶液的特性。然而,如本文所述,该效果提供具有已知输出的电极,由于其对局部环境的控制,可用于校准。
在设计用于低缓冲/低离子强度溶液(例如水/海水等)的传感器中,校准电极可以直接与低缓冲/低离子强度流体接触,并且氧化还原物质控制局部环境以产生来自校准电极的已知/稳定电位输出。在可用于具有未知特性和/或高离子强度/缓冲强度的流体的传感器中,校准电极可以与已知的分析物接触,例如保持在玻璃料等之后的分析物,例如具有低离子/缓冲强度的水溶液。在一些实施例中,校准电极可以与参比电极接触相同的流体环境,即,保持在玻璃料后的贮存器中的参比溶液,所述玻璃料允许在测试/分析溶液的情况下的电/离子传导性。
在一些实施例中,校准系统可包括放置在现有参比电极室内的另外的电化学电池。在这样的布置中,现有参比电极室中的参比电极可以用作校准系统的参比电极。
附图说明
在附图中,类似的部件和/或特征可以具有相同的附图标记。此外,相同类型的各种部件可以通过用短划线跟随附图标记和区分相似部件的第二标记来区分。如果在说明书中仅使用第一附图标记,则该描述适用于具有相同第一附图标记的相似部件中的任何一个,而与第二附图标记无关。
图1A示出了具有参比电极的玻璃电极pH传感器。
图1B为包括参比电极/参比系统的电化学传感器的示意图。
图2A示出了包括根据本公开的一些实施例的校准系统的电化学传感器。
图2B示出了包括根据本公开的一些实施例的校准系统的电化学传感器。
图2C描绘了电化学传感器,其包括根据本公开的一些实施例的校准系统和来自该校准系统的输出。
图3是根据本公开的一些实施例的用于在线校准电化学传感器的参比系统的方法的流程型图示。
具体实施方式
随后的描述提供了本发明的一些实施例,并且不旨在限制本发明的范围、适用性或配置。在不脱离这里阐述的本发明的范围的情况下,可以对元件的功能和布置进行各种改变。可以在没有所有具体细节的情况下实践一些实施例。例如,电路可以以框图示出,以免不必要的细节模糊实施例。在其它情况下,可以在没有不必要的细节的情况下示出已知的电路、过程、算法、结构和技术,以避免模糊实施例。
一些实施例可以被描述为被描绘为流程表、流程图、数据流程图、结构图或框图的过程。尽管流程表可以将操作描述为顺序过程,但是许多操作可以并行或同时地执行。另外,可以重新安排操作的顺序。进程在其操作完成时终止,但可能有未包含在图中的其它步骤,并且可以在任何步骤或块中开始或结束。过程可以对应于方法、功能、过程、子例程、子程序等。当过程对应函数时,它的终止对应于函数返回到调用函数或主函数。
此外,如本文所公开的,术语“存储介质”可以表示用于存储数据的一个或多个设备,包括只读存储器(ROM)、随机存取存储器(RAM)、磁RAM、核心存储器、磁盘存储介质、光存储介质、闪存设备和/或用于存储信息的其它机器可读介质。术语“计算机可读介质”包括但不限于便携式或固定存储设备、光学存储设备、无线信道和能够存储、包含或携带一个或多个指令和/或数据的各种其它介质。
此外,实施例可以通过硬件、软件、固件、中间件、微代码、硬件描述语言或其任何组合来实现。当以软件、固件、中间件或微代码实现时,用于执行必要任务的程序代码或代码段可以存储在诸如存储介质的机器可读介质中。处理器可以执行必要的任务。代码段可以表示过程、函数、子程序、程序、例程、子例程、模块、软件包、类或指令的任何组合、数据结构或程序语句。代码段可以通过传递和/或接收信息、数据、自变量、参数或存储内容而耦合到另一代码段或硬件电路。信息、自变量、参数、数据等可以通过任何合适的手段(包括存储器共享、消息传递、令牌传递、网络传输等)传递、转发或传输。
现在将详细参考实施例,其示例在附图和图中示出。在以下详细描述中,阐述了许多具体细节以便提供对本文主题的透彻理解。然而,对于本领域普通技术人员显而易见的是,可以在没有这些具体细节的情况下实践本主题。在其它情况下,没有详细描述已知的方法、过程、部件和系统,以免不必要地模糊实施例的特征。在以下描述中,应该理解,一个实施例的特征可以与另一个实施例的特征组合使用,其中不同实施例的特征不相容。
还应该理解,尽管这里可以使用术语第一、第二等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于一个元件与另一个元件的区分。例如,第一对象或第一步骤可以被称为第二对象或第二步骤,并且类似地,第二对象或第二步骤可以被称为第一对象或第一步骤。第一对象或第一步骤以及第二对象或第二步骤分别是对象或步骤,但它们不应被视为相同的对象或步骤。
在本文的公开内容的描述中使用的术语仅用于描述特定实施例的目的,并不旨在限制本主题。如在本说明书和所附权利要求中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文另有明确说明。还应理解,本文所用的术语“和/或”是指并包含一个或多个相关所列项目的任何和所有可能的组合。将进一步理解,在本说明书中使用时,术语“包括”、“具有”、“含有”和/或“包含”指定所声明的特征、整数、步骤、操作、元件和/或部件的存在,但是不排除存在或添加一个或多个其它特征、整数、步骤、操作、元件、部件和/或其组。
如本文所使用的,取决于上下文,术语“如果”可以被解释为表示“当”或“在...时”或“响应于确定”或“响应于检测”。类似地,取决于上下文,短语“如果确定”或“如果检测到[所陈述的条件或事件]”可以被解释为表示“在确定....时”或“响应于确定”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[陈述的条件或事件]。
出于本公开的目的,以下术语具有以下含义。
“氧化还原物质”是可以被氧化和还原的化合物或组合物。“氧化还原活性”是指这些过程中的任一个或两个。
“氧化还原敏感物质”是对那些用户定义的应用特异性公差(user-definedapplication-specific tolerances)内的样品中分析物的存在或浓度敏感或基本敏感的氧化还原物质。对分析物的“基本上敏感”用于表示在给定应用所需的公差范围内的敏感性,因为这些公差由最终用户定义。
“氧化还原活性材料”是可以被氧化和还原的化合物或组合物。“氧化还原活性”是指这些过程中的任一个或两个。
“参比电极”(RE)是用于建立施加到工作电极(WE)的电位差的电极。常规的RE具有一定的固定化学组成并且因此具有固定的电化学势,因此允许以已知的受控方式测量施加到WE的电位差。RE通常包括与固定化学组成和离子强度的电解质接触的两半氧化还原对。因为氧化还原对的两半都存在,并且所涉及的所有物质的组成都是固定的,系统保持平衡,然后,RE的电极-电解质界面上的电位降(即,测量到的电压)在热力学上是固定的并且是恒定的。例如,常用的RE系统是Ag/AgCl/KCl系统,其具有限定的和恒定浓度的KCl。因此,两个半电池反应是:Ag++e-→Ag;和AgCl+e-→Ag+Cl-。因此,整个电池反应是:AgCl→Ag++Cl-,其能斯特平衡电位如下:E=E0-(RT/F)*ln[Cl-],其中,E是测量的RE电位,E0是Ag/AgCl对相对于标准氢电极的标准电位,其中所有物质均为单位活性(按照惯例,标准氢电极定义为具有0.0V的电位);并且R、T和F分别是通用气体常数、温度和法拉第常数,以恰当的单位表示。因此,该系统的电位仅取决于存在的Cl-离子的浓度(更严格地说是活性),如果这是固定的,其提供稳定、固定的电位。许多其它RE系统在本领域中是已知的。RE的组成必须保持恒定,因此几乎没有电流通过RE(否则将发生电解,并且RE的组成将改变),这需要使用第三电极,即,对电极(CE),以完成电路。然而,在WE是具有通常小于100微米的至少一个尺寸的微电极的特殊情况下可以使用双电极配置。在这种情况下,在WE处通过的电流很小,因此双电极电池可以与RE一起使用,但不需要CE。
“传感器”是电极或电极集合,其响应于分析物的存在而产生信号。传感器可包括例如工作电极、对电极和参比电极(常规参比电极或伪参比电极)。传感器可包括例如工作电极、对电极和对分析物不敏感的电极。
“电极”是传感器的部件,并且可以包括金属、碳和/或类似物。各种碳基底适合用作本发明电极中的基底材料,包括但不限于碳同素异形体,如石墨(包括热解石墨和各向同性石墨)、无定形碳、炭黑、单壁或多壁碳纳米管、石墨烯、玻碳、掺硼金刚石、热解的光刻胶膜,和本领域已知的其它材料。
“工作电极”是用于检测目标分析物的电化学过程发生的电极。在传感器中,工作电极可能对测试样品中的一种或多种分析物敏感,或者可以用分析物敏感的物质/材料进行化学修饰。在对所研究的系统进行一些扰动之后,测量工作电极的电化学响应。例如,扰动可以是对工作电极施加引起电子转移发生的电位差,然后记录工作电极上产生的电流作为施加电位的函数(伏安模式)。该操作模式的示例是说明性的而非详尽的,因为本领域中已知许多其它模式。工作电极可以包含氧化还原物质,其可以根据样品溶液中的分析物(用于pH计的氢离子;其它分析物检测装置的其它分析物)的浓度和施加的电位进行可逆的电化学氧化还原反应。例如,当样品溶液中存在高浓度的氢离子时,氧化还原反应在较低的电位下发生。相反,在样品溶液中存在低浓度的氢离子的情况下,氧化还原反应在更高的电位下发生。这些特征电位与样品溶液pH之间的关系是氧化还原物质的化学特性的函数。算法将电位转换为pH值,以提供确定未知样品的pH的方法。
图1A示出了玻璃电极pH传感器。玻璃电极是一些最常见的电化学传感器。玻璃电极是离子选择性电极/传感器的一个例子。
玻璃电极pH传感器是一些最普遍存在的电化学传感器,因为它们使用成熟的技术来测量基本特性,pH。玻璃电极包括容纳在测量室12中的内电极10。玻璃电极设置在测试溶液20中,并且内电极10经由玻璃膜15与测试溶液20电连通。玻璃膜15提供测试溶液20与测量室12中的流体之间的离子交换。
与大多数电化学传感器一样,玻璃电极包括参比电极25。参比电极25设置在包含参比溶液25的参比室22内。参比溶液25配置为通过多孔玻璃料27与测试溶液20电连通,这允许两种溶液的电特性的均衡。通过测量测量电极10相对于参比电极22的参比电位的电位,由测试溶液20的离子浓度设定的输出电位可以被传递给pH计。
玻璃电极基本上由四个主要部件组成,玻璃膜15、内电极10、参比电极25和玻璃棒。内电极10和参比电极25均设置在溶液中。通常,溶液是相同的溶液,并且可以包括氯离子(例如氯化钾、氯化钠等)饱和的溶液。为获得最佳效果,在玻璃膜的两侧设置对称的液体电池。为了设置对称电池,玻璃中的内部填充溶液和参比填充溶液的构成相似。对称性很重要,因此两种溶液的温度曲线都很接近,从而抵消彼此的温度影响。
参比电极像电池一样工作,其化学组分产生可预测的电压,其也与被测溶液电接触。因此,参比输出是恒定电压,为玻璃提供参比点,以区分氢离子浓度的变化,作为玻璃膜的电位。
图1B是电化学传感器的示意图。
在图1B中,电化学传感器30包括感测系统35和参比系统33。感测系统35可以包括工作电极并且配置为接触测试溶液45。感测系统35包括化学物质,该化学物质配置为当电信号被施加到感测系统35时进行氧化/还原。选择化学物质,根据电化学传感器被设计用于检测/测量的特定离子/化学物质的浓度使氧化/还原电流的幅度和/或与氧化/还原电流的峰值相关的电位发生变化。
在电化学传感器30中,可以用于确定目标离子/化学物质的浓度的反应发生在感测系统35的工作电极35的表面处。在操作中,在电化学传感器30中控制工作电极35的表面和测试溶液45之间的界面上的电位降(即,界面电位)。然而,如果不在测试溶液45中放置另一电极,即对电极(未示出),则不能控制或测量该界面电位。通过使用对电极和工作电极35,可以产生两个界面电位,两者都不能独立地测量。为了能够测量工作电极35的界面电位,对所述对电极的要求是:其界面电位保持恒定,使得电池电位的任何变化都会产生工作电极界面电位的相同变化。
电位不随电流变化的电极称为理想的非极化电极,并且其特征在于电流关于电位的曲线上的竖直区域。但是,没有电极以这种理想的方式运行。结果是非理想运行,上述双电极系统中的所述对电极的界面电位随着电流通过电池而变化。使用三电极系统克服了这个问题,在所述三电极系统中,对电极的功能在参比电极36和一个或多个辅助电极(未示出)之间分配。在该设置中,控制工作电极35与参比电极36和一个或多个辅助电极之间的电位,并且电流在工作电极35和一个或多个辅助电极之间通过。因为不希望电流流过参比电极,因此,通过使用高输入阻抗运算放大器作为参比电极36的输入,减小通过参比电极36的电流。
在电化学传感器中,参比系统33可包括参比室34。参比室34包含参比溶液39和参比电极36。参比电极36至少部分地设置在参比溶液39内。最常见的参比系统之一是银-氯化银参比系统,其中参比电极由银形成并具有氯化银涂层。用于银-氯化银参比溶液的参比溶液包括含有氯离子的溶液,例如氯化钾溶液或氯化钠溶液。
银-氯化银参比系统的氧化还原过程方程为:
AgCl+e-<=>Ag+Cl-
参比溶液39可包含3摩尔氯化钠或氯化钾的量级。
任何电极的电位E由能斯特方程确定,该能斯特方程将E与标准电位E0和氧化还原组分的活性联系起来(标准电位是标准条件下电极在单位活性下的电位)。银/氯化银电极的能斯特方程是:
Figure BDA0002163936300000141
通常,考虑浓度比考虑活性更方便。这些参数通过活性系数g关联:
aCl-=γCl-[C1-]
能斯特方程因此可以重写如下:
Figure BDA0002163936300000142
其中,E0′是表观电位(formal potential),并且通过以下等式与标准电位关联:
Figure BDA0002163936300000151
在25摄氏度下银/氯化银氧化还原反应的标准氧化还原电位(E0)为+0.222V(vs.NHE),而在该温度下BASi银/氯化银参比电极的氧化还原电位(E)为+0.206V(vs.NHE)。
在参比系统33中,参比室39包括多孔玻璃料37。多孔玻璃料37在参比室36的内部和测试溶液45之间离子地传导电通路。这对于均衡工作电极35和参比电极36的电气条件是必要的
然而,银-氯化银参比系统的能斯特方程表明,参比室34中氯离子浓度的变化改变了参比系统33的氧化还原电位。在电化学传感器的操作中,氯离子可以通过多孔玻璃料37从参比室34中流出,和/或测试溶液45可以穿过多孔玻璃料37进入参比室34。在这两种情况下,参比室34中的氯离子浓度改变,结果参比系统33的参比电位改变。参比电位的这种变化通常被称为漂移。参比电极漂移的结果是在感兴趣的化学物质/离子的测量中的不准确。为了解决参比电极漂移,必须定期重新校准电化学传感器。电化学传感器的重新校准涉及电化学传感器的操作者测量在至少三种含有已知浓度的感兴趣的离子/化学物质的不同溶液中来自电化学传感器的输出,使得可以将来自电化学传感器的输出与传感器应该为已知浓度产生的已知响应进行比较,并且重新校准传感器以解决在比较中发现的任何差异。
举例来说,在水工业中,为了满足法规和管理水资源,多个电化学pH传感器(通常为玻璃电极)通过水管理基础设施分布以监测pH。为了操作pH传感器,工程师必须定期访问每个电化学pH传感器并重新校准参比系统。这是操作现有电化学传感器的耗时且昂贵的必要性。在水行业,传感器制造商生产可以每三个月左右进行一次重新校准的传感器。
然而,为了获得这种延长的重新校准持续时间,传感器精度大大降低,得到正/负百分之二十的量级的精度。通过使用软件处理可以实现长持续时间,其中,在软件处理时,可对预期的/篡改的漂移控模型进行编程并相应地调整参比电位。但是,监控参比系统的实际操作是不可能的,并且在重新校准之间进行测量的准确性是值得怀疑的,特别是当重新校准之间的时间很长时,这导致许多传感器操作员使用更频繁的重新校准。此外,用于比水工业更具挑战性的行业(例如化学物质处理和/或化学废物监测)的电化学传感器,在如下条件下运行:更多反应性化学物质/离子可以通过多孔玻璃料37进入参比室34,从而影响参比系统33产生的参比电位。此外,现有的电化学传感器通常是“哑(dumb)”传感器,其不能提供关于传感器操作的质量保证、质量控制数据。对于频繁的手动重新校准和/或哑操作的这种需求意味着许多电化学传感器,包括玻璃电极,不能进行联网操作。
图2A示出了根据本公开的一些实施例的包括在线校准系统的电化学传感器。
如图2A所示,电化学传感器130包括感测系统135和参比系统133。传感器系统135可以包括:感测/工作电极和/或类似物,其配置为提供对所施加的电子信号的电子响应,其取决于测试溶液145中离子/化学物质的浓度。电化学传感器130可以是离子选择性电极(例如玻璃电极)、电流传感器、氧化还原传感器、ISFET和/或类似物。
包括处理电路的处理器140配置为与感测系统135通信,以将信号施加到感测系统135并且处理感测系统136对施加的信号的响应。为了处理感测系统135的响应,如参考图1A和1B所解释的,必须为电化学传感器的处理器140提供参比电位。
如图2A所示,参比系统133包括参比室134。参比室134包含参比溶液139和参比电极136。参比电极136和参比溶液139配置为使得当参比信号施加到参比电极136时参比电极136产生恒定的参比电位。例如,参比电极136可以包括银-氯化银电极,并且参比溶液139可以包括含有氯离子的溶液,例如氯化钠溶液、氯化钾溶液等。在一些实施例中,参比溶液139可包含糊剂、凝胶和/或类似物。
在本公开的一些实施例中,在参比室134中提供包括三电极系统的校准系统。如图所示,三电极系统包括工作电极120、对电极123和参比电极126。在一些实施例中,校准系统可包括单工作电极,双电极系统,或包括四个或更多个电极的系统。在本公开的一些实施例中,校准系统的一个电极可以包括参比电极136。
在本公开的实施例中,工作电极120包括氧化还原物质121。氧化还原物质121配置为对pH敏感,即,氧化还原物质配置为产生对施加的电信号的响应信号,其根据与工作电极120接触的溶液的pH而变化。在本公开的实施例中,氧化还原物质121配置为设定参比溶液139的局部环境的pH,其中,工作电极120设置在参比溶液139中并且当校准信号施加到校准系统时感测该设定的pH。
对pH/氢离子浓度敏感并且设定校准电极附近的参比溶液的pH的合适的氧化还原物质可以包括,例如但不限于:蒽醌(AQ)、菲醌(PAQ)、N,N′-二苯基-p-苯二胺(DPPD)、蒽、萘醌、对苯醌、含重氮化合物、卟啉、烟酰胺(包括NADH、NAD+和N-甲基烟酰胺)、醌硫醇、单季铵化N-烷基-4,4′-联吡啶鎓、RuO和Ni(OH)2、二茂铁羧酸盐、和这些化合物的衍生物;CO敏感的ASM:二茂铁基阿扎嗪二硫化物;铁卟啉;碱金属阳离子敏感的ASM:1,1′-(1,4,10,13-四氧杂-7,1-二氮杂环十八烷-7,16-二甲基)、二茂铁硫醇、含有共价连接的穴状配体(cryptand)的其它二茂铁衍生物、具有Fe2+/Fe3+、Co2+/Co3+、Cu+/Cu2+的一些金属配合物、二茂铁基阿扎汀和二茂铁的穴状配体、取代的蒽醌、单-、二-或多-羟基取代的AQ;单-、二-或多-氨基取代的AQ、乙二醇或聚乙二醇修饰的AQ、和/或类似的。本领域技术人员将理解除非经过特殊配置,任何对pH敏感的氧化还原物质在当氧化还原物质由于参比溶液的低缓冲能力而被氧化/还原时都将设定参比溶液的局部pH值。
如前所述,使用包含对pH敏感的氧化还原活性物质的工作电极的电化学pH传感器的问题在于当与低缓冲能力/无缓冲溶液接触时,氧化还原活性物质设定工作电极附近的低缓冲能力/无缓冲溶液的局部环境的pH。实质上,因为溶液具有低缓冲能力和/或不含缓冲,所以它不能缓冲氧化还原活性物质对溶液的局部作用。这导致氧化还原活性物质附近的区域具有取决于氧化还原物质的性质的质子pH。该问题已被确定为使用使用氧化还原活性物质测量低缓冲能力、无缓冲溶液(例如水、海水、氯化钠溶液、氯化钾溶液和/或类似物)的pH的电化学传感器的限制。为了克服这个问题,已经开发出专门的氧化还原化学物质,其提供加速响应,使得氧化还原化学物质对接触溶液的pH敏感,而不是对由氧化还原物质设定的局部环境的pH敏感。
在本公开的实施例中,氧化还原物质121可包含对pH敏感的、未配置成克服在低缓冲能力/无缓冲溶液中的局部pH设定的影响的任何氧化还原物质。在优选实施例中,选择氧化还原物质121以将参比溶液139的局部环境的pH设定为如下的pH值:其大于pH 7以上或以下的一个pH单位。申请人已经发现,当氧化还原活性物质121设定不等于或接近pH7的pH时,校准处理被优化。在一些实施例中,氧化还原活性物质121可包含酸、碱、酸性部分或碱性部分。
申请人发现几乎所有通常使用的对pH敏感的氧化还原物质都可用于设定局部环境的pH并产生对该设定pH的响应,因为对pH敏感的氧化还原活性物质的极少数提供了克服低缓冲能力问题。举例来说,申请人发现蒽醌及其衍生物、一些最常用的对pH敏感的氧化还原物质可用作氧化还原活性物质121。举例来说,蒽醌将参比溶液的局部环境的pH设定为约10的pH值。
对于本公开的实施例,氧化还原物质121配置为对pH敏感并且设定工作电极120附近的参比溶液139的局部pH。氧化还原物质121的这些特征和氧化还原物质121对氯离子浓度不敏感的事实提供了无论氯化物浓度如何变化,氧化还原物质的响应将是恒定值。
在本公开的实施例中,参比溶液139包括低缓冲能力/无缓冲溶液。如上所述,参比系统133的最常见参比溶液包括氯化钠、氯化钾等。氯化钾和氯化钠溶液都包含低缓冲能力/无缓冲溶液。氯化钾(KCl)参比溶液在参比溶液中不包含任何缓冲,因此非常适合用于本公开的实施例中。
在本公开的一些实施例中,校准处理器150可以将电化学/伏安信号施加到工作电极120。伏安信号可以包括变化的电子信号,例如方波伏安信号、斜坡伏安信号和/或类似信号。在本公开的实施例中,其中校准系统包括三电极系统,伏安信号可以扫过工作电极120、对电极123和参比电极126之间。
响应于伏安信号的施加,工作电极产生电化学/伏安响应。该响应取决于氧化还原物质121产生的氧化/还原电流。由于氧化还原物质121对pH敏感,因此氧化还原物质121产生的氧化/还原电流将取决于参比溶液139的pH。在本公开的实施例中,因为氧化还原物质121设定工作电极120/氧化还原物质121附近的参比溶液的pH,伏安响应将具有对应于设定的pH的恒定的特征,例如对应于氧化/还原电流的峰值/奇点的峰值电位。在本公开的实施例中,伏安响应可以由校准处理器处理成伏安图和/或显示工作电极电位关于氧化还原电流的表示。
在本公开的实施例中,选择氧化还原物质121和参比溶液139,以使pH敏感的氧化还原物质121设定氧化还原物质121附近的参比溶液139的pH。这样,在本公开的实施例中,伏安响应中的峰值电位是常数。在本公开的一些实施例中,校准处理器150和/或处理器140使用峰值电位来校准参比系统133的参比电位。仅仅作为示例,在一些实施例中,参比电位和峰值电位之间的差异可以由校准处理器150和/或处理器140中的至少一个确定和存储。这种差异可以是:当用户使用来自参比系统133和/或校准系统的测量初始部署电化学传感器130时测量的;可以从经验计算中计算出来;可以通过在制造的一批电化学传感器中的一个或多个电化学传感器上进行的批量测量来确定;和/或类似的。
仅仅作为示例,在一些实施例中,可以测量、计算、从试验/测试等确定对于在参比溶液139的局部环境中产生的设定pH的氧化还原物质121的峰值电位,并且可以将其输入到校准处理器150和/或处理器140中。随后,当用户校准参比系统133时,校准处理器150和/或处理器140可以记录峰值电位和参比电位之间的差异。
在操作中,如上所述,电化学传感器130的参比电位由于参比溶液139的变化(例如参比溶液139中的氯离子浓度降低)而漂移。在本公开的实施例中,将伏安信号重复施加到校准系统以产生峰值电位。如上所述,该峰值电位和峰值电位与参比电位之间的已知/记录的差异用于处理校准因子,以校准由于参比溶液139的变化引起的参比电位的任何变化。施加的伏安信号的周期可取决于电化学传感器130的使用,并且可以由校准处理器150和/或处理器140设定、由用户设定、由制造商设定和/或类似的。例如,在电化学传感器130包括玻璃电极并且用于数周/月的部署的情况下,周期可以是小时或天的量级。在小时或天的传感器部署中,周期可以是秒、分钟或小时的量级。
在本公开的实施例中,通过重复测量与氧化还原物质121相关的峰值电位,校准系统配置为提供参比系统133的参比电位的在线校准。如前所述,参比系统133包括多孔玻璃料137,其在参比室134的内部和测试溶液145之间提供离子导电通路。该多孔玻璃料137允许参比溶液139的稀释和/或化学物质进入参比溶液139。在测试中,申请人发现校准系统产生稳定的峰值电位,该峰值电位是恒定的并且仅取决于参比溶液中的设定pH,所述参比溶液为小于1摩尔氯化钠或氯化钾直至约10摩尔氯化钠或氯化钾。这说明本公开的实施例可用于大多数商业上可获得的参比系统。
申请人还发现,当参比溶液139稀释高达50%时,校准系统的峰值电位是稳定的/恒定的。令人惊讶的是,申请人发现校准系统的峰值功率在以下情况下是稳定/恒定的:酸,如盐酸;碱,如氢氧化钠;碳酸盐,如硬水;反应性化学物质,以及其它反应性化学物质被添加到参比溶液139中。在本公开中,参考由工作电极120响应于所施加的伏安信号产生的峰值电位。该峰值电位对应于由氧化还原物质121产生的氧化还原电流的峰值/谷值。在一些实施例中,可以使用伏安响应中的其它特征代替峰值电位来校准参比电位。例如,不使用峰值电位,而是可以使用对应于伏安响应中的另一特征的电位,例如对应于响应中的最大变化率的电位/位置等。在本公开的实施例中,峰值拾取算法等可用于识别伏安响应中的峰值。在一些实施例中,因为氧化还原物质121在与参比溶液139接触时的峰值电位是已知的/可以计算,当通过伏安响应确定峰值电位时,该已知/计算的峰值电位可用于处理伏安响应。
图2B示出了包括根据本公开的一些实施例的校准系统的电化学传感器。
电化学传感器包括传感器电极150和参比系统160。参比系统160包括参比室162,参比室162包含参比溶液165和参比电极151。参比电极151至少部分地与参比溶液165接触。参比溶液165可包含氯化钠、氯化钾等。
传感器电极150可包括玻璃电极,具有玻璃膜等。传感器电极150配置为与测试溶液155电连通/接触。参比溶液165配置为经由多孔玻璃料167与测试溶液155电连通。参比电极151配置为产生电化学传感器的参比电位。
典型的参比电极是氯化银电极。氯化银参比电极用作氧化还原电极,其中在参比电极的银金属与参比溶液的盐,氯化银之间提供平衡。给定参比电极和参比溶液的恒定条件,参比电位是恒定的。但是,如果参比室中氯化银的浓度发生变化,则参比电位会漂移。由于参比溶液通过多孔玻璃料167与测试溶液流体连通,因此在电化学传感器的使用期间,浓度将改变。
在本公开的实施例中,附加电化学电池的校准电极163放置在现有参比电极室内。电化学电池可包括对电极161和辅助电极164。在一些实施例中,参比电极151还可以用作电化学电池中的参比电极/辅助电极164。校准电极163是电化学电池的工作电极,并且包括固定在校准电极163上的氧化还原物质,并且都是氧化还原活性的、对pH敏感,并且还控制校准电极163的表面附近的参比溶液165的局部环境。
在一些实施例中,固定的氧化还原物质可以溶剂流延、电聚合或浸没在校准电极163内。结合在聚合物层内的氧化还原对作为新的稳定氧化还原对,而能够控制局部环境的层充当第二层,以防止在浸入电极的本体溶液中观察到的任何变化。该附加电化学电路用作校正参比电极中原位观察到的任何漂移的装置。
在一些实施例中,该装置在分析物感测电极和参比电极之间的电位感测模式下运行。电池周期性地对容纳在多孔玻璃料后的工作电极进行伏安扫描。固定在工作电极上的氧化还原活性物质的电位用于校正参比电极中发生的任何漂移。在一些实施例中,伏安扫描的频率取决于部署电化学传感器的应用。
图2C描绘了根据本公开的一些实施例,使用各种伏安扫描曲线的,来自包括校准系统的电化学传感器的传感器输出的示意图。在所描绘的配置中,校准系统可以提供传感器的参比电极的QA/QC。所描绘的传感器包括集成电化学电池和恒电位仪,并且系统使用来自恒电位仪的伏安信号在集成电化学电池中的参比电极和校准电极之间产生扫描,以产生可在传感器工作期间用于参比电极的QA/QC的电位。在一些实施例中,传感器可以使用改进的双恒电位系统运行。这样的设置消除了在部署之前对参比传感器校准的需要,如当前商业ISE的情况。在本公开的实施例中,在部署之前,可以测量内部电路,并且这可以用于设置参比系统的参数。
本发明的实施例可在工作电极上使用以下化学结构,其中分子的氧化还原活性组分具有羧酸、磺酸和/或氨基部分。
Figure BDA0002163936300000221
在一些情况下,例如水杨酸(左上结构),可以形成含有羧酸性部分的氧化还原活性pH活性聚合物层,在所提出的设置中,氧化还原活性组分仅观察到与分子的pKa一致的溶液pH。
在一些实施例中,新电化学电池中的工作电极可具有单层,其中氧化还原活性组分具有附着的部分以直接控制局部环境,并且在其它实施例中,工作电极系统可以具有双层,其中氧化还原活性组分与用于控制局部环境的物质分离/独立。在其它实施例中,在工作电极系统内使用的氧化还原活性物质由于其氧化或还原而可通过质子、阳离子或阴离子的释放/损失或获得来控制表面的局部环境。
图3是根据本公开的一些实施例的用于在线校准电化学传感器的参比电极的方法的流程型图示。
在310中,提供校准电极以接触电化学传感器的参比系统的参比溶液。参比系统包括含有参比溶液和参比电极的参比室。参比电极可包含金属、碳等,并且参比溶液可包含盐,例如氯化钠、氯化钾等。
参比电极包含对pH/质子浓度敏感的氧化还原活性物质。参比溶液包含无缓冲/低缓冲能力溶液,例如氯化钾、氯化钠和/或类似物。氧化还原活性物质配置为设定靠近/接近氧化还原活性物质的参比溶液的pH。氧化还原活性物质可以固定在校准电极上,共价键合到校准电极等。校准电极可包括碳、碳衍生物、金属和/或类似物。选择氧化还原活性物质对氯离子/氯离子浓度不敏感。
在320中,将伏安信号/电位扫描施加到校准电极。校准电极可以是包括对电极的校准系统的一部分,并且可以在可包括工作电极和对电极的校准电极之间扫描伏安信号。伏安信号可以包括电位扫描,例如方波、斜坡信号/波和/或类似物。
施加的伏安信号使氧化还原活性物质进行氧化/还原。由于氧化还原活性物质对与之接触的参比溶液的pH/质子浓度敏感,从而氧化/还原电流将由参比溶液的pH确定。此外,因为参比溶液是无缓冲/低缓冲溶液,氧化还原物质附近的参比溶液的pH由氧化还原活性物质的性质决定。在一些实施例中,氧化还原活性物质可包含酸、碱、酸性部分、碱性部分和/或类似物。在其它实施例中,当电化学/伏安信号/电位扫描应用于氧化还原活性物质时,氧化还原活性物质可通过提供或消耗质子来触发局部环境的pH。例如,在一些实施例中,氧化还原活性物质可包含蒽醌,并且蒽醌可通过消耗质子将参比溶液的局部pH设定为约10的pH。因为选择氧化还原活性物质来设定氧化还原活性物质附近的参比溶液的pH,还原/氧化电流的峰值电位将由氧化还原活性物质设定的pH确定。
在330中,处理校准电极对施加的伏安信号的伏安响应以确定校准电位。在一些实施例中,校准电位是响应于施加的伏安信号由氧化还原活性物质产生的峰值电位。在一些实施例中,伏安响应可以是电流关于电位的,并且伏安响应可以包含对应于氧化还原活性物质的氧化还原电流中的峰/谷的峰值/奇点。对应于氧化还原电流中的该峰值/奇点的电位是峰值电位。在一些实施例中,峰值/奇点的其它特征可以用作校准电位。因为氧化还原活性物质的氧化还原电流和峰值电位对应于氧化还原活性物质所见的参比溶液的pH,并且因为氧化还原活性物质设定氧化还原活性物质附近的参比溶液的pH,氧化还原电流和峰值电位是常数。在本公开的实施例中,选择氧化还原活性物质使得其氧化还原响应不受参比溶液中氯化物浓度的影响。这和申请人已经发现氧化还原活性物质在本布置中的响应对参比溶液中的酸、碱、硬水、反应性化学物质等不敏感的事实意味着校准电极在各种具有挑战性的化学应用中提供对所施加的伏安信号的恒定的/稳定的响应。
在340中,校准电位用于校准电化学传感器的参比电位。在一些实施例中,校准电位和参比电位之间的确定差异用于电化学传感器的在线校准。例如,在传感器是新的、部署的、被校准的等时,可以确定电化学传感器的参比电位。此时,可以确定并存储参比电位和校准电位之间的差。校准电位本身可以被计算、测量、通过实验而确定、在电化学传感器的制造期间被测量和/或类似的。在使用电化学传感器时的操作中,处理校准电位的周期性测量并将其与参比电位进行比较。如果校准电位和参比电位之间的差异相对于存储的差异已经改变,则重新校准参比电位以适应此变化。通过这种方式,在部署电化学传感器并进行测量的同时,可以在线重新校准电化学传感器的参比电位。
虽然以上结合具体装置和方法描述了本公开的原理,应该清楚地理解,该描述仅作为示例而不是作为对本发明范围的限制。

Claims (15)

1.一种用于电化学传感器的在线校准系统,包括:
校准电极,其包括氧化还原物质并配置成接触所述电化学传感器的参比溶液,其中:
所述氧化还原物质配置为在所述校准电极附近的所述参比溶液的局部环境中设定所述参比溶液的pH;
所述氧化还原物质配置为当电化学信号施加到所述校准电极时进行氧化和/或还原;并且
所述氧化还原物质对pH敏感并产生对施加的所述电化学信号的响应,所述电化学信号取决于所述校准电极附近的所述参比溶液的局部环境的pH;
所述在线校准系统还包括:
处理器,其与所述电化学传感器的所述校准电极和参比电极连通并且配置为使用电化学响应来校准所述参比电极的参比电位;
其中,所述电化学响应是校准电位,所述校准电位对应于由所述氧化还原物质所产生的氧化或还原电流的特征;
其中,所述参比电极由银形成并具有氯化银涂层;
其中,所述电化学传感器包括含有所述参比溶液的参比电池和所述校准电极,所述参比溶液具有低缓冲能力;
其中,所述参比电池包括玻璃料,所述玻璃料配置为接触由所述电化学传感器感测的流体。
2.根据权利要求1所述的在线校准系统,其中,所述氧化还原物质包括酸、碱、酸性部分和碱性部分中的至少一种。
3.根据权利要求1所述的在线校准系统,其中,所述氧化还原物质配置为当将所述电化学信号施加到所述校准电极时消耗或提供质子。
4.根据权利要求1至3中任一项所述的在线校准系统,其中,所述电化学信号包括电位扫描和/或伏安信号。
5.根据权利要求3所述的在线校准系统,其中,所述氧化还原物质包括蒽醌或其衍生物。
6.根据权利要求1至3中任一项所述的在线校准系统,其中,所述参比溶液包含氯化钠或氯化钾。
7.根据权利要求1至3中任一项所述的在线校准系统,其中,所述电化学响应包括峰值电位,其对应于由所述氧化还原物质产生的氧化电流的最大值或对应于由所述氧化还原物质产生的还原电流的最小值。
8.根据权利要求1至3中任一项所述的在线校准系统,还包括:
恒电位器,其配置为产生电化学信号。
9.根据权利要求1至3中任一项所述的在线校准系统,还包括:
反校准电极和参比校准电极中的至少一个。
10.一种电化学传感器,包括根据前述权利要求中任一项所述的校准系统。
11.根据权利要求10所述的电化学传感器,其中,所述电化学传感器包括玻璃电极、ISFET或电位传感器中的一种。
12.一种用于在线校准根据权利要求10或11所述的电化学传感器的方法,所述方法包括:
使校准电极与电化学传感器的参比溶液接触,其中,所述校准电极包括氧化还原物质,所述氧化还原物质配置成控制所述电极的所述参比溶液附近的局部环境的pH;
将伏安信号施加到所述校准电极以产生所述氧化还原物质的氧化和/或还原;和
使用校准电位来校准所述电化学传感器的参比电位,所述校准电位对应于由所述氧化还原物质所产生的氧化或还原电流的特征。
13.根据权利要求12所述的方法,其中,所述特征包括所述氧化或还原电流的最大值、所述氧化或还原电流的最小值、所述氧化或还原电流的最大变化的位置和所述氧化或还原电流的转折点中的一个。
14.根据权利要求12或13所述的方法,其中,使用所述校准电位来校准所述电化学传感器包括:使用所述参比电极的所述参比电位和所述校准电位之间的差异来校准所述参比电位。
15.根据权利要求12或13所述的方法,其中,将伏安信号施加到所述校准电极包括:在所述校准电极和校准参比电极上施加伏安扫描。
CN201880011501.6A 2017-02-13 2018-02-12 在线参比校准 Active CN110291387B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1702349.0 2017-02-13
GB1702349.0A GB2559619B (en) 2017-02-13 2017-02-13 Sensor calibration system
GBGB1716660.4A GB201716660D0 (en) 2017-10-11 2017-10-11 Redox active calibration
GB1716660.4 2017-10-11
PCT/IB2018/000097 WO2018146543A1 (en) 2017-02-13 2018-02-12 Online reference calibration

Publications (2)

Publication Number Publication Date
CN110291387A CN110291387A (zh) 2019-09-27
CN110291387B true CN110291387B (zh) 2023-04-28

Family

ID=63107641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880011501.6A Active CN110291387B (zh) 2017-02-13 2018-02-12 在线参比校准

Country Status (7)

Country Link
US (1) US11307168B2 (zh)
EP (1) EP3580554A4 (zh)
JP (1) JP6920473B2 (zh)
CN (1) CN110291387B (zh)
AU (1) AU2018218318B2 (zh)
CA (1) CA3052889A1 (zh)
WO (1) WO2018146543A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11397161B2 (en) * 2017-10-11 2022-07-26 Anb Sensors Limited Calibration electrode
GB201720353D0 (en) * 2017-12-06 2018-01-17 Anb Sensors Ltd Smart medical/pharmaceutical sensor
DE102018208482B4 (de) * 2018-05-29 2024-03-14 Atspiro Aps Potentiometrische Messkette und Verfahren zur pH-Wert-Bestimmung
DE102019107625A1 (de) * 2018-12-20 2020-06-25 Endress+Hauser Conducta Gmbh+Co. Kg Verfahren zur In-Prozess-Justage eines potentiometrischen Sensors einer Messanordnung
CN110763866B (zh) * 2019-11-11 2022-07-19 湖南大学 一种液相流速测量装置及方法
CN111896604A (zh) * 2020-06-05 2020-11-06 中芯维康医疗科技(重庆)有限责任公司 一种维生素检测仪质控品组合物及其应用
CN112194641A (zh) * 2020-09-02 2021-01-08 商丘师范学院 一种同时检测次氯酸和抗坏血酸的柔性电极及其制备方法和应用
CN112899693A (zh) * 2021-02-22 2021-06-04 郑州 一种锌制参比电极电位校准装置及方法
CN113514524B (zh) * 2021-04-01 2022-04-05 华东师范大学 一种同时校准基准电位和响应斜率的电位传感阵列及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686011A (en) * 1984-03-30 1987-08-11 Conducta Gesellschaft Fur Mess-Und Regeltechnik Mbh + Co. Method for the protection of and/or monitoring of changes in a reference system in analytical measuring engineering, and reference system with a reference electrode
JPS6375551A (ja) * 1986-09-18 1988-04-05 Takeda Medical:Kk 簡易参照電極
JP2004125668A (ja) * 2002-10-03 2004-04-22 Shotaro Oka 酸化還元電位測定装置
JP2005127974A (ja) * 2003-10-27 2005-05-19 Nippon Koden Corp 水素イオン濃度の測定装置および測定方法
CN102439431A (zh) * 2009-03-10 2012-05-02 赛诺瓦系统股份有限公司 用于提供在电化学传感器中内部校准的方法的装置
CN103534585A (zh) * 2011-05-18 2014-01-22 六号元素有限公司 具有金刚石电极的电化学传感器
CN104380094A (zh) * 2012-03-08 2015-02-25 赛诺瓦系统股份有限公司 分析物感测装置
WO2015154252A1 (zh) * 2014-04-09 2015-10-15 深圳市祥涛瑞杰贸易有限公司 一种水质检测装置及检测系统
CN105874644A (zh) * 2013-11-21 2016-08-17 雷诺两合公司 被一体化在电化学系统中的比较电极的原位再校准方法
CN109219746A (zh) * 2016-06-03 2019-01-15 Anb传感器有限公司 使用局部环境pH控制的参比电极

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8758593B2 (en) * 2004-01-08 2014-06-24 Schlumberger Technology Corporation Electrochemical sensor
GB2490117B (en) * 2011-04-18 2014-04-09 Schlumberger Holdings Electrochemical pH sensor
WO2013093899A1 (en) 2011-12-23 2013-06-27 Schlumberger Technology B.V. Electrochemical sensor for ph measurement
CN104380093B (zh) * 2012-01-25 2018-06-05 帕克-汉尼芬公司 分析物传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686011A (en) * 1984-03-30 1987-08-11 Conducta Gesellschaft Fur Mess-Und Regeltechnik Mbh + Co. Method for the protection of and/or monitoring of changes in a reference system in analytical measuring engineering, and reference system with a reference electrode
JPS6375551A (ja) * 1986-09-18 1988-04-05 Takeda Medical:Kk 簡易参照電極
JP2004125668A (ja) * 2002-10-03 2004-04-22 Shotaro Oka 酸化還元電位測定装置
JP2005127974A (ja) * 2003-10-27 2005-05-19 Nippon Koden Corp 水素イオン濃度の測定装置および測定方法
CN102439431A (zh) * 2009-03-10 2012-05-02 赛诺瓦系统股份有限公司 用于提供在电化学传感器中内部校准的方法的装置
CN103534585A (zh) * 2011-05-18 2014-01-22 六号元素有限公司 具有金刚石电极的电化学传感器
CN104380094A (zh) * 2012-03-08 2015-02-25 赛诺瓦系统股份有限公司 分析物感测装置
CN105874644A (zh) * 2013-11-21 2016-08-17 雷诺两合公司 被一体化在电化学系统中的比较电极的原位再校准方法
WO2015154252A1 (zh) * 2014-04-09 2015-10-15 深圳市祥涛瑞杰贸易有限公司 一种水质检测装置及检测系统
CN109219746A (zh) * 2016-06-03 2019-01-15 Anb传感器有限公司 使用局部环境pH控制的参比电极

Also Published As

Publication number Publication date
JP6920473B2 (ja) 2021-08-18
JP2020510221A (ja) 2020-04-02
AU2018218318B2 (en) 2022-08-18
EP3580554A4 (en) 2021-02-17
CN110291387A (zh) 2019-09-27
EP3580554A1 (en) 2019-12-18
CA3052889A1 (en) 2018-08-16
AU2018218318A1 (en) 2019-08-22
WO2018146543A1 (en) 2018-08-16
US11307168B2 (en) 2022-04-19
US20190376927A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
CN110291387B (zh) 在线参比校准
US11674921B2 (en) Online reference calibration
US9347907B2 (en) Device for providing a means for internal calibration in an electrochemical sensor
Osborne et al. Micro-hole interface for the amperometric determination of ionic species in aqueous solutions
US9568450B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
US9279781B2 (en) Measuring arrangement and method for registering an analyte concentration in a measured medium
Kahlert Reference electrodes
Han et al. Amperometric response of solid-contact ion-selective electrodes utilizing a two-compartment cell and a redox couple in solution
GB2559619A (en) Sensor calibration system
Michalak et al. High resolution electrochemical monitoring of small pH changes
US11435315B2 (en) Smart sensor system
Langmaier et al. Wall-jet ion sensor based on ion transfer processes at a polarized room-temperature ionic liquid membrane
Gilbert et al. Voltametric, Amperometric, and Other Electrochemical Analyzers
Hauser Electroanalytical methods
Rüttinger Ion-Sensitive Electrodes
Telting-Diaz et al. a Potentiometry
Bronzino Electrochemical Sensors
Vytras Electroanalytical Methods of Analysis: Potentiometry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant