CN110291100B - 用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的合理设计的合成肽穿梭剂,其用途、与其相关的方法和试剂盒 - Google Patents

用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的合理设计的合成肽穿梭剂,其用途、与其相关的方法和试剂盒 Download PDF

Info

Publication number
CN110291100B
CN110291100B CN201780076076.4A CN201780076076A CN110291100B CN 110291100 B CN110291100 B CN 110291100B CN 201780076076 A CN201780076076 A CN 201780076076A CN 110291100 B CN110291100 B CN 110291100B
Authority
CN
China
Prior art keywords
peptide
cells
cell
polypeptide
gfp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780076076.4A
Other languages
English (en)
Other versions
CN110291100A (zh
Inventor
T·德尔吉迪斯
J-P·莱皮蒂-斯托菲丝
D·盖伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Feldan Bio Inc
Original Assignee
Feldan Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/666,139 external-priority patent/US9982267B2/en
Application filed by Feldan Bio Inc filed Critical Feldan Bio Inc
Publication of CN110291100A publication Critical patent/CN110291100A/zh
Application granted granted Critical
Publication of CN110291100B publication Critical patent/CN110291100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/07Fusion polypeptide containing a localisation/targetting motif containing a mitochondrial localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Mycology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

本说明书涉及将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的方法。该方法包括在肽穿梭剂存在下使细胞与多肽负荷接触,其浓度足以增加多肽负荷的转导效率。本文还描述了可以用于合理设计这种合成肽穿梭剂的参数,满足一个或多个这些设计参数的肽穿梭剂,以及关于使用合成肽穿梭剂将多种多肽负荷(例如转录因子、抗体、CRISPR相关核酸酶和功能基因组编辑复合物)从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的方法和组合物。还描述了用于基因组编辑的NK细胞用于改善免疫疗法的应用和靶标。

Description

用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶 和/或细胞核的合理设计的合成肽穿梭剂,其用途、与其相关 的方法和试剂盒
技术领域
本说明书涉及用于将多种多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的合成肽穿梭剂。更具体地,本说明书涉及在合理设计这种合成肽穿梭剂中有用的参数。
背景技术
将大分子运输入真核细胞内的细胞递送技术具有广泛的应用,特别是在生物制药工业中。尽管一些可溶性的化学物质(例如小分子药物)可被动地扩散通过真核细胞膜,但较大负荷(例如生物制剂、多核苷酸和多肽)需要穿梭剂的帮助以达到其细胞内靶标。
可以从细胞递送技术的进步中获益的领域包括基因组编辑和细胞疗法领域,这些领域在过去二十年中取得了巨大的飞跃。解读控制细胞扩增、分化和重新编程的不同生长因子和分子线索为治疗未满足的医疗需求打开了许多治疗可能性的大门。例如,直接从成体细胞诱导多能干细胞,直接细胞转化(转分化)和基因组编辑(锌指核酸酶,TALEN和CRISPR相关核酸内切酶技术)是已经开发以最大化用于临床应用的细胞治疗价值的方法实例。目前,具有高治疗活性的细胞的生产通常需要离体操作,主要通过病毒转导实现,从而为人类应用提出了重要的安全性和经济问题。在这些细胞内直接递送活性蛋白质如转录因子或人工核酸酶的能力可有利地避免与更危险的基因转移方法相关的安全性问题和调节障碍。特别是,非常需要在免疫细胞中直接递送活性基因组编辑复合物以改善免疫疗法的方法。
涉及将重组蛋白质负荷直接融合到细胞穿透肽(例如HIV反式激活蛋白质TAT)的蛋白质转导方法需要大量的重组蛋白质并且经常不能将负荷递送到适当的亚细胞位置,导致大量的内体捕获和最终退化。已经开发了几种内体膜破坏肽以试图促进内体捕获的负荷逃逸到胞质溶胶中。然而,许多这些内体溶解肽已被用于减轻已经在细胞内递送的负荷的内体截留,并且它们本身不能帮助在细胞内穿过质膜穿梭负荷的初始步骤(Salomone等人,2012;Salomone等人,2013;Erazo-Oliveras等人,2014;Fasoli等人,2014)。
特别地,Salomone等人,2012描述了嵌合肽CM18-TAT11,其由Tat11细胞穿透基序与CM18杂合体(天蚕素-A的残基1-7和蜂毒肽的残基2-12)的融合产生。据报道,该肽被细胞快速内化(由于其TAT基序),并且随后导致内吞囊泡的膜不稳定(由于CM18肽的膜破坏能力)。虽然报道了与荧光标记Atto-633(分子量为774Da;21%的肽的MW)融合的肽CM18-TAT11促进内体被捕获的TAT11-EGFP逃逸到胞质溶胶中(参见Salomone等人,2012的图3),CM18-TAT11肽(单独或与Atto-633结合)未显示作为可以增加多肽负荷从细胞外空间递送到细胞内-即穿过质膜的穿梭剂。事实上,Salomone等人,2012比较了联合治疗(同时治疗TAT11-EGFP和CM18TAT11-Atto-633)与时移治疗(即单独用TAT11-EGFP温育细胞,荧光成像,然后单独用CM18-TAT11-Atto-633肽温育相同的细胞,并再次进行荧光成像),并且作者报道“两者都产生了相同的递送结果”(参见Salomone等人,2012的第295页,在“2.9负荷递送测定”标题下的第一段最后一句)。换句话说,Salomone等人,2012描述了肽CM18TAT11(单独或与Atto-633缀合)对多肽负荷从细胞外空间递送到细胞内部(即蛋白质转导)没有影响。因此,仍然需要改进的穿梭剂,其能够提高多肽负荷的转导效率,并将负荷输送到靶真核细胞的胞质溶胶和/或细胞核中。
本说明书涉及许多文献,其内容通过引用整体并入本文。
发明内容
筛选多种不同的肽,目的是鉴定基于多肽的穿梭剂,其可以将独立的多肽负荷细胞内递送至真核细胞的胞质溶胶/细胞核。一方面,这些大规模的筛选努力导致了令人惊讶的发现,即某些基于结构域的肽穿梭剂通过增加最终内化多肽负荷的细胞的数量和/或比例来提高真核细胞中多肽负荷的转导效率,并且还使内化的负荷能够进入胞质溶胶/细胞核区室(从而避免或减少负荷内体捕获)。这些基于结构域的穿梭剂包含与细胞穿透结构域(CPD)可操作地连接的内体渗漏结构域(ELD),以及任选地一个或多个富含组氨酸的结构域。另一方面,上述筛选努力还揭示了一些肽没有或具有低多肽负荷转导活性、过度毒性和/或其它不期望的性质(例如差的溶解度和/或稳定性)。这些经验数据(正面和负面)在本文中用于鉴定成功的、不太成功的和失败的肽的生理化学性质,以便得到一组能够合理设计和/或鉴定具有蛋白质转导活性的肽的设计参数。
因此,本说明书涉及通过在如本文所述的肽穿梭剂的存在下使细胞与多肽负荷接触,将多肽负荷从细胞外空间递送至靶细胞和/或靶真核细胞的细胞核的方法,与不存在穿梭剂时相比,浓度足以增加多肽负荷的转导效率。更具体地,本说明书涉及可用于合理设计这种合成肽穿梭剂的参数,满足一个或多个这些设计参数的肽穿梭剂,以及涉及使用合成肽穿梭剂将多种多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的方法和组合物。本说明书还涉及机器学习或计算机辅助方法,其可用于产生尊重本文所述的一个或多个设计参数的肽变体。
本说明书还涉及共转导目标多肽负荷和标记蛋白,作为鉴定和/或富集转导细胞的手段。令人惊讶地发现,用标记蛋白成功转导了用目标多肽负荷成功转导的显著高比例的靶真核细胞。相反,未用目标多肽负荷转导的显著高比例的细胞也未用标记蛋白转导。分离标记蛋白阳性的细胞(例如通过FACS)导致用目标多肽负荷成功转导的细胞比例显著增加,并且发现相关性浓度依赖于表现出最高的细胞群。标记蛋白的荧光也倾向于表现出与目标多肽负荷转导的最高比例。还发现,在用目标多肽负荷进行第一轮转导后未成功转导的细胞可以分离并在随后的转导循环中用目标多肽负荷重新转导。因此,在一些方面,本说明书涉及包括与标记蛋白共转导目标多肽负荷的方法,其中标记蛋白可用于分离或富集用目标多肽负荷转导的细胞。在一些实施方式中,本说明书还涉及包括在例如在第一次或之前的转导反应后未用标记蛋白成功转导的细胞上进行的重复连续转导实验的方法。此类方法提出了在有价值的细胞群(例如用于细胞疗法的源自患者的细胞)和/或本身更难以转导的细胞群中提高转导效率的有吸引力的方法。
一般性定义
提供标题和其它标识符,例如(a)、(b)、(i)、(ii)等仅仅是为了便于阅读说明书和权利要求书。在说明书或权利要求书中使用标题或其它标识符不一定要求以字母或数字顺序或其呈现的顺序来执行步骤或元素。
当在权利要求书和/或说明书中与术语“包括”一起使用时,使用词语“一”或“一个”可以表示“一个”,但其也与“一个或多个”、“至少一个”和“一个或多于一个”的含义一致。
术语“约”用于表示一个值包括用于确定该值的设备或方法的误差的标准偏差。一般来说,术语“约”意味着指定高达10%的可能变化。因此,术语“约”包含1、2、3、4、5、6、7、8、9和10%的值的变化。除非另有说明,否则在范围之前使用术语“约”适用于该范围的两端。
如在本说明书和权利要求书中所使用的,词语“包含”(以及包含的任何形式,诸如“包含”和“包含”)、“具有”(以及具有的任何形式诸如“具有”和“具有”)、“包括”(以及包括的任何形式诸如“包括”和“包括”)或“包含”(以及包含的任何形式,如“包含”和“包含”)是包容性的或开放式的且不排除额外、未记载的元素或方法步骤。
如本文所用,“蛋白质”或“多肽”或“肽”是指氨基酸的任何肽连接的链,其可以包含或可以不包含任何类型的修饰(例如翻译后修饰如乙酰化、磷酸化、糖基化、硫酸化、SUMO化、异戊烯化、泛素化等)。为了进一步清楚,设想了蛋白质/多肽/肽修饰,只要该修饰不破坏本文所述的穿梭剂的蛋白质转导活性即可。
如本文所用,“结构域”或“蛋白质结构域”通常是指具有特定功能性或功能的蛋白质的一部分。一些结构域在与蛋白质的其余部分分离时保留其功能,因此可以以模块化方式使用。许多蛋白质结构域的模块化特征可以在它们放置在本说明书的穿梭剂中方面提供灵活性。然而,当在穿梭剂的某些位置(例如在N-或C-末端区域或其间)设计时,一些结构域可以表现得更好。结构域在其内源蛋白质中的位置有时是应该在穿梭剂内设计结构域的位置以及应该使用何种类型/长度的接头的指示。鉴于本公开,技术人员可以使用标准重组DNA技术来操纵本说明书的穿梭剂内的结构域的位置和/或数量。此外,本文公开的测定法以及本领域已知的其它测定法可用于评估穿梭剂内的每个结构域的功能性(例如它们促进细胞穿过质膜,内体逃逸和/或接近胞质溶胶的能力)。标准方法也可用于评估穿梭剂的结构域是否影响待在细胞内递送的负荷的活性。在这方面,本文所用的表述“可操作地连接”是指结构域在本说明书的穿梭剂环境中实现其预期功能(例如细胞穿透,内体逃逸和/或亚细胞靶向)的能力。为了更清楚,表述“可操作地链接”意在定义两个或更多个域之间的功能连接,而不限于它们之间的特定顺序或距离。
如本文所用,术语“合成肽”或“合成多肽”中使用的术语“合成”意指可以在体外产生的非天然存在的分子(例如,化学合成和/或使用重组DNA技术产生的分子)。各种合成制剂的纯度可以通过例如高效液相色谱分析和质谱来评估。化学合成方法可能优于细胞表达系统(例如酵母或细菌蛋白质表达系统),因为它们可能排除了对广泛的重组蛋白质纯化步骤的需要(例如临床使用所需)。相反,较长的合成多肽可能通过化学合成方法更复杂和/或更昂贵,并且可以使用细胞表达系统更有利地产生此类多肽。在一些实施方式中,与从重组宿主细胞表达相反,本说明书中的肽或穿梭剂可以是化学合成的(例如固相或液相肽合成)。在一些实施方式中,本说明书的肽或穿梭剂可缺少N-末端甲硫氨酸残基。本领域技术人员可以通过使用一种或多种修饰的氨基酸(例如非天然存在的氨基酸)或通过化学修饰本说明书的合成肽或穿梭剂来适应本说明书的合成肽或穿梭剂,以满足稳定性或其它需要的特定需要。
当在本文中描述的穿梭剂的上下文中使用时,表述“基于多肽”旨在将目前描述的穿梭剂与非多肽或非蛋白质的穿梭剂(例如基于脂质或阳离子聚合物的转导剂)区分开,其通常与增加的细胞毒性相关,并且可能不适合用于人类治疗。
如本文所用,术语“独立的”通常是指不彼此共价结合的分子或试剂。例如,表述“独立多肽负荷”意指在细胞内递送的多肽负荷,其不与本说明书的穿梭剂共价结合(例如未融合)。在一些方面,具有独立于(未融合)多肽负荷的穿梭剂可能是有利的,因为提供增加的穿梭剂多功能性--例如,不需要为不同多肽负荷重新设计新的融合蛋白,和/或能够容易地改变穿梭剂与负荷的比例(与在融合蛋白的情况下限制为1:1的比例相反)。
如本文所用,表述“是或来自”或“来自”包括给定蛋白质结构域(CPD或ELD)的功能变体,例如保守的氨基酸取代、缺失、修饰以及变体或功能衍生物,这不会消除蛋白质结构域的活性。
本说明书的其它目的、优势和特征将通过阅读以下仅参照附图以实例的方式给出的具体实施方式的非限制性描述而变得更加明显。
附图说明
在附图中:
图1钙黄绿素内体逃逸测定的典型结果,其中HEK293A细胞负载有荧光染料钙黄绿素(“100μM钙黄绿素”),然后用促进钙黄绿素内体逃逸的穿梭剂处理(或不处理)(“100μM钙黄绿素+CM18-TAT5μM”)。图A显示了荧光显微镜实验的结果,而图B显示了流式细胞术实验的结果。
图2显示了钙黄绿素内体逃逸流式细胞术测定的结果,其中HeLa细胞负载有钙黄绿素(“钙黄绿素100μM”),然后用递增浓度的穿梭剂CM18-TAT-Cys(标记为“CM18-TAT”)处理。
图3和4显示了钙黄绿素内体逃逸流式细胞术测定的结果,其中HeLa细胞(图3)或原代成肌细胞(图4)装载有钙黄绿素(“钙黄绿素100μM”),然后用5μM或8μM穿梭剂CM18-TAT-Cys或CM18-穿膜肽-Cys(分别标记为“CM18-TAT”和“CM18-穿膜肽”)处理。
图5显示了通过荧光显微镜观察的GFP转导实验的结果,其中将GFP负荷蛋白与0、3或5μM的CM18-TAT-Cys(标记为“CM18-TAT”)共温育,然后暴露于HeLa细胞。通过明场(上图)和荧光显微镜(下图)观察细胞。
图6显示GFP转导效率实验的结果,其中在暴露于HeLa细胞之前,将GFP负荷蛋白(10μM)与不同浓度的CM18-TAT-Cys(标记为“CM18-TAT”)共温育。细胞通过流式细胞术进行评估,荧光(GFP-阳性)细胞的百分比显示在图A中,相应的细胞毒性数据显示在图B中。
图7显示了GFP转导效率实验的结果,其中在暴露于HeLa细胞之前,将不同浓度的GFP负荷蛋白(10、5或1μM)与5μM的CM18-TAT-Cys(图A,标记为“CM18TAT”)或2.5μM的dCM18-TAT-Cys(图B,标记为“dCM18TAT”)共温育。通过流式细胞术评估细胞,并显示荧光(GFP-阳性)细胞的百分比。
图8和9显示了GFP转导效率实验的结果,其中在暴露于HeLa细胞之前,将GFP负荷蛋白(10μM)与不同浓度和组合的CM18-TAT-Cys(标记为“CM18TAT”)、CM18-穿膜肽-Cys(标记为“CM18穿膜肽”)和每种的二聚体(dCM18-TAT-Cys(标记为“dCM18TAT”)、dCM18-穿膜肽-Cys(标记为“dCM18穿膜肽”)共温育。通过流式细胞术评估细胞,并显示荧光(GFP-阳性)细胞的百分比。
图10显示了TAT-GFP转导实验的典型结果,其中在暴露于HeLa细胞之前,将TAT-GFP负荷蛋白(5μM)与3μM的CM18-TAT-Cys(标记为“CM18-TAT”)共温育。通过10倍和40倍放大倍数的明场和荧光显微镜观察细胞和GFP荧光。箭头指示在不存在CM18-TAT-Cys的情况下TAT-GFP的内体递送以及在CM18-TAT-Cys存在下的其核递送。
图11显示TAT-GFP转导效率实验的结果,其中在暴露于HeLa细胞之前,将TAT-GFP负荷蛋白(5μM)与不同浓度的CM18-TAT-Cys(标记为“CM18TAT”)共温育。细胞通过流式细胞术评估,荧光(GFP-阳性)细胞的百分比显示在图A中,相应的细胞毒性数据显示在图B中。
图12显示GFP-NLS转导实验的典型结果,其中在暴露于HeLa细胞5分钟之前,将GFP-NLS负荷蛋白(5μM)与5μM的CM18-TAT-Cys(标记为“CM18-TAT”)共温育。通过放大10倍、20倍和40倍的明场和荧光显微镜观察细胞和GFP荧光。箭头表示GFP-NLS的核递送区域。
图13显示GFP-NLS转导效率实验的结果,其中在暴露于HeLa细胞之前,将GFP-NLS负荷蛋白(5μM)与不同浓度的CM18-TAT-Cys(标记为“CM18TAT”)共温育。细胞通过流式细胞术评估,荧光(GFP-阳性)细胞的百分比显示在图A中,相应的细胞毒性数据显示在图B中。
图14和15显示GFP-NLS转导效率实验的结果,其中在暴露于HeLa细胞之前,将GFP-NLS负荷蛋白(5μM)与不同浓度和组合的CM18-TAT(标记为“CM18TAT”)、CM18-穿膜肽(标记为“CM18穿膜肽”)和每种的二聚体(dCM18-TAT-Cys、dCM18-穿膜肽-Cys;分别标记为“dCM18TAT”和“dCM18穿膜肽”)共温育。通过流式细胞术评估细胞,并显示荧光(GFP-阳性)细胞的百分比。
图16显示GFP-NLS转导效率实验的结果,其中在进行流式细胞术分析之前,在纯DMEM培养基(“DMEM”)或含有10%FBS(“FBS”)的DMEM培养基中,将GFP-NLS负荷蛋白(5μM)与单独的CM18-TAT-Cys(3.5μM,标记为“CM18TAT”)或与dCM18-穿膜肽-Cys(1μM,标记为“dCM18pen”)共温育5分钟或1小时。显示了荧光(GFP-阳性)细胞的百分比。使用未用穿梭剂或GFP-NLS(“对照”)处理的细胞以及用不具有穿梭剂(GFP-NLS 5μM)的GFP-NLS处理的细胞用作对照。
图17显示GFP-NLS转导效率实验的结果,其中在暴露于THP-1细胞之前,将GFP-NLS负荷蛋白(5μM)与或不与1μM CM18-TAT-Cys(标记为“CM18TAT”)共温育。细胞通过流式细胞术评估,荧光(GFP-阳性)细胞的百分比显示在图A中,相应的细胞毒性数据显示在图B中。
图18显示了转导效率实验的结果,其中在暴露于HeLa细胞之前,负荷蛋白FITC标记的抗微管蛋白抗体(0.5μM)与5μM的CM18-TAT-Cys(标记为“CM18-TAT”)共温育。功能性抗体递送通过明场(20x)和荧光显微镜(20x和40x)观察,其中可见在细胞质中的荧光微管蛋白纤维。
图19显示了FITC标记的抗微管蛋白抗体转导效率实验的结果,其中在暴露于HeLa细胞之前,将抗体负荷蛋白(0.5μM)与3.5μM的CM18-TAT-Cys(标记为“CM18TAT”)、CM18-穿膜肽-Cys(标记为“CM18pen”)或dCM18-穿膜肽-Cys(标记为“dCM18pen”)或3.5μM的CM18-TAT-Cys和0.5μM的dCM18-穿膜肽-Cys的组合共温育。细胞通过流式细胞术评估,荧光(GFP-阳性)细胞的百分比显示在图A中,相应的细胞毒性数据显示在图B中。
图20显示了DNA转染效率实验的结果,其中在暴露于HEK293A细胞之前,将用Cy5TM染料标记的质粒DNA(pEGFP)与0、0.05、0.5或5μM的CM18-TAT-Cys(标记为“CM18-TAT”)共温育。流式细胞术分析允许定量Cy5TM发射(对应于DNA细胞内递送;y轴)和GFP发射(对应于DNA的成功核递送;每个柱状图上指示的百分比)。
图21显示GFP-NLS转导效率实验的结果,其中在暴露于HeLa细胞之前,将GFP-NLS负荷蛋白(5μM)与1、3或5μM的CM18-TAT-Cys(标记为“CM18TAT”)、His-CM18-TAT(标记为“His-CM18TAT”)共温育。细胞通过流式细胞术评估,荧光(GFP-阳性)细胞的百分比显示在图A中,相应的细胞毒性数据显示在图B中。
图22显示转导效率实验的结果,其中在HeLa细胞中使用穿梭His-CM18-PTD4细胞内递送GFP-NLS负荷蛋白质。通过流式细胞术评估GFP-NLS转导效率并显示了GFP荧光细胞的百分比(“阳性细胞(%)”)以及相应的细胞活力数据(“活力(%)”)。图A显示了使用不同转导方案的GFP-NLS转导效率的比较(方案A比B)。图B显示了当使用方案B时使用不同浓度的穿梭His-CM18-PTD4的效果。
图23-26是显示转导实验结果的显微图像,其中GFP-NLS(图23、24A、24B、25和26)或FITC标记的抗微管蛋白抗体(图24C和24D)负荷蛋白使用穿梭His-CM18-PTD4在HeLa细胞中细胞内递送。图23、24和26中显示了活细胞的明场和荧光图像。在图25中,将细胞固定,透化并用抗GFP抗体和荧光二抗进行免疫标记。白色三角形窗口指示核(DAPI)和GFP-NLS信号之间共标记区域的实例。图26显示了通过共聚焦显微镜捕获的图像。
图27显示HeLa细胞中的动力学(时程)转导实验的显微镜图像,其中在使用穿梭His-CM18-PTD4细胞内递送后45、75、100和120秒跟踪GFP-NLS负荷蛋白的荧光。45秒后观察到的扩散的细胞质荧光模式(图A)在120秒时逐渐变成更浓缩的核模式(图D)。
图28显示共递送转导实验的显微镜图像,其中两种负荷蛋白(GFP-NLS和mCherryTM-NLS)通过穿梭His-CM18-PTD4在HeLa细胞中同时细胞内递送。通过(A)明场和(B-D)荧光显微镜观察细胞和荧光信号。白色三角形窗口指示核(DAPI)和GFP-NLS或mCherryTM之间共标记区域的实例。
图29显示使用不同穿梭剂或单结构域/对照肽的HeLa细胞中GFP-NLS转导效率实验的结果。通过流式细胞术评估GFP-NLS转导效率且在图A、B、D-G和I显示GFP荧光细胞百分比(“阳性细胞(%)”)以及相应的细胞活力数据(“活力(%)”)。在图A和D-F中,将细胞暴露于负荷/穿梭剂10秒钟。在图I中,细胞暴露于负荷/穿梭剂1分钟。在图B、C、G和H中,细胞暴露于负荷/穿梭剂1、2或5分钟。“相对荧光强度(FL1-A)”或“信号强度”对应于GFP-NLS荧光蛋白在用穿梭剂递送后来自具有GFP荧光信号的每个细胞的所有荧光强度的平均值。图D显示了对照实验的结果,其中仅使用单结构域肽(ELD或CDP)或肽His-PTD4(His-CPD)而不是多结构域穿梭剂用于GFP-NLS转导。
图30显示使用穿梭剂(A)TAT-KALA、(B)His-CM18-PTD4、(C)His-C(LLKK)3C-PTD4、(D)PTD4-KALA、(E)EB1-PTD4和(F)His-CM18-PTD4-His以GFP-NLS转导HeLa细胞的显微镜图像。最下面一排中的插图显示了相应的流式细胞术分析的结果,表明呈现GFP荧光的细胞的百分比。
图31显示转导效率实验的结果,其中使用穿梭His-CM18-PTD4使用不同的方案(方案A对C)在THP-1细胞中细胞内递送GFP-NLS负荷蛋白。通过流式细胞术评估了GFP-NLS转导效率并显示了GFP荧光细胞的百分比(“阳性细胞(%)”)以及相应的细胞活力数据(“活力(%)”)。“对照”对应于在没有穿梭剂的情况下暴露于GFP-NLS负荷蛋白的THP-1细胞。
图32显示了使用穿梭His-CM18-PTD4以GFP-NLS负荷蛋白转导的THP-1细胞的显微镜图像。以4倍,10倍和40倍放大倍数拍摄的图像分别显示在图A-C中。图C中的白色三角形窗口指示细胞(明场)和GFP-NLS荧光之间共标记的区域的实例。图D显示相应的流式细胞术分析的结果,表明呈现GFP荧光的细胞的百分比。
图33显示了使用穿梭His-CM18-PTD4以GFP-NLS负荷蛋白转导的THP-1细胞的显微镜图像。白色三角形窗口指示细胞(明场;图A和B)和GFP-NLS荧光(图C和D)之间共标记区域的实例。
图34显示了在THP-1细胞中使用穿梭TAT-KALA、His-CM18-PTD4或His-C(LLKK)3C-PTD4的GFP-NLS转导效率实验的结果。负荷蛋白/穿梭剂暴露于THP-1细胞15、30、60或120秒。通过流式细胞术评估了GFP-NLS转导效率且在图A中显示了GFP荧光细胞的百分比(“阳性细胞(%)”)以及相应的细胞活力数据(“活力(%)”)。在图B中,“相对荧光强度(FL1-A)”对应GFP-NLS荧光蛋白在用穿梭剂递送后来自具有GFP荧光信号的每个细胞的所有荧光强度的平均值。
图35显示转导效率实验的结果,其中THP-1细胞在穿梭剂存在下每天暴露于GFP-NLS负荷2.5小时。在图A-E中使用His-CM18-PTD4,在图F中使用His-C(LLKK)3C-PTD4。在第1天和第3天通过流式细胞术确定GFP-NLS转导效率,且在图A-C和F中将结果表示为GFP荧光细胞的百分比(“阳性细胞(%)”)以及相应的细胞活力数据(“活力(%)”)。对于暴露于His-CM18-PTD4穿梭剂的细胞,图D显示1、2、4和24h后THP-1细胞的代谢活性指数,且图E显示1-4天后THP-1细胞的代谢活性指数。
图36显示如通过流式细胞术所测量,在多种不同类型的细胞中(例如贴壁和悬浮,以及细胞系和原代细胞)使用穿梭His-CM18-PTD4的GFP-NLS转导效率的比较。结果表示为GFP荧光细胞的百分比(“阳性细胞(%)”)以及相应的细胞活力数据(“活力(%)”)。
图37显示使用穿梭His-CM18-PTD4以GFP-NLS负荷转导的不同类型的细胞(A-H)的荧光显微镜图像。通过荧光显微镜在10x放大倍数下观察GFP荧光。插图中还提供了平行的流式细胞术实验结果(GFP荧光细胞的活力和百分比)。
图38显示使用穿梭His-CM18-PTD4以GFP-NLS转导的原代人成肌细胞的荧光显微镜图像。在用抗GFP抗体和荧光二抗免疫标记GFP-NLS之前,将细胞固定并透化。图A中显示了免疫标记的GFP,并且该图像于图B中的核(DAPI)标记重叠。
图39显示了用于评估细胞内递送的CRISPR/Cas9-NLS复合物的活性的转染质粒替代测定的示意图(A、B和C)和样品荧光图像(D和E)。(A)在第1天,用编码荧光蛋白mCherryTM和GFP的表达质粒转染细胞,用终止密码子分离它们的两个开放阅读框。用表达质粒转染细胞仅导致mCherryTM表达(D)。然后将已经设计/编程以在终止密码子处切割质粒DNA的CRISPR/Cas9-NLS复合物细胞内递送至表达mCherryTM的转染细胞,在终止密码子处产生质粒DNA的双链切割(B)。在一部分细胞中,发生切割的质粒的随机非同源DNA修复,并导致终止密码子的去除(C),从而去除GFP表达和荧光(E)。白色三角形窗口表示mCherryTM和GFP荧光的共同标记区域的实例。
图40显示了表达mCherryTM和GFP的HeLa细胞的荧光显微图像,表明CRISPR/Cas9-NLS介导的质粒替代DNA的切割。在图A-D中,以三种质粒共转染HeLa细胞:如图39概述中所述的质粒替代品,和分别编码Cas9-NLS蛋白和crRNA/tracrRNA的两种其它表达质粒。CRISPR/Cas9-介导的在终止密码子处质粒替代的切割和随后的通过细胞的DNA修复允许GFP(图B和D)以及mCherryTM(图A和C)的表达。在图E-H中,使用穿梭His-CM18-PTD4以质粒替代品转染且随后以活性CRISPR/Cas9-NLS复合物转导HeLa细胞CRISPR/Cas9-介导的在终止密码子处质粒替代的切割和随后的通过细胞的DNA修复允许GFP(图F和H)以及mCherryTM(图E和G)的表达。
图41A显示通过琼脂糖凝胶电泳分离的DNA切割测定(T7E1测定)的产物,其用于测量CRISPR/Cas9介导的细胞基因组DNA的切割。将HeLa细胞用经程序化以切割PPIB基因的CRISPR-Cas9-NLS复合物转导。在白色框1和2中出现切割产物表明通过CRISPR-Cas9-NLS复合物(其使用穿梭His-C(LLKK)3C-PTD4(道B)或以用作阳性对照的脂质转染剂(道D)细胞内递送)对PPIB基因的切割。该切割产物在阴性对照(道A和C)中不存在。
图41B显示通过琼脂糖凝胶电泳分离的DNA切割测定(T7E1测定)的产物,其用于测量CRISPR/Cas9介导的细胞基因组DNA的切割(PPIB DNA序列)。左图显示了在HeLa细胞中用穿梭剂His-CM18-PTD4递送复合物之后通过CRIPR/Cas9复合物扩增的PPIB DNA序列的切割产物。右图显示在T7E1消化程序之前扩增的DNA序列作为阴性对照。
图41C显示通过琼脂糖凝胶电泳分离的DNA切割测定(T7E1测定)的产物,其用于测量CRISPR/Cas9介导的细胞基因组DNA切割(PPIB DNA序列)。左图显示了HeLa细胞与Cas9/RNA复合物在脂质转染剂存在下温育后的扩增PPIB DNA序列(DharmaFectTM转染剂#T-20XX-01)(阳性对照)。右图显示在T7E1消化程序之前扩增的DNA序列作为阴性对照。图42-44显示了使用不同浓度的穿梭His-CM18-PTD4和不同的负荷/穿梭剂暴露时间,已经用转录因子HOXB4转导的THP-1细胞的转录活性。通过实时PCR监测靶基因的mRNA水平来确定HOXB4的成功的核内递送,并且将结果针对阴性对照(HOXB4而无穿梭剂)中的那些进行标准化并表示为“超过对照的倍数”(左侧柱状图)。量化总细胞RNA(ng/μL)并用作细胞活力的标记(右侧柱状图)。或“对照”意为“无处理”;“TF”意为‘’仅转录因子”;“FS”意为“仅穿梭剂”。
图45显示了使用穿梭His-CM18-PTD4以野生型HOXB4负荷转导的HeLa细胞的荧光显微镜图像。30分钟温育以允许转导的HOXB4-WT在核中积累后,固定、透化细胞并使用原代抗HOXB4单克隆抗体和荧光二抗标记HOXB4-WT(图B和D)。以DAPI标记核(图A和C)。白色三角形窗口表示核和HOXB4间共标记区域的实例–比较A比B(x20放大倍数)和C比D(x40放大倍数)。
图46显示了通过琼脂糖凝胶电泳分离的DNA切割测定的产物,其用于在以不同的穿梭剂胞内递送复合物之后测量CRISPR/Cas9介导的细胞基因组DNA的切割(HPTR序列)。图A显示在HeLa细胞中使用下述穿梭剂的结果:His-CM18-PTD4、His-CM18-PTD4-His和His-C(LLKK)3C-PTD4。图B显示在Jurkat细胞中使用His-CM18-PTD4-His和His-CM18-L2-PTD4的结果。阴性对照(图A和B中的道4)显示细胞与CRISPR/Cas9复合物而无穿梭剂存在下温育后扩增的HPTR DNA序列。阳性对照(图A和B中的道5)显示细胞与CRISPR/Cas9复合物在市售脂质转染剂存在下温育后扩增的HPTR DNA序列。
图47显示使用穿梭剂His-CM18-PTD4、TAT-KALA、EB1-PTD4、His-C(LLKK)3C-PTD4和His-CM18-PTD4-His已用转录因子HOXB4转导的THP-1细胞的转录活性。通过实时PCR监测靶基因的mRNA水平来确定HOXB4的成功的核内递送,并且将结果针对阴性对照(HOXB4而无穿梭剂)中的那些进行标准化并表示为“超过对照的倍数”(左侧柱状图)。量化总细胞RNA(ng/μL)并用作细胞活力的标记(右侧柱状图)。或“对照”意为“无处理”;“TF”意为‘’仅转录因子”;“FS”意为“仅穿梭剂”。
图48显示通过His-CM18-PTD4在大鼠顶叶皮层中的体内GFP-NLS递送。简而言之,在穿梭剂His-CM18-PTD4(20μM)的存在下将GFP-NLS(20μM)注射到大鼠的顶叶皮质中10分钟。收集腹侧大鼠脑切片并在(A)4x,(C)10x和(D)20x放大倍数下通过荧光显微镜分析。注射部位位于顶叶皮层(PCx)的最深层。在His-CM18-PTD4穿梭剂存在下,GFP-NLS在PCx,胼胝体(Cc)和纹状体(Str)的细胞核中扩散(白色曲线标记脑结构间的限制)。图B显示来自Franklin和Paxinos的大鼠脑图谱的注射部位(黑色箭头)的立体坐标。在脑的左侧部分实施His-CM18-PTD4存在下GFP-NLS的注射,在对侧部位进行阴性对照(仅GFP-NLS的注射)。图B中的黑色圆圈和黑色连线显示在荧光图像(A,C和D)中观察到的区域。
图49A和49B分别显示了肽FSD5和VSVG PTD4的螺旋轮(左图)和“开口圆柱”(右图)。每个氨基酸残基的几何形状对应于其基于残基侧链的生化特性(即疏水性,电荷或亲水性)。FSD5和VSVG-PTD4的两个开口圆柱形表示之间的主要差异之一是在FSD5中存在高疏水性核心(在图49A中概述,左图和右图),其在VSVG PTD4中不存在。图49A和49B的下中间板中的圆柱表示右板中开口圆柱形表示的简化形式,其中:“H”表示高疏水表面区域;“h”表示低疏水表面积;“+”表示带正电的残基;“h”代表亲水残基。
图49C-49F分别显示了肽FSD5,FSD18,VSVG PTD4和FSD44的结构的预测三维模型。
图49G显示肽His-CM18-PTD4;EB1-PTD4;His-C(LLKK)3C-PTD4;FSD5;FSD10;FSD19;FSD20;FSD21;FSD44;FSD46;和FSD63的多序列比对,以及每个残留位置的“一致性”分数。为了比对,富含组氨酸的结构域被自愿排除。
图50A-50C显示了由穿梭剂FSD5成功转导的活HeLa细胞的显微镜图像,其中荧光标记的抗体作为负荷。图50A显示了通过明视场(上图)和荧光显微镜(下图)在20x放大倍数下可视化的山羊抗兔IgG H&L(Alexa594)抗体的细胞质转导。图50B和50C分别显示了通过明视场(上图)和荧光显微镜(下图)以10倍和20倍放大倍数可视化的山羊抗小鼠IgGH&L(Alexa/>488)抗体的细胞质转导。
图50D显示了转导实验的结果,其中使用穿梭剂FSD19将识别核周膜中抗原的抗NUP98抗体转导到HeLa细胞中。转导后,将HeLa细胞固定,透化并用识别抗NUP98抗体的荧光(AlexaTM 488)二抗(左图)和Hoechst核染色(右图)标记。上面板和下面板分别表示在20倍和40倍放大率下拍摄的图像。
图51A-51F显示了基因组编辑实验的结果,其中使用CRISPR/Cas9-NLS基因组编辑复合物转导到不同细胞类型(HeLa,NK细胞,NIC-H196细胞,HCC-78细胞和REC-1细胞)中。通过基因组DNA切割测定验证了不同的穿梭剂肽(FSD5,FSD8,FSD10,FSD18)和成功的基因组编辑。CRISPR/Cas9-NLS复合物由重组Cas9-NLS组成,其与设计用于切割HPRT基因组DNA序列的crRNA/tracrRNA复合。与未切割的基因组靶基因(细虚线箭头)相比,通过检测基因组DNA切割产物(粗实线箭头)观察到成功的基因组编辑。阴性对照(-ctrl”)来自在不存在任何穿梭剂肽的情况下进行的转导实验。使用成像软件直接在凝胶上量化切割产物条带的相对信号强度。给定泳道中所有条带的总和对应于信号的100%,并且每条泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。
图51G显示在不存在(“无模板”)或存在(“+500ng”)短DNA模板(72bp)的情况下由FSD5转导的CRISPR/Cas9-NLS复合物对靶向HPRT基因组序列的切割。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的CRISPR/Cas9-NLS介导的切割产物的条带,这表明在存在和不存在DNA模板下成功转导全功能基因组编辑复合物。每个泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。图51H显示了使用对短DNA模板特异的引物对图51G的样品进行PCR扩增的结果,表明DNA模板序列的基因组插入(参见图51H中的箭头)。
图51I显示了在缺乏(“无模板”)或存在(“+500ng”)长线性DNA模板(1631bp)的情况下由FSD5转导的CRISPR/Cas9-NLS复合物对靶向HPRT基因组序列的切割。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的CRISPR/Cas9-NLS介导的切割产物的条带,这表明在存在和不存在DNA模板下成功转导全功能基因组编辑复合物。每个泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。图51J显示了使用设计用于扩增基因组切割位点的引物的图51I样品的PCR扩增结果。通过在“+500ng”(微弱)和“+1000ng”(较暗)泳道中存在较大的条带,可以看到长DNA模板序列的基因组插入-参见图51J中的箭头。
图51K和51L显示了在PCR扩增和琼脂糖凝胶电泳分离后,在HeLa(图51K)和NK细胞(图51L)中不存在(“-ctrl”)或存在穿梭剂FSD18的情况下用CRISPR/Cpf1-NLS基因组编辑复合物切割靶基因组DNMT1DNA序列的结果。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的CRISPR/Cpf1-NLS介导的切割产物的条带,这表明全功能基因组编辑复合物的成功转导。使用成像软件直接在凝胶上量化每个不同条带的相对信号强度。给定泳道中所有条带的总和对应于信号的100%,并且每条泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。使用基于脂质转染胺的转染试剂CRISPRMAXTM以转导CRISPR/Cpf1-NLS基因组编辑复合物未观察到基因组DNA切割。
图52A-52E显示了在通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD10,FSD18,FSD19,FSD21,FSD23或FSD43下和在不同类型细胞:THP-1(图52A);NK(图52B-D)和HeLa(图52E)中用CRISPR/Cas9-NLS和crRNA/tracrRNA或者用CRISPR/Cpf1-NLS和单个指导RNA切割靶基因组B2M DNA序列的结果。在指定的时间和浓度下将细胞与CRISPR/Cpf1复合物和FSD穿梭剂一起温育。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的CRISPR系统介导的切割产物的条带,这表明完全功能性CRISPR/Cas9NLS基因组编辑复合物的成功转导。使用成像软件直接在凝胶上量化每个不同条带的相对信号强度。给定泳道中所有条带的总和对应于信号的100%,并且每条泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。
图52F-52I显示了在通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD10,FSD18,FSD19或FSD23下和在不同类型细胞:NK(图52F-G);THP-1(图52H)和原代成肌细胞(图52I)中用CRISPR/Cpf1-NLS和单一指导crRNA切割靶基因组GSK3(图52F),CBLB(图52G)和DNMT1(图52H-I)DNA序列的结果。在指定的时间和浓度下将细胞与CRISPR/Cpf1复合物和FSD一起温育。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于这些靶基因的CRISPR系统介导的切割产物的条带,这表明完全功能性CRISPR/Cpf1NLS基因组编辑复合物的成功转导。
图52J-52N显示了在通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD10,FSD21,FSD22或FSD23下和在NK细胞(图52F-52G)和NK-92细胞(图52H)中用CRISPR/Cpf1-NLS和单一指导crRNA切割靶基因组NKG2A DNA序列的结果。将细胞与CRISPR/Cpf1复合物一起温育指定的温育时间和浓度。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的CRISPR系统介导的切割产物的条带,这表明完全功能性CRISPR/Cpf1NLS基因组编辑复合物的成功转导。
图53A-53C显示了用CRISPR系统切割靶基因组HPRT,DNMT1和B2M DNA序列的结果。使用设计用于这些目的使用穿梭剂肽FSD18转导的CRISPR/Cas9-NLS和CRISPR/Cpf1-NLS基因组编辑复合物,在HeLa细胞中靶向两个基因组HPRT和DNMT1(图53A)DNA序列或基因组B2M外显子2上的两个DNA基因座(图53B)。在通过琼脂糖凝胶电泳分离后,不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD10,FSD21或FSD23下用CRISPR/Cpf1-NLS和单一指导crRNA-1,crRNA-2或两者在NK细胞中靶向基因组B2M外显子2上的两个DNA基因座(图53C)。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于存在针对B2M外显子2的crRNA-1或crRNA2或两者(crRNA1+2)下CRISPR/Cpf1介导的切割产物的条带,这表明完全功能性CRISPR/Cpf1 NLS基因组编辑复合物的成功转导。
图54A-54D显示了流式细胞术测定的结果,其中T细胞用递增浓度的穿梭剂FSD21(图54B中为8μM,图54C中为10μM,图54D中为12μM),1.33μM的CRISPR/Cpf1-NLS系统和2μM靶向B2M基因组DNA序列的单指导crRNA处理。在处理后72小时,通过使用APC标记的小鼠抗人HLA-ABC抗体鉴定HLA阳性和HLA阴性(B2M敲除)细胞。左移细胞群表明细胞表面HLA受体的成功失活,这是由于B2M基因的失活导致的。
图55A-55D显示了流式细胞术测定的结果,其中T细胞用递增浓度的穿梭剂FSD18(图55B中8μM,图55C中10μM,图55D中12μM),1.33μM CRISPR/Cpf1-NLS系统和2μM靶向B2MDNA序列的单指导crRNA处理。在处理后72小时,通过使用APC标记的小鼠抗人HLA-ABC抗体鉴定HLA阳性和HLA阴性(B2M敲除)细胞。左移细胞群表明细胞表面HLA受体的成功失活,这是由于B2M基因的失活导致的。
图56A-56E显示了流式细胞术测定的结果,其中THP-1细胞用1.33μM CRISPR/Cpf1-NLS系统,2μM各自靶向B2M基因组DNA序列内的不同位点的一种或三种指导crRNA和3μM FSD18的混合物处理(图56B-56E)或不处理(“未处理”,图56A)。在处理后48小时,通过在未处理的细胞(图56A),crRNA E处理的细胞(图56B),crRNA G处理的细胞(图56C),crRNA J处理的细胞(图56D)和crRNA E+G+J处理的细胞(图56E)中使用APC标记的小鼠抗人HLA-ABC抗体鉴定HLA阳性和HLA阴性(B2M敲除)细胞。左移细胞群表明细胞表面HLA受体的成功失活,这是由于B2M基因的失活导致的。
图57A和57B显示了实验结果,其中对NK-92细胞进行基因组编辑以确定内源性NKG2A基因的失活是否可以增加其杀死靶HeLa细胞的能力。简言之,用CRISPR/Cpf1-NLS基因组编辑复合物转导NK-92细胞,所述复合物设计用于使用穿梭剂肽FSD23切割NKG2A基因。转导后,用藻红蛋白(PE)标记的抗-NKG2A抗体对NK-92细胞进行免疫标记,然后通过流式细胞术分析,如图57A所示,以验证NKG2A的成功失活。作为对照,未标记的野生型NK-92细胞(“未标记的WT细胞”)没有抗体信号,标记的野生型NK-92细胞(“标记的WT细胞”)具有完全免疫标记信号。对于NKG2A-KO NK-92细胞,观察到两个细胞群(峰):一个在细胞表面完全敲除NKG2A受体表达(“完整NKG2A KO细胞”),另一个细胞群部分缺乏表达(“部分NKG2A KO细胞”)。图57B显示了细胞毒性测定的结果,其中先前装载有细胞内荧光染料(钙黄绿素)的靶HeLa细胞以不同的效应子:目标比率(E:T比率)暴露于野生型(实线)或基因组编辑的NKG2A-KO(虚线)效应子NK-92细胞。通过细胞内钙黄绿素进入细胞外空间的相对释放来评估细胞毒性,所述细胞外空间是由靶HeLa细胞的细胞膜破坏引起的(%细胞切割”)。
图58A-58F显示了流式细胞术测定的结果,其中用GFP-NLS,旨在切割B2M基因组DNA序列的CRISPR/Cpf1-NLS复合物和穿梭剂FSD18的混合物处理T细胞(图58A-58F)或不处理(“未处理”,图58A)。图58B和58C显示了基于GFP荧光(x-轴)和细胞表面HLA表达(y-轴)处理后5小时的二维流式细胞术分析的结果。基于其GFP-荧光进入GFP阴性级分(图58E)和GFP阳性级分(图58F)的细胞的荧光激活细胞分选(图58D)导致基因组编辑(HLA阴性)细胞的比例增加至29.7%GFP阳性级分(图58F)。然后对每个细胞级分进行标准T7E1切割测定,然后进行琼脂糖凝胶电泳以评估基因组编辑的有效性。结果显示在图58G中,其中细虚线箭头表示对应于靶基因的条带,而粗实线箭头表示对应于该靶基因的CRISPR系统介导的切割产物的条带。泳道2,3和4底部的值对应于该泳道中切割产物条带(实线箭头)的相对信号强度(%)。
图59A-59F显示了流式细胞术测定的结果,其中用GFP-NLS,设计用于切割内源性B2M基因的CRISPR/Cpf1-NLS复合物和穿梭剂FSD18混合物处理T细胞(图59C-59F)或不处理(“未处理”,图59A和59B)。图59A和59B显示了未暴露于肽穿梭剂,GFP和CRISPR/Cpf1的“未处理的”阴性对照细胞的结果,其通过流式细胞术分析GFP荧光(图59A)和细胞表面HLA表达(图59B)。通过肽FSD18将T细胞用GFP-NLS和CRISPR/Cpf1两者共转导,得到的GFP荧光分布示于图59C。图59C中所示的两个门表示被认为是GFP阳性的细胞级分(“GFP+”;93.2%;实线门)和被认为表现出高GFP荧光的细胞亚级分(“GFP高”;33.1%;虚线门)。与被认为表现出高GFP荧光的细胞(图59E)相比,进行荧光激活细胞分选以定量被认为是GFP阳性的细胞中的细胞表面HLA表达水平(图59D)。使用12μM或15μM FSD18重复上述共转导实验,然后将荧光激活细胞分选到GFP阳性和GFP阴性细胞级分中。对每个级分进行标准T7E1切割测定,并对不同的样品进行琼脂糖凝胶电泳。
图60显示了流式细胞术分析的结果,其中使用肽FSD18用负荷GFP-NLS对T细胞进行第一次转导(图60B)或不进行(“未处理”,图60A)。第一次转导导致GFP-NLS转导效率为55.4%(图60B)。在第一次转导后进行荧光激活细胞分选以分离GFP阴性细胞(图60C),并使用肽FSD18用GFP-NLS对该GFP阴性细胞群进行第二次转导。该第二次转导的结果显示在图60D中,其中发现GFP-NLS转导效率为60.6%。
序列表
该申请包含2017年10月10日创建的计算机可读形式的序列表,其大小约为5MB。计算机可读形式通过引用并入本文。
/>
具体实施方式
大规模筛选努力导致发现基于结构域的肽穿梭剂,其包含与细胞穿透结构域(CPD)可操作地连接的内体渗漏结构域(ELD),以及任选地一个或多个富含组氨酸的结构域,可以增加真核细胞中独立多肽负荷的转导效率,使得负荷进入胞质溶胶/核区室(例如参见实施例1-15)。相反,上述筛选努力还揭示了一些肽没有或具有低多肽负荷转导能力,过度毒性和/或其它不期望的性质(例如差的溶解度和/或稳定性)。
基于这些经验数据(阳性和阴性),比较成功的、不太成功的和失败的肽的氨基酸序列和性质,以便更好地理解更成功的穿梭剂所共有的物理化学性质。这种比较涉及两种主要方法:首先,基于我们的编码生物特征数据,根据其转导性能手动对不同筛选的肽进行分层;第二,更简化的“转导评分”方法,其仅考虑给定多肽负荷和细胞系的不同肽的转导效率和细胞毒性。
对于手动分层,筛选的肽根据其转导性能单独评估,同时适当考虑例如:它们的溶解度/稳定性/合成的容易性;它们促进内体捕获的钙黄绿素逃逸的能力(例如参见实施例2);在不同类型的细胞和细胞系(例如原代,永生化,贴壁,悬浮等)中以及不同的转导方案下通过流式细胞术评估它们在细胞内递送一种或多种类型的独立多肽负荷的能力(例如参见实施例3-6和8-15);通过荧光显微镜(例如对于荧光标记的负荷),转录活性(例如转录因子负荷)的增加,或基因组编辑能力(例如对于核酸酶负荷或基因组编辑复合物例如CRISPR/Cas9或CRISPR/Cpf1)评估它们将多肽负荷递送至胞质溶胶和/或细胞核的能力(例如参见实施例3-6和8-15),以及在不同的转导方案下对不同类型的细胞和细胞系(例如原代,永生化,粘附,悬浮)的毒性。
对于“转导评分”方法,给每个肽分配对应于给定细胞系和荧光标记的多肽负荷的分数,其将转导效率和细胞毒性数据组合成单个数值。通过简单地将通过流式细胞术观察到的给定肽、负荷和细胞类型的最高百分比转导效率乘以测试细胞系中肽的细胞活力百分比来计算转导评分。然后根据它们的转导评分将肽分类作为筛选工具,以将肽分层为成功的、不太成功的或失败的穿梭剂。
上述手动固化和基于“转导评分”的分析揭示了成功的基于区域的穿梭剂通常共享的许多参数(例如参见实施例A)。然后这些参数成功地用于手动设计具有多肽负荷转导活性的新肽穿梭剂,其缺乏和/或不基于已知推定的CPD和/或ELD(例如参见实施例B)。此外,观察到满足大多数设计参数的肽通常具有最高的转导评分,而满足最少数量的设计参数的肽通常具有最低的转导评分。
本文所述的设计参数通过测试多个合成肽进一步验证,所述合成肽的氨基酸序列是使用机器学习算法产生的(例如参见实施例C.1),该算法已经使用基于结构域的肽的转导效率和细胞毒性数据(但不是本文所述的设计参数)“训练”。有趣的是,由机器学习算法产生的表现出最高转导评分的肽通常是满足本文所述的所有设计参数的肽,从而证实了它们在积极设计和/或预测新肽穿梭剂的转导活性中的用途(例如针对特定多肽负荷和/或细胞类型定制)。此外,使用计算机辅助的随机肽序列生成,然后使用描述符过滤来生成10000个肽变体的列表,其几乎涵盖本文所述的所有设计参数(参见实施例C.2)。
本文显示了合理设计的肽穿梭剂促进内体捕获的荧光染料的逃逸,表明内体溶解活性(例如参见实施例D)。此外,本文还显示了不同细胞类型(粘附和悬浮)中合理设计的肽穿梭剂转导各种多肽负荷(例如荧光蛋白,转录因子,抗体,以及整个CRISPR相关的基因组编辑复合物,其有或没有DNA模板)的能力(例如参见实施例E-G)。
合理的设计参数和肽穿梭剂
在一些方面,本说明书涉及用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的方法。该方法包括在穿梭剂存在下使靶真核细胞与多肽负荷接触,与不存在穿梭剂相比,其浓度足以提高所述多肽负荷的转导效率。在一些方面,穿梭剂涉及满足以下一个或多个参数的肽。
(1)在一些实施方式中,穿梭剂是长度为至少20个氨基酸的肽。例如,肽可包含最小长度为20,21,22,23,24,25,26,27,28,29或30个氨基酸残基,最大长度为35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145或150个氨基酸残基。在一些实施方式中,较短的肽(例如在20-50个氨基酸范围内)可能是特别有利的,因为它们可以更容易通过化学合成方法进行合成和纯化,这可能更适合临床使用(与重组蛋白相反,其必须从细胞表达系统中纯化)。虽然本说明书中的数字和范围通常被列为5的倍数,但是本说明书不应受此限制。例如,在本说明书中描述的最大长度应该被理解为还包括56,57,58......61,62等的长度,并且这里的非列举仅仅是为了简洁起见。同样的推理适用于此处列出的%同一性。
(2)在一些实施方式中,肽穿梭剂包含两亲性α-螺旋基序。如本文所用,除非另有说明,否则表述“α-螺旋基序”或“α-螺旋”是指在连续氨基酸之间的旋转角为100度的右手式卷曲或螺旋构象(螺旋)和/或每圈有3.6个残基的α-螺旋。如本文所用,表述“包含α-螺旋基序”或“两亲性α-螺旋基序”等是指预测本说明书的肽(或肽的区段)的三维构象。当在基于肽的一级氨基酸序列的生物学环境中采用时,无论肽在细胞中用作穿梭剂时是否实际采用该构象。此外,本说明书的肽可以在肽的不同位置处包含一个或多个α-螺旋基序。例如,预测穿梭剂FSD5在其整个长度上采用α-螺旋(参见图49C),而穿梭剂FSD18预测包括朝向肽的N和C末端区域的两个单独的α-螺旋(参见图49D)。在一些实施方式中,预测本说明书的穿梭剂不包含β-折叠基序,例如如图49E和49F所示。预测蛋白质和肽中α-螺旋和β-折叠存在的方法是本领域熟知的。例如,一种这样的方法基于使用PEP-FOLDTM的3D建模,其是用于从头肽结构预测的在线资源(http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/)(Lamiable等人,2016;Shen等人,2014;Thévenet等人,2012)。预测肽和蛋白质中α-螺旋存在的其它方法是已知的并且容易为技术人员所用。
如本文所用,表述“两亲性”是指具有疏水和亲水元件的肽(例如基于包含肽的氨基酸的侧链)。例如,表述“两亲性α-螺旋”或“两亲性α-螺旋基序”是指基于形成螺旋的氨基酸侧链的性质,预测采用具有非极性疏水面和极性亲水面的α-螺旋基序的肽。
(3)在一些实施方式中,本说明书的肽穿梭剂包含具有带正电的亲水外表面的两亲性α-螺旋基序,例如富含R和/或K残基的外表面。如本文所用,表述“带正电的亲水外表面”是指基于α-螺旋轮投影,存在至少三个赖氨酸(K)和/或精氨酸(R)残基聚集在两亲性α-螺旋基序的一侧(例如参见图49A,左图)。可以使用各种程序来准备这种螺旋轮投影,例如在http://rzlab.ucr.edu/scripts/wheel/wheel.cgi上可获得的在线螺旋轮投影工具。在一些实施方式中,两亲性α-螺旋基序可包含带正电的亲水外表面,基于连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,其包含:(a)在螺旋轮投影时的至少两个、三个或四个相邻的带正电的K和/或R残基;和/或(b)在螺旋轮投影时的包含三至五个K和/或R残基的六个相邻残基的区段。
在一些实施方式中,本说明书的肽穿梭剂包含两亲性α-螺旋基序,其包含疏水外表面,基于连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,疏水外表面包含:(a)在螺旋轮投影时的至少两个相邻L残基;和/或(b)在螺旋轮投影时的包含选自以下L,I,F,V,W和M的至少五个疏水残基的十个相邻残基的区段。
(4)在一些实施方式中,本说明书的肽穿梭剂包含两亲性α-螺旋基序,其具有由空间上相邻的高疏水性残基(例如L,I,F,V,W和/或M)组成的高疏水性核心。在一些实施方式中,基于每圈有3.6个残基的α-螺旋的开口圆柱形表示,高疏水性核心可以由空间上相邻的L,I,F,V,W和/或M氨基酸组成,代表肽的12至50%的氨基酸,计算时排除任何富含组氨酸的结构域(见下文),如图49A右图所示。在一些实施方式中,高疏水性核心可以由空间上相邻的L,I,F,V,W和/或M氨基酸组成,代表肽的12.5%,13%,13.5%,14%,14.5%,15%,15.5%,16%,16.5%,17%,17.5%,18%,18.5%,19%,19.5%或20%,至25%,30%,35%,40%或45%的氨基酸。更具体地,高疏水性核心参数可以通过首先以开口圆柱形表示排列肽的氨基酸,然后描绘连续的高疏水残基(L,I,F,V,W,M)的区域来计算,如图49A右图所示。然后将该描绘的高疏水性核心中包含的高疏水性残基的数量除以肽的总氨基酸长度,不包括任何富含组氨酸的结构域(例如富含N-和/或C-末端组氨酸的结构域)。例如,对于图49A中所示的肽,在描绘的高疏水性核心中存在8个残基,并且肽中总共25个残基(不包括末端12个组氨酸)。因此,高疏水性核心为32%(8/25)。
(5)疏水力矩涉及螺旋、肽或其部分的两亲性的量度,其由氨基酸侧链的疏水性的负荷总和计算(Eisenberg等人,1982)。用于计算多肽疏水矩的在线工具可从以下获得:http://rzlab.ucr.edu/scripts/wheel/wheel.cgi。高疏水力矩表示两亲性强,而低疏水力矩表示两亲性差。在一些实施方式中,本说明书的肽穿梭剂可以由疏水力矩(μ)为3.5至11的肽或α-螺旋结构域组成或包含它。在一些实施方式中,穿梭剂可以是包含两亲性α-螺旋基序的肽,其疏水力矩为在3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0的下限和9.5,9.6,9.7,9.8,9.9,10.0,10.1,10.2,10.3,10.4,10.5,10.6,10.7,10.8,10.9或11.0的上限之间。在一些实施方式中,穿梭剂可以是疏水力矩在4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0的下限和9.5,9.6,9.7,9.8,9.9,10.0,10.1,10.2,10.3,10.4或10.5的上限之间。在一些实施方式中,计算疏水力矩时排除可能存在于肽中的任何富含组氨酸的结构域。
(6)在一些实施方式中,本说明书的肽穿梭剂在生理pH下可具有至少+4的预测净电荷,其由K,R,D和E残基的侧链计算。例如,肽的净电荷在生理pH下可以是至少+5,+6,+7,至少+8,至少+9,至少+10,至少+11,至少+12,至少+13,至少+14,或至少+15。这些正电荷通常由带正电的赖氨酸和/或精氨酸残基的更多存在赋予,与带负电荷的天冬氨酸和/或谷氨酸残基相反。
(7)在一些实施方式中,本说明书的肽穿梭剂可具有8至13,优选10至13的预测等电点(pI)。用于计算和/或测量肽的等电点的程序和方法或蛋白质是本领域已知的。例如,可以使用由以下可获得的Prot Param软件计算pI:http://web.expasy.org/protparam/
(8)在一些实施方式中,本说明书的肽穿梭剂可以由35至65%的疏水残基(A,C,G,I,L,M,F,P,W,Y,V)组成。在特定的实施方式中,肽穿梭剂可以由36%至64%,37%至63%,38%至62%,39%至61%或40%至60%的氨基酸:A,C,G,I,L,M,F,P,W,Y和V的任何组合组成。
(9)在一些实施方式中,本说明书的肽穿梭剂可以由0至30%的中性亲水残基(N,Q,S,T)组成。在特定的实施方式中,肽穿梭剂可以由1%至29%,2%至28%,3%至27%,4%至26%,5%至25%,6%至24%,7%至23%,8%至22%,9%至21%或10%至20%的氨基酸:N,Q,S和T的任何组合组成。
(10)在一些实施方式中,本说明书的肽穿梭剂可以由35至85%的氨基酸A,L,K和/或R组成。在特定的实施方式中,肽穿梭剂可以由36%至80%,37%至75%,38%至70%,39%至65%,或40%至60%的氨基酸:A,L,K或R的任何组合组成。
(11)在一些实施方式中,本说明书的肽穿梭剂可以由15至45%的氨基酸A和/或L组成,条件是在肽中存在至少5%的L。在特定的实施方式中,肽穿梭剂可以由15%至40%,20%至40%,20%至35%或20%至30%的氨基酸:A和L的任何组合组成,条件是在肽中存在至少5%的L。
(12)在一些实施方式中,本说明书的肽穿梭剂可以由20%至45%的氨基酸K和/或R组成。在特定的实施方式中,肽穿梭剂可以由20%至40%,20%至35%或20%至30%的氨基酸:K和R的任何组合组成。
(13)在一些实施方式中,本说明书的肽穿梭剂可以由0至10%的氨基酸D和/或E组成。在特定的实施方式中,肽穿梭剂可以由5%至10%的氨基酸:D和E的任何组合组成。
(14)在一些实施方式中,肽穿梭剂中A和/或L的百分比与K和/或R的百分比之间的绝对差异可小于或等于10%。在特定的实施方式中,肽穿梭剂中A和/或L的百分比与K和/或R的百分比之间的绝对差异可小于或等于9%,8%,7%,6%或5%。
(15)在一些实施方式中,本说明书的肽穿梭剂可以由10%至45%的氨基酸Q,Y,W,P,I,S,G,V,F,E,D,C,M,N,T或H(即不是A,L,K或R)组成。在特定的实施方式中,肽穿梭剂可以由15%至40%,20%至35%或20%至30%氨基酸:Q,Y,W,P,I,S,G,V,F,E,D,C,M,N,T和H的任何组合组成。
在一些实施方式中,本说明书的肽穿梭剂涉及至少一个,至少两个,至少三个,至少四个,至少五个,至少六个,至少七个,至少八个,至少九个,至少九个,至少十个,至少十一个,至少十二个,十三个,至少十四个或所有本文所述的参数(1)至(15)。在特定实施方式中,本说明书的肽穿梭剂涉及所有参数(1)至(3),并且至少六个,至少七个,至少八个,至少九个,至少十个,至少十一个或所有本文所述的参数(4)至(15)。
在一些实施方式中,当本说明书的肽穿梭剂仅包含一个富含组氨酸的结构域时,一个富含组氨酸的结构域的残基可包括在本文所述的参数(1)至(15)的计算/评估中。在一些实施方式中,当本说明书的肽穿梭剂包含多于一个富含组氨酸的结构域时,仅一个富含组氨酸的结构域的残基可包括在本文所述的参数(1)至(15)的计算/评估中。例如,当本说明书的肽穿梭剂包含两个富含组氨酸的结构域:朝向N末端的第一富含组氨酸的结构域和朝向C末端的第二富含组氨酸的结构域时,仅第一富含组氨酸的结构域可包括在本文所述的参数(1)至(15)的计算/评估中。
在一些实施方式中,可以实施机器学习或计算机辅助设计方法以产生涉及本文所述的一个或多个参数(1)至(15)的肽。一些参数例如参数(1)和(5)-(15)可能更适合在计算机辅助设计方法中实现,而结构参数例如参数(2)、(3)和(4)可能更适合手动设计方法。因此,在一些实施方式中,可以通过组合计算机辅助和手动设计方法来产生涉及一个或多个参数(1)至(15)的肽。例如,本文所示的多种肽(和其它肽)的多序列比对分析充当有效的穿梭剂,揭示了一些共有序列的存在-即通常发现的疏水,阳离子,亲水,丙氨酸和甘氨酸氨基酸的交替模式。这些共有序列的存在可能会导致涉及结构参数(2)、(3)和(4)(即两亲性α-螺旋形成,带正电荷的面和12%-50%的高疏水性核心)。因此,这些和其它共有序列可以用于机器学习和/或计算机辅助设计方法,以产生涉及一个或多个参数(1)-(15)的肽。
因此,在一些实施方式中,本文所述的肽穿梭剂可包含以下氨基酸序列或由其组成:
(a)[X1]-[X2]-[接头]-[X3]-[X4](式1);
(b)[X1]-[X2]-[接头]-[X4]-[X3](式2);
(c)[X2]-[X1]-[接头]-[X3]-[X4](式3);
(d)[X2]-[X1]-[接头]-[X4]-[X3](式4);
(e)[X3]-[X4]-[接头]-[X1]-[X2](式5);
(f)[X3]-[X4]-[接头]-[X2]-[X1](式6);
(g)[X4]-[X3]-[接头]-[X1]-[X2](式7);或
(h)[X4]-[X3]-[接头]-[X2]-[X1](式8)
其中:
[X1]选自:2[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;2[Φ]-1[+]-2[Φ]-2[+]-;1[+]-1[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;和1[+]-1[Φ]-1[+]-2[Φ]-2[+]-;
[X2]选自:-2[Φ]-1[+]-2[Φ]-2[ζ]-;-2[Φ]-1[+]-2[Φ]-2[+]-;-2[Φ]-1[+]-2[Φ]-1[+]-1[ζ]-;-2[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;-2[Φ]-2[+]-1[Φ]-2[+]-;-2[Φ]-2[+]-1[Φ]-2[ζ]-;-2[Φ]-2[+]-1[Φ]-1[+]-1[ζ]-;和-2[Φ]-2[+]-1[Φ]-1[ζ]-1[+]-;
[X3]选自:-4[+]-A-;-3[+]-G-A-;-3[+]-A-A-;-2[+]-1[Φ]-1[+]-A-;-2[+]-1[Φ]-G-A-;-2[+]-1[Φ]-A-A-;或-2[+]-A-1[+]-A;-2[+]-A-G-A;-2[+]-A-A-A-;-1[Φ]-3[+]-A-;-1[Φ]-2[+]-G-A-;-1[Φ]-2[+]-A-A-;-1[Φ]-1[+]-1[Φ]-1[+]-A;-1[Φ]-1[+]-1[Φ]-G-A;-1[Φ]-1[+]-1[Φ]-A-A;-1[Φ]-1[+]-A-1[+]-A;-1[Φ]-1[+]-A-G-A;-1[Φ]-1[+]-A-A-A;-A-1[+]-A-1[+]-A;-A-1[+]-A-G-A;和-A-1[+]-A-A-A;
[X4]选自:-1[ζ]-2A-1[+]-A;-1[ζ]-2A-2[+];-1[+]-2A-1[+]-A;-1[ζ]-2A-1[+]-1[ζ]-A-1[+];-1[ζ]-A-1[ζ]-A-1[+];-2[+]-A-2[+];-2[+]-A-1[+]-A;-2[+]-A-1[+]-1[ζ]-A-1[+];-2[+]-1[ζ]-A-1[+];-1[+]-1[ζ]-A-1[+]-A;-1[+]-1[ζ]-A-2[+];-1[+]-1[ζ]-A-1[+]-1[ζ]-A-1[+];-1[+]-2[ζ]-A-1[+];-1[+]-2[ζ]-2[+];-1[+]-2[ζ]-1[+]-A;-1[+]-2[ζ]-1[+]-1[ζ]-A-1[+];-1[+]-2[ζ]-1[ζ]-A-1[+];-3[ζ]-2[+];-3[ζ]-1[+]-A;-3[ζ]-1[+]-1[ζ]-A-1[+];-1[ζ]-2A-1[+]-A;-1[ζ]-2A-2[+];-1[ζ]-2A-1[+]-1[ζ]-A-1[+];-2[+]-A-1[+]-A;-2[+]-1[ζ]-1[+]-A;-1[+]-1[ζ]-A-1[+]-A;-1[+]-2A-1[+]-1[ζ]-A-1[+];和-1[ζ]-A-1[ζ]-A-1[+];并且
[接头]选自:-Gn-;-Sn-;-(GnSn)n-;-(GnSn)nGn-;-(GnSn)nSn-;-(GnSn)nGn(GnSn)n-;和(GnSn)nSn(GnSn)n-;
其中:[Φ]是氨基酸,其为:Leu,Phe,Trp,Ile,Met,Tyr或Val;[+]是氨基酸,其为:Lys或Arg;[ζ]是氨基酸,其为:Gln,Asn,Thr或Ser;A是氨基酸Ala;G是氨基酸Gly;S是氨基酸Ser;并且n为1至20,1至19,1至18,1至17,1至16,1至15,1至14,1至13,1至12,1至11,1至10,1至9,1至8,1至7,1至6,1至5,1至1至4或1至3的整数。
在一些实施方式中,本说明书的肽穿梭剂可包含SEQ ID NO:104,105,107,108,110-131,133-135,138,140,142,145,148,151,152,169-242和243-10 242中的任一氨基酸序列或由其组成。在一些实施方式中,本说明书的肽穿梭剂可包含SEQ ID NO:158和/或159的氨基酸序列基序,其在肽FSD5,FSD16,FSD18,FSD19,FSD20,FSD22和FSD23的每种中被发现。在一些实施方式中,本说明书的肽穿梭剂可包含与SEQ ID NO:159的氨基酸序列基序可操作地连接的SEQ ID NO:158的氨基酸序列基序。在一些实施方式中,本说明书的肽穿梭剂可包含与SEQ ID NO:104,105,107,108,110-131,133-135,138,140,142,145,148,151,152,169-242和243-10 242中的任一氨基酸序列至少50%,55%,60%,65%,70%,75%,80%,85%,90%或95%相同的肽,或SEQ ID NO:104,105,107,108,110-131,133-135,138,140,142,145,148,151,152,169-242和243-10 242的功能变体,或由其组成。如本文所用,“功能变体”是指具有多肽负荷转导活性的肽,其与参考肽的不同之处在于一个或多个保守氨基酸取代。如本文所用,“保守氨基酸取代”是其中一个氨基酸残基被另一个具有相似侧链的氨基酸残基取代的氨基酸取代。本领域已经很好地定义了具有相似侧链的氨基酸残基家族,包括碱性侧链(例如赖氨酸,精氨酸,组氨酸),酸性侧链(例如天冬氨酸,谷氨酸),不带电荷的极性侧链(例如甘氨酸,天冬酰胺,谷氨酰胺,丝氨酸,苏氨酸,酪氨酸,半胱氨酸),非极性侧链(例如丙氨酸,缬氨酸,亮氨酸,异亮氨酸,脯氨酸,苯丙氨酸,蛋氨酸,色氨酸),β-支链侧链(例如苏氨酸,缬氨酸,异亮氨酸)和芳香族侧链(例如酪氨酸,苯丙氨酸,色氨酸,组氨酸)。
在一些实施方式中,本说明书的肽穿梭剂可包含SEQ ID NO:57-59,66-72或82-102中的任一氨基酸序列,或与SEQ ID NO:57-59,66-72或82-102中的任一个具有至少65%,66%,67%,68%,69%,70%,71%,72%,73%,74%,75%,76%,77%,78%,79%,80%,81%,82%,83%,84%,85%,86%,87%,88%,89%,90%,91%,92%,93%,94%或95%同一性的功能变体,或由其组成。在一些实施方式中,本说明书的肽穿梭剂不包含SEQID NO:57-59,66-72或82-102中的任一氨基酸序列的一个或多个。
在一些实施方式中,本说明书的穿梭剂可包含本文所述肽的低聚物(例如二聚体,三聚体等)。这种低聚物可以通过共价结合相同或不同类型的穿梭剂单体来构建(例如使用二硫键连接引入单体序列中的半胱氨酸残基)。在一些实施方式中,本说明书的穿梭剂可包含N-末端和/或C-末端半胱氨酸残基。
富含组氨酸的结构域
在一些实施方式中,本说明书的肽穿梭剂还可包含一个或多个富含组氨酸的结构域。在一些实施方式中,富含组氨酸的结构域可以是包含至少30%,至少35%,至少40%,至少45%,至少50%,至少55%,至少60%,至少65%,至少70%,至少75%,至少80%,至少85%或至少90%组氨酸残基的至少2个,至少3个,至少4个,至少5个或至少6个氨基酸的一段。在一些实施方式中,富含组氨酸的结构域可包含至少2个,至少3个,至少4个,至少5个,至少6个,至少7个,至少8个或至少9个连续的组氨酸残基。不受理论束缚,穿梭剂中的富含组氨酸的结构域可以通过在内体的酸性条件下对其咪唑基团进行质子化而在内体中充当质子海绵,提供内体膜不稳定的另一种机制,从而进一步促进内体捕获的负荷进入胞质溶胶的能力。在一些实施方式中,富含组氨酸的结构域可位于肽穿梭剂的N和/或C末端处或朝向它们。
接头
在一些实施方式中,本说明书的肽穿梭剂可包含一种或多种合适的接头(例如柔性多肽接头)。在一些实施方式中,此类接头可以分离两个或更多个两亲性α-螺旋基序(例如参见图49D中的穿梭剂FSD18)。在一些实施方式中,接头可用于将两个以上的结构域(CPD,ELD或富含组氨酸的结构域)彼此分开。在一些实施方式中,可以通过添加没有旋转潜力的小疏水性氨基酸序列(例如甘氨酸)和赋予稳定性和柔韧性的极性丝氨酸残基来形成接头。接头可以是柔软的并且允许穿梭剂的区域移动。在一些实施方式中,可以避免脯氨酸,因为它们可以增加显著的构象刚性。在一些实施方式中,接头可以是富含丝氨酸/甘氨酸的接头(例如GGS,GGSGGGS,GGSGGGSGGGS等)。在一些实施方式中,包含合适接头的使用穿梭剂可有利于将独立的多肽负荷递送至悬浮细胞而非贴壁细胞。在一些实施方式中,接头可包含以下或由以下组成:-Gn-;-Sn-;-(GnSn)n-;-(GnSn)nGn-;-(GnSn)nSn-;-(GnSn)nGn(GnSn)n-;或(GnSn)nSn(GnSn)n-,其中G是氨基酸Gly;S是氨基酸Ser;并且n是1至5的整数。
内体渗漏域(ELD)
在一些方面,本说明书的肽穿梭剂可包含内体渗漏域(ELD),用于促进内体逃逸和进入细胞质区室。如本文使用,表述“内体泄漏结构域”指赋予内体捕获的大分子获得进入细胞质区室的通路的能力的氨基酸序列。不受理论所限,内体泄漏结构域是短序列(经常源自病毒或细菌肽),相信其诱导内体膜的不稳定化和体内内容物向细胞质的释放。如本文使用,表述“内体溶解肽”旨在指代具有内体膜不稳定特征的该普通种类的肽。因此,在一些实施方式中,本发明的合成肽或基于多肽的穿梭剂可包含为内体溶解肽的ELD。这种肽的活性可例如使用实施例2中所述的钙黄绿素内体逃逸测定评估。
在一些实施方式中,ELD可以是在酸性pH破坏膜的肽,如pH-依赖性膜活性肽(PMAP)或pH-依赖性切割肽。例如,肽GALA和INF-7是当pH下降改变了它们所含的电荷时形成α螺旋的两亲性肽。更具体的,不受理论所限,表明ELD如GALA由于pH降低构象改变后通过形成孔和膜脂质的翻转诱导内体泄漏(Kakudo,Chaki等人,2004,Li,Nicol等人,2004)。相反地,表明ELD如INF-7通过在内体膜积累并使内体膜不稳定化诱导内体泄(El-Sayed,Futaki等人,2009)。因此,在内体成熟过程中,伴随着pH的下降引起肽构象的变化且其使内体膜不稳定化导致内体内容物的释放。认为相同的原理适用于假单胞菌的毒素A(Varkouhi,Scholte等人,2011)。pH下降后,毒素转位结构域的构象改变,允许其插入内体膜,其在内体膜上形成孔(London 1992,O'Keefe 1992)。这最终有利于体内体的不稳定化和复合物向内体外的转位。上述ELD涵盖在本说明书的ELD以及其作用机制未详尽界定的其它内体泄漏机制中。
在一些实施方式中,ELD可以是抗微生物肽(AMP)如线性阳离子α螺旋抗微生物肽(AMP)。由于其与细菌膜强相互作用的能力,这些肽在天然免疫响应中起关键作用。不受理论所限,认为这些肽在水性溶液中呈现无序状态,但在疏水环境中采取α-螺旋二级结构。后者的构象认为有助于其典型的浓度依赖性膜破坏性质。当以某些浓度在内体中积累时,一些抗菌肽可能诱导内体泄漏。
在一些实施方式中,ELD可以是抗微生物肽(AMP)如杀菌肽-A/蜂毒肽杂交(CM系列)肽。认为这样的肽在具有膜破坏能力的最小和最有效的AMP-衍生肽中。杀菌肽是针对革兰氏阳性和革兰氏阴性菌都具有膜扰动能力的抗微生物肽家族。杀菌肽A(CA),第一种被鉴定的抗菌肽,由具有线性结构的37个氨基酸构成。蜂毒肽(M),一种26个氨基酸的肽,是在蜜蜂毒液中发现的细胞膜切割因子。杀菌肽-蜂毒肽杂交肽已显示产生短的有效抗生素肽而对于真核细胞无细胞毒性(即非溶血性),一种在任何抗菌剂中都是理想的性质。这些嵌合肽构建自杀菌肽A亲水N末端结构域与蜂毒肽疏水N末端结构域的多种组合,且已对细菌模型系统进行了测试。2种26聚体,CA(1-13)M(1-13)和CA(1-8)M(1-18)(Boman等人,1989)已显示证明了广谱和改进的天然杀菌肽A效价而无蜂毒肽的细胞毒性效应。
在产生较短CM系列肽的工作中,Andreu等人,1992的作者构建了杂交肽如26聚体(CA(1-8)M(1-18)),且将其与20聚体(CA(1-8)M(1-12))、18聚体(CA(1-8)M(1-10))和6种15聚体((CA(1-7)M(1-8)、CA(1-7)M(2-9)、CA(1-7)M(3-10)、CA(1-7)M(4-11)、CA(1-7)M(5-12)和CA(1-7)M(6-13))进行了比较。20和18聚体相比CA(1-8)M(1-18)维持相似的活性。在6种15聚体中,CA(1-7)M(1-8)显示了第抗菌活性,但其它五种相比26聚体显示了相似的抗生素效价而无溶血作用。因此,在一些实施方式中,本发明的合成肽或基于多肽的穿梭剂可包含为或来自CM系列肽的变体的ELD,如上文所述的那些。
在一些实施方式中,ELD可以是与蜂毒肽的残基2-12(YGRKKRRQRRR)融合的杀菌肽-A(KWKLFKKIGAVLKVLTTG)的残基1-7构成的CM系列肽CM18,[C(1–7)M(2–12)]。当与细胞穿透肽TAT融合时,CM18显示独立地穿过质膜并使内体膜不稳定化,允许一些内体捕获的复合释放指细胞质(Salomone等人,2012)。然而,在作者的一些实验中,与荧光团融合的CM18-TAT11肽的使用对于肽比荧光团的贡献引起了不确定性,这是由于荧光团本身已显示了对内体溶解的贡献—例如经由内体膜的光化学破坏(Erazo-Oliveras等人,2014)。
在一些实施方式中,ELD可以是具有内体溶解活性的具有SEQ ID NO:1的氨基酸序列的CM18,或与SEQ ID NO:1具有至少70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、85%、90%、91%、92%、93%、94%或95%同一性的其变体。
在一些实施方式中,ELD可以是衍生自流感血凝素(HA)的HA2亚单元的N末端的肽,当在内体中积累时其还可引起内体膜的不稳定化。
在一些实施方式中,本发明的合成肽或基于多肽的穿梭剂可包含为或来自表I中所述ELD的ELD,或具有内体逃逸活性和/或pH依赖的膜破坏活性的其变体。
表I:内体泄漏结构域的实例
/>
/>
在一些实施方式中,本发明的穿梭剂可包含一个或多个ELD或一种或多种类型的ELD。更具体地,其可包含至少2、至少3、至少4、至少5或更多个ELD。在一些实施方式中,穿梭剂可包含1-10个ELD、1-9个ELD、1-8个ELD、1-7个ELD、1-6个ELD、1-5个ELD、1-4个ELD、1-3个ELD等。
在一些实施方式中,ELD相对本发明穿梭剂内其它结构域的顺序或放置可变化,只要穿梭剂的穿梭能力保留。
在一些实施方式中,ELD可以是表I中所列那些并具有内体溶解活性的任一种的变体或片段。在一些实施方式中,ELD可包含SEQ ID NO:1-15、63或64任一种的氨基酸序列,或与SEQ ID NO:1-15、63或64任一种至少70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、85%、90%、91%、92%、93%、94%或95%相同的序列,或由其构成,并具有内体溶解活性。
在一些实施方式中,本说明书的穿梭剂不包含SEQ ID NO:1-15,63或64中的任一氨基酸序列中的一个或多个。
细胞穿透结构域(CPD)
一些方面,本发明的穿梭剂可包含细胞穿透结构域(CPD)。如本文使用的表述“细胞穿透结构域”指赋予包含CPD的大分子(例如肽或蛋白)转导入细胞的能力的氨基酸序列。
在一些实施方式中,CPD可以是(或可以来自)细胞穿透肽或细胞穿透肽的蛋白转导结构域。细胞穿透肽可作为载剂发挥作用以成功细胞内递送多种负荷(例如多核苷酸、多肽、小分子化合物或其它大分子/以其它方式不可透过膜的化合物)。细胞穿透肽经常包括富有碱性氨基酸的短肽,其一旦与大分子融合(或以其它方式可操作连接),介导其内化入细胞(Shaw,Catchpole等人,2008)。第一种细胞穿透肽通过分析HIV-1转录顺式活化因子(Tat)蛋白的细胞穿透能力鉴别(Green和Loewenstein 1988,Vives,Brodin等人,1997)。该蛋白包含短亲水氨基酸序列,称为“TAT”,其促进其插入质膜内并形成孔。自该发现起,已描述了多种其它细胞穿透肽。在该方面,在一些实施方式中,CPD可以是如表II中所列的细胞穿透肽,或具有细胞穿透肽活性的其变体。
表II:细胞穿透肽的实例
不受理论所限,认为细胞穿透肽通过胞饮作用或内吞作用穿过前与细胞质膜相互作用。在TAT肽的情况中,认为其亲水性质和电荷促进其插入质膜内并形成孔(Herce和Garcia 2007)。疏水肽(如SP)内的α螺旋基序也认为在质膜内形成孔(Veach,Liu等人,2004)。
在一些实施方式中,本发明的穿梭剂可包含一个或多个CPD或一种或多种类型的CPD。更具体地,其可包含至少2、至少3、至少4或至少5或多个CPD。在一些实施方式中,穿梭剂可包含1-10个CPD、1-6个CPD、1-5个CPD、1-4个CPD、1-3个CPD等。
在一些实施方式中,CPD可以是具有SEQ ID NO:17的氨基酸序列的TAT,或与SEQID NO:17具有至少70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%或95%同一性并具有细胞穿透活性的其变体;或具有SEQ ID NO:18的氨基酸序列的穿膜肽,或与SEQ IDNO:18具有至少70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%或95%同一性并具有细胞穿透活性的其变体。
在一些实施方式中,CPD可以是具有SEQ ID NO:65的氨基酸序列的PTD4,或与SEQID NO:65具有至少70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%或95%同一性的其变体。
在一些实施方式中,CPD相对本发明穿梭剂内其它结构域(ELD、组氨酸富集结构域)的顺序或放置可变化,只要穿梭剂的穿梭能力保留。
在一些实施方式中,CPD可以是表II中所列那些的任一项并具有细胞穿透活性的变体或片段。在一些实施方式中,CPD可包含SEQ ID NO:16-27或65任一项的氨基酸序列,或与SEQ ID NO:16-27或65任一项至少70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%、89%、85%、90%、91%、92%、93%、94%或95%相同并具有细胞穿透活性的序列,或由其组成。
在一些实施方式中,本说明书的穿梭剂不包含SEQ ID NO:16-27或65中的任一氨基酸序列。
负荷
在一些方面,本说明书的肽穿梭剂可用于将多肽负荷(例如独立的多肽负荷)从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核,其中与不存在所述合成肽穿梭剂相比,使用合成肽穿梭剂的浓度足以提高所述多肽负荷的转导效率。在一些实施方式中,多肽负荷可以与一种或多种CPD融合以进一步促进细胞内递送。在一些实施方式中,与多肽负荷融合的CPD可以与可以存在于本说明书的穿梭剂中的CPD相同或不同。可以使用标准重组技术构建这种融合蛋白。在一些实施方式中,独立多肽负荷可以与第二生物活性负荷(例如生物活性多肽或化合物)融合、复合或共价结合。或者或同时,多肽负荷可包含亚细胞靶向结构域。
在一些实施方式中,多肽负荷必须递送至核为其实施其预期的生物效应。一个这样的实例是当负荷是旨在核递送的多肽时(例如转录因子)。在这方面,关于病毒DNA的转位机制的研究已使得核定位信号(NLS)得以鉴定。NLS序列由蛋白(输入蛋白α和β)识别,其作为转运子和穿过核膜的转位调节子发挥作用。NLS一般富有带电荷的氨基酸如精氨酸、组氨酸和赖氨酸,赋予正电荷,所述正电荷部分上负责其被输入蛋白所识别。因此,在一些实施方式中,多肽负荷可包含促进核递送的NLS,如表III中所列的一种或多种NLS,或具有核靶向活性的其变体。当然,应该理解的是,在一些实施方式中,多肽负荷可包含其天然的NLS。
表III:核定位信号
/>
/>
一旦递送到细胞质,重组蛋白暴露于真核细胞的蛋白质运输系统。事实上,所有的蛋白质都是在细胞的细胞质中合成,然后通过由穿梭蛋白识别的基于小氨基酸序列的运输系统重新分配到其最终的亚细胞定位(Karniely和Pines 2005,Stojanovski,Bohnert等人,2012)。除NLS外,其它定位序列在细胞内递送本发明的多肽负荷后可介导对多种细胞器的亚细胞靶向。因此,在一些实施方式中,本发明的多肽负荷可包含用于促进穿梭剂和复合递送至特定细胞器的亚细胞定位信号,如一种或多种如表IV中所列举的序列,或具有相应亚细胞靶向活性的其变体。
表IV:亚细胞定位信号
在一些实施方式中,负荷可以是生物活性化合物,例如用于细胞内递送的生物活性(重组)多肽(例如转录因子,细胞因子或核酸酶)。如本文所用的表述“生物活性”指化合物在导入靶细胞时介导结构、调节和/或生化功能的能力。
在一些实施方式中,负荷可以是用于核递送的重组多肽,例如转录因子。在一些实施方式中,转录因子可以是HOXB4(Lu,Feng等人,2007)、NUP98-HOXA9(Takeda,Goolsby等人,2006)、Oct3/4、Sox2、Sox9、Klf4、c-Myc(Takahashi and Yamanaka 2006)、MyoD(Sung,Mun等人,2013)、Pdx1、Ngn3和MafA(Akinci,Banga等人,2012)、Blimp-1(Lin,Chou等人,2013)、Eomes、T-bet(Gordon,Chaix等人,2012)、FOXO3A(Warr,Binnewies等人,2013)、NF-YA(Dolfini,Minuzzo等人,2012)、SALL4(Aguila,Liao等人,2011)、ISL1(Fonoudi,Yeganeh等人,2013)、FoxA1(Tan,Xie等人,2010)、Nanog、Esrrb、Lin28(Buganim等人,2014)、HIF1-alpha(Lord-Dufour等人,2009)、Hlf、Runx1t1、Pbx1、Lmo2、Zfp37、Prdm5(Riddell等人,2014)或Bcl-6(Ichii,Sakamoto等人,2004)。
在一些实施方式中,负荷可以是用于核递送的重组多肽,例如用于基因组编辑技术的核酸酶。在一些实施方式中,核酸酶可以是RNA导向的核酸内切酶、CRISPR核酸内切酶、I型CRISPR核酸内切酶、II型CRISPR核酸内切酶、III型CRISPR核酸内切酶、IV型CRISPR核酸内切酶、V型CRISPR核酸内切酶、VI型CRISPR核酸内切酶、CRISPR相关蛋白9(Cas9)、Cpf1(Zetsche等人,2015)、CasX和/或CasY(Burstein等人,2016)、锌指核酸酶(ZFN)、转录激活剂样效应核酸酶(TALEN)(Cox等人,2015)、导归核酸内切酶、大范围核酸酶、DNA引导的核酸酶例如Natronobacterium gregoryi Argonaute(NgAgo;Gao等人,2016),或其任何组合。在一些实施方式中,核酸酶可以是催化死亡的内切核酸酶,例如催化死亡的CRISPR相关蛋白9(dCas9),dCpf1,dCasX,dCasY,或其任何组合。这里没有明确提及的其它核酸酶可能仍然涵盖在本发明中。在一些实施方式中,核酸酶可以与核定位信号融合(例如Cas9-NLS;Cpf1-NLS;ZFN-NLS;TALEN-NLS)。在一些实施方式中,核酸酶可以与核酸复合(例一种或多种指导RNA、crRNA、tracrRNA或crRNA和tracrRNA二者)。在一些实施方式中,核酸酶可能具有DNA或RNA结合活性,但可能缺乏切割DNA的能力。
在一些实施方式中,本发明的穿梭剂可用于一种或多种CRISPR核酸内切酶的细胞内递送(例如核递送),例如下文所述的一种或多种CRISPR核酸内切酶。
I型及其亚型A、B、C、D、E、F和I,包括它们各自的Cas1、Cas2、Cas3、Cas4、Cas6、Cas7和Cas8蛋白,和这些Cas蛋白的标志同系物和亚基包括大肠杆菌中的Cse1、Cse2、Cas7、Cas5和Cas6e亚基(I-E型)和铜绿假单胞菌中的Csy1、Csy2、Csy3和Cas6f(I-F型)(Wiedenheft等人,2011;Makarova等人,2011)。II型及其亚型A、B、C,包括它们各自的Cas1、Cas2和Cas9蛋白,和这些Cas蛋白的标志同系物和亚基包括Csn复合物(Makarova等人,2011)。III型及其亚型A、B和MTH326样模块,包括它们各自的Cas1、Cas2、Cas6和Cas10蛋白,和这些Cas蛋白的标志同系物和亚基包括Csm和CMR复合物(Makarova等人,2011)。V型代表Cas蛋白的Csf3家族。这个家族的成员在嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)ATCC23270、固氮弓菌属(Azoarcus sp.)(EbN1株)和铁还原红育菌(Rhodoferaxferrireducens)(DSM 15236/ATCC BAA-621/T118株)中显现接近的CRISPR重复。在后两种物种中,在质粒上发现CRISPR/Cas基因座。V型及其亚型最近才被发现,包括Cpf1、C2c1和C2c3。VI型包括酶C2c2,报道其与已知序列几乎没有同源性。
在一些实施方式中,本发明的穿梭剂可与一种或多种上文所述的核酸酶、核酸内切酶、RNA导向核酸内切酶、CRISPR核酸内切酶联用用于多种应用,如本文所述的那些。CRISPR系统与其各自的核酸相互作用,如DNA结合、RNA结合、解旋酶和核酸酶基序(Makarova等人,2011;Barrangou&Marraffini,2014)。CRISPR系统可用于不同的基因组编辑应用,包括:
·进行非同源末端连接(NHEJ)和/或同源定向重组(HDR)的Cas介导的基因组编辑方法(Cong等人,2013);
·当与启动子序列、一个或多个gRNA和RNA聚合酶结合时(具有或不具有与其它蛋白质伴侣形成的复合物)催化死亡的Cas(dCas),可抑制和/或激活转录起始(Bikard等人,2013);
·还可以与不同功能蛋白结构域结合的催化死亡的Cas(dCas),作为在基因组特定位点带来酶活性的方法,包括转录抑制、转录激活、染色质重构、荧光报告子、组蛋白修饰、重组酶系统乙酰化、甲基化、泛素化、磷酸化、SUMO化、核糖基化和瓜氨酸化(Gilbert等人,2013)。
本领域普通技术人员将理解,本发明的穿梭剂尽管在本实施例中以Cas9和Cpf1举例说明,但可以与本文所述的其它核酸酶一起使用。因此,本说明书包括核酸酶如Cpf1,Cas9和这些核酸酶的变体或其它核酸酶。应当理解,在一个方面,本说明书可以广泛地涵盖具有核酸酶活性的任何负荷,例如RNA引导的内切核酸酶,或其变体(例如可以结合DNA或RNA,但已经丧失其核酸酶活性的那些;或与转录因子融合的那些)。
在一些实施方式中,多肽负荷可以是细胞因子,例如趋化因子,干扰素,白细胞介素,淋巴因子或肿瘤坏死因子。在一些实施方式中,多肽负荷可以是激素或生长因子。在一些实施方式中,负荷可以是抗体(例如标记的抗体,治疗性抗体,抗凋亡抗体,识别细胞内抗原的抗体)。在一些实施方式中,负荷可以是可检测的标记(荧光多肽或报告酶),其用于细胞内递送,例如用于研究和/或诊断目的。
在一些实施方式中,负荷可以是球状蛋白质或纤维蛋白质。在一些实施方式中,负荷可具有约5,10,15,20,25,30,35,40,45,50至约150,200,250,300,350,400,450,500kDa或更多中的任一分子量。在一些实施方式中,负荷可具有约20至200kDa的分子量。
在一些实施方式中,多肽负荷可以是肽负荷,例如识别细胞内分子的肽。
在一些实施方式中,多肽负荷可以是酶和/或酶抑制剂。
在一些实施方式中,本说明书的肽穿梭剂可用于将多肽负荷从细胞外空间递送至不同类型的靶真核细胞的胞质溶胶和/或细胞核,其中与不存在所述合成肽穿梭剂相比,使用合成肽穿梭剂的浓度足以提高所述多肽负荷的转导效率。靶真核细胞可以是动物细胞,哺乳动物细胞或人细胞。在一些实施方式中,靶真核细胞可以是干细胞(例如胚胎干细胞,多能干细胞,诱导多能干细胞,神经干细胞,间充质干细胞,造血干细胞,外周血干细胞),原代细胞(例如成肌细胞,成纤维细胞)或免疫细胞(例如NK细胞,T细胞,树突细胞,抗原呈递细胞)。应当理解,通常对蛋白质转导具有抗性或不适合的细胞可能是本说明书的合成肽或基于多肽的穿梭剂的有趣候选物。
无毒可代谢的穿梭剂
在一些实施方式中,本说明书的穿梭剂对于预期的靶真核细胞可以在浓度高达50μM,45μM,40μM,35μM,30μM,25μM,20μM,15μM,10μM,9μM,8μM,7μM,6μM,5μM,4μM,3μM,2μM,1μM,0.5μM,0.1μM或0.05μM下是无毒的。可以使用任何合适的方法测量本说明书的穿梭剂的细胞毒性。此外,可以调整转导方案(例如使用的穿梭和/或负荷的浓度,穿梭/负荷暴露时间,存在或不存在血清时的暴露)以减少或最小化穿梭剂的毒性,和/或改善/最大化转染效率。
在一些实施方式中,本说明书的穿梭剂可以容易地被预期的靶真核细胞代谢。例如,穿梭剂可以完全或基本上由肽或多肽组成,其中靶真核细胞具有代谢/降解的细胞机制。实际上,预期本说明书的合成肽和基于多肽的穿梭剂的细胞内半衰期远低于外来有机化合物如荧光团的半衰期。然而,荧光团可能是有毒的,必须在临床安全使用之前进行研究(Alford等人,2009)。在一些实施方式中,本说明书的穿梭剂可适用于临床。在一些实施方式中,本说明书的穿梭剂可以避免使用毒性不确定或未被排除的结构域或化合物。
混合物
在一些实施方式中,本说明书涉及包含至少2种,至少3种,至少4种,或至少5种不同类型的如本文定义的合成肽或基于多肽的穿梭剂的混合物的组合物。在一些实施方式中,组合不同类型的合成肽或肽穿梭剂(例如包含不同类型的结构域的不同穿梭剂)可以提供增加的通用性,用于在细胞内递送不同的多肽负荷。此外,不受理论束缚,组合较低浓度的不同类型的穿梭剂可有助于降低与使用单一类型的穿梭剂(例如在较高浓度下)相关的细胞毒性。
方法,试剂盒,用途和细胞
在一些实施方式中,本说明书涉及用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的方法。该方法包括在穿梭剂存在下使靶真核细胞与多肽负荷接触,与不存在所述穿梭剂相比,其浓度足以提高所述多肽负荷的转导效率。在一些实施方式中,与不存在所述穿梭剂时相比,在穿梭剂存在下使靶真核细胞与多肽负荷接触导致所述多肽负荷的转导效率增加至少10倍,20倍,30倍,40倍,50倍或100倍。
在一些实施方式中,本说明书涉及用于增加多肽负荷对靶真核细胞的胞质溶胶的转导效率的方法。如本文所用,表述“增加转导效率”是指本说明书的穿梭剂改善目标负荷(例如多肽负荷)被递送到的靶细胞群的百分比或比例的能力。细胞内穿过质膜。免疫荧光显微术,流式细胞术和其它合适的方法可用于评估负荷转导效率。在一些实施方式中,本说明书的穿梭剂可以实现至少25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%或85%的转导效率,例如通过免疫荧光显微术,流式细胞术,FACS和其它合适的方法所测量。在一些实施方式中,本说明书的穿梭剂可以使上述转导效率中的一个一起希望细胞存活率为至少25%,30%,35%,40%,45%,50%,55%,60%,65%,70%,75%,80%,85%,90%或95%,例如通过实施例3.3a中描述的测定或通过本领域已知的另一种合适的测定所测量。
除了增加靶细胞转导效率之外,本说明书的穿梭剂可以促进目标负荷(例如多肽负荷)递送至靶细胞的胞质溶胶。在这方面,使用肽有效地将细胞外负荷递送至靶细胞的胞质溶胶可能是具有挑战性的,因为负荷在穿过质膜后经常被捕获在细胞内内体中,这可能限制其细胞内可用性并且可能导致其最终代谢降解。例如,据报道,使用来自HIV-1Tat蛋白的蛋白质转导结构域导致负荷大量隔离到细胞内囊泡中。在一些方面,本说明书的穿梭剂可促进内体捕获的负荷从内体逃逸并进入细胞质区室的能力。在这方面,短语“增加独立多肽负荷对胞质溶胶的转导效率”中的“对胞质溶胶”的表达旨在表示本说明书的穿梭剂允许细胞内递送的目标负荷逃避内体捕获并进入细胞质区室的能力。在目标负荷进入胞质溶胶后,可以随后将其靶向各种亚细胞区室(例如细胞核,核仁,线粒体,过氧化物酶体)。在一些实施方式中,表达“对胞质溶胶”因此意图不仅包括胞质溶胶递送,还包括递送至其它亚细胞区室,其首先需要负荷进入细胞质区室。
在一些实施方式中,本说明书的方法是体外方法。在其它实施方式中,本说明书的方法是体内方法。
在一些实施方式中,本说明书的方法可包括使靶真核细胞与穿梭剂,或如本文所定义的组合物和多肽负荷接触。在一些实施方式中,在将靶真核细胞暴露于该混合物之前,可将穿梭剂或组合物与多肽负荷预温育以形成混合物。在一些实施方式中,可基于待在细胞内递送的多肽负荷的氨基酸序列来选择穿梭剂的类型。在其它实施方式中,可以选择穿梭剂的类型以考虑细胞内待递送的多肽负荷的氨基酸序列,细胞类型,组织类型等。
在一些实施方式中,该方法可包括用穿梭剂或组合物(例如每天1,2,3,4或更多次,和/或按预定的时间表)对靶细胞进行多次处理。在这种情况下,较低浓度的穿梭剂或组合物可能是可取的(例如为了降低毒性)。在一些实施方式中,细胞可以是悬浮细胞或贴壁细胞。在一些实施方式中,本领域技术人员将能够使用穿梭剂,结构域,用途和方法的不同组合来调整本说明书的教导,以适应将多肽负荷递送至具有所需生存力的特定细胞的特定需要。
在一些实施方式中,本说明书的方法可以应用于在体内将多肽负荷细胞内递送至细胞的方法。这些方法可以通过肠胃外施用或直接注射到组织,器官或系统中来完成。
在一些实施方式中,穿梭剂或组合物和多肽负荷可以在血清存在或不存在下暴露于靶细胞。在一些实施方式中,该方法可适用于临床或治疗用途。
在一些实施方式中,本说明书涉及用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的试剂盒。在一些实施方式中,本说明书涉及用于增加多肽负荷对靶真核细胞的胞质溶胶的转导效率的试剂盒。试剂盒可包含穿梭剂或本文定义的组合物和合适的容器。
在一些实施方式中,靶真核细胞可以是动物细胞,哺乳动物细胞或人细胞。在一些实施方式中,靶真核细胞可以是干细胞(例如胚胎干细胞,多能干细胞,诱导多能干细胞,神经干细胞,间充质干细胞,造血干细胞,外周血干细胞),原代细胞(例如成肌细胞,成纤维细胞)或免疫细胞(例如NK细胞,T细胞,树突细胞,抗原呈递细胞)。在一些实施方式中,本说明书涉及分离的细胞,其包含如本文定义的基于合成肽或多肽的穿梭剂。在一些实施方式中,细胞可以是蛋白质诱导的多能干细胞。应当理解,通常对蛋白质转导具有抗性或不适合的细胞可能是本说明书的合成肽或基于多肽的穿梭剂的有趣候选物。
在一些实施方式中,本说明书涉及用于产生合成肽穿梭剂的方法,所述合成肽穿梭剂将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核,该方法包括合成作为以下的肽:
(1)长度至少为20个氨基酸的肽,其包含:
(2)具有带正电荷的亲水外表面的两亲性α-螺旋基序,和
(3)疏水外表面,
其中,涉及以下参数(4)至(15)中的至少五个:
(4)基于每圈有3.6个残基的α-螺旋的开口圆柱形表示,疏水外表面包含由空间上相邻的L,I,F,V,W和/或M氨基酸组成的高疏水性核心,所述氨基酸代表肽的12%至50%的氨基酸;
(5)肽的疏水力矩(μ)为3.5至11;
(6)肽在生理pH下的预测净电荷为至少+4;
(7)肽的等电点(pI)为8至13;
(8)肽由35%至65%的氨基酸:A,C,G,I,L,M,F,P,W,Y和V的任何组合组成;
(9)肽由0%至30%的氨基酸:N,Q,S和T的任何组合组成;
(10)肽由35%至85%的氨基酸:A,L,K或R的任何组合组成;
(11)肽由15%至45%的氨基酸:A和L的任何组合组成,条件是肽中存在至少5%的L;
(12)肽由20%至45%的氨基酸:K和R的任何组合组成;
(13)肽由0%至10%的氨基酸:D和E的任何组合组成;
(14)肽中A和L残基的百分比(%A+L)与肽中K和R残基的百分比(%K+R)之间的差异小于或等于10%;和
(15)肽由10%至45%的氨基酸:Q,Y,W,P,I,S,G,V,F,E,D,C,M,N,T和H的任何组合组成。
在一些实施方式中,本说明书涉及用于鉴定将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的穿梭剂的方法,该方法包括:(a)合成肽,该肽是如本文所定义的肽;(b)在所述肽存在下使靶真核细胞与多肽负荷接触;(c)测量靶真核细胞中多肽负荷的转导效率;以及(d)当观察到靶真核细胞中所述多肽负荷的转导效率增加时,将肽鉴定为转导多肽负荷的穿梭剂。
在一些实施方式中,本说明书涉及基因组编辑系统,其包含:(a)如本文所定义的穿梭剂;(b)CRISPR相关核酸内切酶;和(c)一种或多种指导RNA。在一些实施方式中,基因组编辑系统可以进一步包含用于控制基因组编辑的线性DNA模板。
用于改进细胞疗法的基因组编辑
在一些实施方式中,与天然细胞或未经处理的细胞相比,本文所述的穿梭剂,合成肽,组合物和方法可用于转导基因组编辑复合物(例如基于CRISPR的基因组编辑复合物)以基因工程化细胞以改进细胞疗法。这些改进可包括例如降低工程细胞的免疫原性和/或改善工程细胞的活性/功效。
用于基因组工程的特别有吸引力的免疫细胞可以是天然杀伤(NK)细胞,因为它们具有识别和杀死肿瘤细胞的天然能力。因此,在一些实施方式中,本说明书涉及本文所述的穿梭剂,合成肽,组合物和方法用于转导基因组编辑复合物(例如基于CRISPR的基因组编辑复合物)以基因工程化NK(或受益于相同修饰的其它免疫细胞)以改进基于细胞的免疫疗法。例如,本说明书可涉及一种或多种基于CRISPR的基因组编辑复合物的细胞内递送,所述基因组编辑复合物包含靶向CBLB基因,c-CBL基因,GSK3基因,ILT2基因,CISH基因,NKG2a基因,B2M基因或其任何组合的指导RNA和/或线性DNA模板。如下所述,此类基因靶标可在敲除后增强NK介导的细胞毒性。
1.NKG2A(KLRC1,CD159A,杀伤细胞凝集素样受体C1)
CD94/NKG2A充当MHC I类特异性NK抑制性受体(Braud等人,1998;Lee等人,1998)。它由称为CD56bright CD16dim(约10%的外周NK)的NK细胞亚群表达,其通常具有较低的细胞毒性(Cooper等人,2001;Poli等人,2009)。NKG2A配体是在每个人细胞中表达的非经典MHCI类HLA-E分子。NKG2A受体对HLA-E的识别是“自身耐受”机制(也包括KIR受体)的一部分,导致NK细胞细胞毒性的负调节(Lee等人,1998)。
有临床证据证明非经典HLA I类,主要是HLA-E和HLA-G(参见ILT-2靶标)在逃避免疫监视中的作用,导致更高的癌症复发并降低手术后的总体存活率(de Kruijf等人,2010;Levy等人,2008;Ye等人,2007a;Yie等人,2007b;Yie等人,2007c;Yie等人,2007d;Guo等人,2015;Ishigami等人,2015;Zhen等人,2013)。在过继细胞治疗期间使用NKG2A-KO NK细胞可以抵消肿瘤微环境中HLA-E分子(膜结合或可溶物)的存在。另外,从表达IL15或IL21的K562饲养细胞扩增的NK细胞导致高百分比的NKG2Apos细胞(Denman等人,2012),并且可能需要在扩增过程中敲除该抑制性受体。此外,实施例G.9中的结果证明NKG2A-KO NK92细胞对IFN-γ处理的HeLa细胞具有显著更高的细胞毒性。
2.ILT2(Ig样转录物2基因)
ILT2是在几种免疫细胞上表达的抑制性受体,包括NK细胞(Kirwan等人,2005)。该受体的配体是HLA-G分子,其仅在胸腺和滋养细胞中天然表达。然而,许多肿瘤通过ILT2受体激活的抑制获得表达HLA-G以逃避免疫细胞攻击的能力。事实上,NKLILT2-细胞比亲本NKL对抗过表达HLA-G的K562细胞更有效(Wu等人,2015)。此外,OVCAR-3癌细胞中HLA-G的过表达损害了NK细胞介导的细胞毒性(Lin等人,2007)。至于HLA-E,癌细胞上HLA-G的表达通常与不良预后相关。
3.c-Cbl和Cbl-b(Casitas B谱系淋巴瘤原癌基因家族)。
这些基因(来自Casitas B谱系淋巴瘤原癌基因,Cbl家族)编码E3连接酶,其在蛋白质泛素化途径(细胞蛋白质含量的调节)中起作用。E3连接酶催化Ub(泛素蛋白)与靶蛋白上的特定赖氨酸残基(哺乳动物中超过数千个E3连接酶)之间的共价键形成。Cbl家族成员通过结合和泛素化磷酸化受体和衔接子参与免疫细胞上受体酪氨酸激酶的信号传导的负调节(Liu等人,2014;utz-Nicoladoni,2015)。一个证明了c-cbl和Cbl-b泛素化磷酸化的LAT衔接子。NK细胞活化后LAT的磷酸化需要募集其它介质,特别是PLC-γ和siRNA介导的c-cbl和Cbl-b敲低增加NK细胞对B细胞淋巴瘤721.221-Cw4的活性(Matalon等人,2016)。
其它人将TAM(Tyro3,Axl,Mer)受体鉴定为Cbl-b泛素化的靶标(Paolino等人,2014)。然而,假设提出TAM受体负向调节NK细胞,Cbl-b敲除应该与NK细胞活性的降低相关。因此,TAM受体可被认为是增强NK细胞的良好靶标,但不可能通过Cbl-b敲除。
体内研究表明,Cbl-b-/-小鼠可预防原发性肿瘤的生长(Loeser等人,2007)。此外,从这些小鼠中分离的NK细胞在活化时具有增加的增殖和IFN-γ产生(Paolino等人,2014)。
4.GSK3B(糖原合成酶激酶β)
GSK3b是参与几种细胞功能例如增殖,细胞凋亡,炎症反应,应激等的Ser/Thr激酶(Patel等人,2017)。在NK细胞中抑制GSK3b(使用小抑制剂)导致针对AML(OCI-AML3)的细胞毒性增加(可能通过IFN-g,TNF-α产生,2B4刺激和LFA-1的上调)(Parameswaran等人,2016;Aoukaty等人,2005)。我们最近证明了GSK3β抑制剂SB216763增强NK92对HeLa细胞的细胞毒活性(数据未显示)。通过与IL-15共温育增加了这种效果。
5.CISH(细胞因子诱导的含SH2蛋白)
CIS蛋白是细胞因子信号传导(SOCS)蛋白抑制剂的成员,其与磷酸化的JAK结合并抑制JAK-STAT信号传导途径。最近,Cish-/-小鼠证明了CIS是NK细胞中IL15信号传导的关键抑制因子(Delconte等人,2016)。在IL15暴露后,这些细胞具有延长的IL15反应,IFN-g产生增加和细胞毒性潜力增加。此外,IL15反应性与NKG2D依赖性细胞毒性之间存在明确的关系(Horng等人,2007)。
在临床试验中,强烈建议在过继性NK细胞治疗期间共注射细胞因子,如IL2和IL15,以维持NK细胞活性。然而,这种共注射会对患者产生严重的副作用。IL15-过敏性NK细胞(CISH敲除)的使用将有益于治疗。
在一些实施方式中,破坏编码β2微球蛋白(B2M)的B2M基因(MHC I类分子的组分)可以显著降低表达MHC I类的每种细胞的免疫原性。在其它方面,NK细胞的基因组可以在递送如本文所述的基因组编辑系统。更具体地,在递送靶向特定推定靶标的基因组编辑系统后可以改善NK细胞的细胞毒性,所述特定推定靶标可以增强NK介导的细胞毒性,例如NKG2A,ILT2,c-Cbl,Cbl-b,GSK3B和CISH基因。
与目标多肽负荷和标记蛋白共转导
本文和PCT专利申请公开号WO/2016/161516已经证明了基于结构域和合理设计的肽穿梭剂将两种不同的多肽负荷共转导到靶真核细胞群中的能力。本说明书的实施例I显示了在靶真核细胞群中共转导目标多肽负荷(例如CRISPR-内切核酸酶)和独立的标记蛋白(例如GFP)可能不一定提高目标多肽负荷的整体转染效率。然而,令人惊讶地发现,用标记蛋白成功转导了用目标多肽负荷成功转导的显著高比例的靶真核细胞。相反,未用目标多肽负荷转导的显著高比例的细胞也未用标记蛋白转导。分离标记蛋白阳性的细胞(例如通过FACS)导致用目标多肽负荷成功转导的细胞比例显著增加,并且发现相关性浓度依赖于表现出最高的细胞群。标记蛋白的荧光也表现出与目标多肽负荷转导的最高比例。
在一些方面,本说明书涉及用于富集用目标多肽负荷转导的真核细胞的方法。该方法可包括:(a)将靶真核细胞群与目标多肽负荷和标记蛋白共转导;以及(b)分离或浓缩用标记蛋白转导的真核细胞,从而富集用目标多肽负荷转导的真核细胞。
在一些实施方式中,标记蛋白可以不与目标多肽负荷共价结合(例如标记蛋白独立于目标多肽负荷),标记蛋白可以与目标多肽负荷共价结合,标记蛋白可以与目标多肽负荷非共价结合(例如通过蛋白质结构域-蛋白质结构域相互作用静电和/或构象结合),或者标记蛋白通过可切割的接头与目标多肽负荷共价结合(例如包含酶切割位点的接头肽,例如在内体,溶酶体或胞质溶胶中表达的酶)。在一些实施方式中,转导的标记蛋白的细胞内浓度可以与转导的目标多肽负荷的细胞内浓度正相关。
在一些实施方式中,标记蛋白可包含可检测标记。如本文所用,“可检测标记”是指使本领域技术人员能够从缺乏标记的细胞中鉴定和分离包含标记的细胞的分子或颗粒。在一些实施方式中,标记蛋白可以是荧光蛋白,荧光标记的蛋白,生物发光蛋白,同位素标记的蛋白,磁标记的蛋白,或能够从缺乏标记蛋白的细胞中分离含有标记蛋白的细胞,或基于细胞内标记蛋白的水平能够分离细胞的另一种可检测标记。
在一些实施方式中,可以使用流式细胞术,荧光激活细胞分选术(FACS),磁激活细胞分选术(MACS)或其它已知的细胞分离/分选技术分离或浓缩用标记蛋白转导的真核细胞。分离或富集成功转导的细胞可能是特别有利的,例如对于多肽负荷,例如基于功能性CRISPR的基因组编辑复合物,其可能与相对较低的转导效率相关。
本文还令人惊讶地在实施例I中公开了在用目标多肽负荷进行第一轮转导后未成功转导的细胞,可以在随后的转导循环中用目标多肽负荷分离和重新转导。这些结果表明,尽管在用目标多肽负荷进行第一轮转导后未成功转导的细胞不一定对随后的转导顽固。
在一些实施方式中,本说明书涉及富集用目标多肽负荷转导的真核细胞的方法,该方法包括:(a)将靶真核细胞群与目标多肽负荷和标记蛋白共转导;以及(b)从缺乏标记蛋白的细胞中分离用标记蛋白转导的真核细胞,从而产生标记蛋白阳性细胞群和标记蛋白阴性细胞群。在一些实施方式中,步骤(a)和(b)可以在标记蛋白阴性细胞群上,在标记蛋白阳性细胞群上,或在标记蛋白阴性和标记蛋白阳性细胞群上重复一次或多次。在一些实施方式中,用于富集用目标多肽负荷转导的真核细胞的方法可以是自动化的,例如通过分离对标记蛋白转导呈阴性的细胞并重新转导标记蛋白阴性细胞群。
在一些实施方式中,本说明书涉及富集用目标多肽负荷转导的真核细胞的方法,该方法包括:(a)将靶真核细胞群与目标多肽负荷和标记蛋白共转导;以及(b)基于标记蛋白的细胞内浓度分离用标记蛋白转导的真核细胞。
在一些实施方式中,本文描述的标记蛋白可以是刺激细胞增殖的蛋白质(例如生长因子或转录因子),刺激细胞分化的蛋白质,促进细胞存活的蛋白质,抗凋亡蛋白质,或具有另一种生物活性的蛋白质。
在一些实施方式中,目标多肽负荷和标记蛋白可以通过在肽转导剂存在下使靶真核细胞与多肽负荷和标记蛋白接触而共转导,其中与不存在所述肽转导剂相比,肽转导剂存在的浓度足以提高多肽负荷和标记蛋白的转导效率。在一些实施方式中,肽转导剂可以是内体溶解肽。在一些实施方式中,肽转导剂是或包含PCT专利申请公开号WO/2016/161516和/或US 9,738,687中的基于结构域的肽穿梭剂,或如本文所定义的合理设计的肽穿梭剂。在一些实施方式中,前述基于结构域的肽穿梭剂可以是合成肽,其包含可操作地连接至细胞穿透结构域(CPD)的内体渗漏结构域(ELD),或可操作地连接至富含组氨酸的结构域和CPD的ELD。在一些实施方式中,前述基于结构域的肽穿梭剂:(a)包含20,21,22,23,24,25,26,27,28,29或30个氨基酸残基的最小长度和35,40,45,50,55,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,,145或150个氨基酸残基的最大长度;(b)在生理pH下的预测净电荷为至少+4,+5,+6,+7,+8,+9,+10,+11,+12,+13,+14或+15;(c)可溶于水溶液;或(d)(a)至(c)的任何组合。在一些实施方式中,ELD,CPD,富含组氨酸的结构域,接头结构域如本文所定义。在一些实施方式中,靶真核细胞包含动物细胞,哺乳动物细胞,人细胞,干细胞,原代细胞,免疫细胞,T细胞,NK细胞,树突细胞或其它类型或亚型细胞或由其组成。
在一些实施方式中,目标多肽负荷可以是:(i)如本文所定义的多肽负荷;和/或(ii)单独的一种或多种CRISPR相关核酸内切酶或与本文定义的一种或多种相应的指导RNA和/或线性DNA模板。
条款
在一些实施方式中,本说明书可涉及以下条款:
1、一种用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的方法,所述方法包括在穿梭剂存在下使靶真核细胞与多肽负荷接触,与不存在所述穿梭剂相比,所述穿梭剂的浓度足以使所述多肽负荷的转导效率提高,其中所述穿梭剂是:
(1)长度至少为20个氨基酸的肽,其包含:
(2)具有带正电荷的亲水外表面的两亲性α-螺旋基序,和
(3)疏水外表面,
其中,涉及以下参数(4)至(15)中的至少五个:
(4)基于每圈有3.6个残基的α-螺旋的开口圆柱形表示,疏水外表面包含由空间上相邻的L,I,F,V,W和/或M氨基酸组成的高疏水性核心,所述氨基酸代表肽的12%至50%的氨基酸;
(5)肽的疏水力矩(μ)为3.5至11;
(6)肽在生理pH下的预测静电荷为至少+4;
(7)肽的等电点(pI)为8至13;
(8)肽由35%至65%的氨基酸:A,C,G,I,L,M,F,P,W,Y和V的任何组合组成;
(9)肽由0%至30%的氨基酸:N,Q,S和T的任何组合组成;
(10)肽由35%至85%的氨基酸:A,L,K或R的任何组合组成;
(11)肽由15%至45%的氨基酸:A和L的任何组合组成,条件是肽中存在至少5%的L;
(12)肽由20%至45%的氨基酸:K和R的任何组合组成;
(13)肽由0%至10%的氨基酸:D和E的任何组合组成;
(14)肽中A和L残基的百分比(%A+L)与肽中K和R残基的百分比(K+R)之间的差异小于或等于10%;和
(15)肽由10%至45%的氨基酸:Q,Y,W,P,I,S,G,V,F,E,D,C,M,N,T和H的任何组合组成。
2、条款1的方法,其中,穿梭剂涉及参数(4)至(15)中的至少六个,至少七个,至少八个,至少九个,至少十个,至少十一个,或涉及所有参数(4)至(15)。
3、条款1或2的方法,其中:
(i)所述穿梭剂是肽,其最小长度为20,21,22,23,24,25,26,27,28,29或30个氨基酸,并且最大长度为35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145或150个氨基酸;
(ii)所述两亲性α-螺旋基序的疏水力矩(μ)在3.5,3.6,3.7,3.8,3.9,4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0的下限和9.5,9.6,9.7,9.8,9.9,10.0,10.1,10.2,10.3,10.4,10.5,10.6,10.7,10.8,10.9或11.0的上限之间;
(iii)所述两亲性α-螺旋基序包括带正电荷的亲水外表面,基于连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,所述亲水外表面包括:(a)在螺旋轮投影时的至少两个,三个或四个相邻的带正电荷的K和/或R残基;和/或(b)在螺旋轮投影时的包含三至五个K和/或R残基的六个相邻残基的区段;
(iv)所述两亲性α-螺旋基序包括疏水外表面,基于连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,所述疏水外表面包括:(a)在螺旋轮投影时的至少两个相邻L残基;和/或(b)在螺旋轮投影时的包含选自:L,I,F,V,W和M的至少五个疏水残基的十个相邻残基的区段;
(v)所述疏水性外表面包含由空间上相邻的L,I,F,V,W和/或M氨基酸组成的高疏水性核心,所述氨基酸代表肽的12.5%,13%,13.5%,14%,14.5%,15%,15.5%,16%,16.5%,17%,17.5%,18%,18.5%,19%,19.5%或20%至25%,30%,35%,40%或45%的氨基酸;
(vi)所述肽的疏水力矩(μ)在4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,6.0,6.1,6.2,6.3,6.4,6.5,6.6,6.7,6.8,6.9,7.0的下限和9.5,9.6,9.7,9.8,9.9,10.0,10.1,10.2,10.3,10.4或10.5的上限之间;
(vii)所述肽的预测净电荷在+4,+5,+6,+7,+8,+9,+10,+11,+12,+13,+14或+15之间;
(viii)所述肽的预测pI为10-13;或
(ix)(i)至(viii)的任何组合。
4、条款1至3中任一项的方法,其中,所述穿梭剂涉及以下参数中的至少一个,至少两个,至少三个,至少四个,至少五个,至少六个或全部:
(8)肽由36%至64%,37%至63%,38%至62%,39%至61%或40%至60%的氨基酸:A,C,G,I,L,M,F,P,W,Y和V的任何组合组成;
(9)肽由1%至29%,2%至28%,3%至27%,4%至26%,5%至25%,6%至24%,7%至23%,8%至22%,9%至21%或10%至20%的氨基酸:N,Q,S和T的任何组合组成;
(10)肽由36%至80%,37%至75%,38%至70%,39%至65%或40%至60%的氨基酸:A,L,K或R的任何组合组成;
(11)肽由15%至40%,20%至40%,20%至35%或20%至30%的氨基酸:A和L的任何组合组成;
(12)肽由20%至40%,20%至35%或20%至30%的氨基酸:K和R的任何组合组成;
(13)肽由5%至10%的氨基酸:D和E的任何组合组成;
(14)肽中A和L残基的百分比(%A+L)与肽中K和R残基的百分比(K+R)之间的差异小于或等于9%,8%,7%,6%或5%;和
(15)肽由15%至40%,20%至35%或20%至30%的氨基酸:Q,Y,W,P,I,S,G,V,F,E,D,C,M,N,T和H的任何组合组成。
5、条款1至4中任一项的方法,其中,所述肽包含富含组氨酸的结构域。
6、条款5的方法,其中,所述富含组氨酸的结构域是:
(i)朝向肽的N末端和/或朝向肽的C末端定位;
(ii)是至少3个,至少4个,至少5个或至少6个氨基酸的链段,其包括至少50%,至少55%,至少60%,至少65%,至少70%,至少75%,至少80%,至少85%或至少90%的组氨酸残基;和/或包含至少2个,至少3个,至少4个,至少5个,至少6个,至少7个,至少8个或至少9个连续的组氨酸残基;或
(iii)(i)和(ii)两者。
7、条款1至6中任一项的方法,其中,所述肽包含富含丝氨酸和/或甘氨酸残基的柔性接头结构域。
8、条款1至7中任一项的方法,其中,所述肽包含以下氨基酸序列或由其组成:
(a)[X1]-[X2]-[接头]-[X3]-[X4](式1);
(b)[X1]-[X2]-[接头]-[X4]-[X3](式2);
(c)[X2]-[X1]-[接头]-[X3]-[X4](式3);
(d)[X2]-[X1]-[接头]-[X4]-[X3](式4);
(e)[X3]-[X4]-[接头]-[X1]-[X2](式5);
(f)[X3]-[X4]-[接头]-[X2]-[X1](式6);
(g)[X4]-[X3]-[接头]-[X1]-[X2](式7);或
(h)[X4]-[X3]-[接头]-[X2]-[X1](式8),
其中:
[X1]选自:2[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;2[Φ]-1[+]-2[Φ]-2[+]-;1[+]-1[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;和1[+]-1[Φ]-1[+]-2[Φ]-2[+]-;
[X2]选自:-2[Φ]-1[+]-2[Φ]-2[ζ]-;-2[Φ]-1[+]-2[Φ]-2[+]-;-2[Φ]-1[+]-2[Φ]-1[+]-1[ζ]-;-2[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;-2[Φ]-2[+]-1[Φ]-2[+]-;-2[Φ]-2[+]-1[Φ]-2[ζ]-;-2[Φ]-2[+]-1[Φ]-1[+]-1[ζ]-;和-2[Φ]-2[+]-1[Φ]-1[ζ]-1[+]-;
[X3]选自:-4[+]-A-;-3[+]-G-A-;-3[+]-A-A-;-2[+]-1[Φ]-1[+]-A-;-2[+]-1[Φ]-G-A-;-2[+]-1[Φ]-A-A-;或-2[+]-A-1[+]-A;-2[+]-A-G-A;-2[+]-A-A-A-;-1[Φ]-3[+]-A-;-1[Φ]-2[+]-G-A-;-1[Φ]-2[+]-A-A-;-1[Φ]-1[+]-1[Φ]-1[+]-A;-1[Φ]-1[+]-1[Φ]-G-A;-1[Φ]-1[+]-1[Φ]-A-A;-1[Φ]-1[+]-A-1[+]-A;-1[Φ]-1[+]-A-G-A;-1[Φ]-1[+]-A-A-A;-A-1[+]-A-1[+]-A;-A-1[+]-A-G-A;和-A-1[+]-A-A-A;
[X4]选自:-1[ζ]-2A-1[+]-A;-1[ζ]-2A-2[+];-1[+]-2A-1[+]-A;-1[ζ]-2A-1[+]-1[ζ]-A-1[+];-1[ζ]-A-1[ζ]-A-1[+];-2[+]-A-2[+];-2[+]-A-1[+]-A;-2[+]-A-1[+]-1[ζ]-A-1[+];-2[+]-1[ζ]-A-1[+];-1[+]-1[ζ]-A-1[+]-A;-1[+]-1[ζ]-A-2[+];-1[+]-1[ζ]-A-1[+]-1[ζ]-A-1[+];-1[+]-2[ζ]-A-1[+];-1[+]-2[ζ]-2[+];-1[+]-2[ζ]-1[+]-A;-1[+]-2[ζ]-1[+]-1[ζ]-A-1[+];-1[+]-2[ζ]-1[ζ]-A-1[+];-3[ζ]-2[+];-3[ζ]-1[+]-A;-3[ζ]-1[+]-1[ζ]-A-1[+];-1[ζ]-2A-1[+]-A;-1[ζ]-2A-2[+];-1[ζ]-2A-1[+]-1[ζ]-A-1[+];-2[+]-A-1[+]-A;-2[+]-1[ζ]-1[+]-A;-1[+]-1[ζ]-A-1[+]-A;-1[+]-2A-1[+]-1[ζ]-A-1[+];和-1[ζ]-A-1[ζ]-A-1[+];并且
[接头]选自:-Gn-;-Sn-;-(GnSn)n-;-(GnSn)nGn-;-(GnSn)nSn-;-(GnSn)nGn(GnSn)n-;和(GnSn)nSn(GnSn)n-;
其中:
[Φ]是氨基酸,其为:Leu,Phe,Trp,Ile,Met,Tyr或Val;
[+]是氨基酸,其为:Lys或Arg;
[ζ]是氨基酸,其为:Gln,Asn,Thr或Ser;
A是氨基酸Ala;
G是氨基酸Gly;
S是氨基酸Ser;并且
n是1至20,1至19,1至18,1至17,1至16,1至14,1至13,1至12,1至11,1至10,1至9,1至8,1至7,1至6,1至5,1至1至4或1至3的整数。
9、条款1至8中任一项的方法,其中:
(i)所述肽与SEQ ID NO:104,105,107,108,110-131,133-135,138,140,142,145,148,151,152,169-242和243-10 242中任一个的氨基酸序列至少50%,55%,60%,65%,70%,75%,80%,85%,90%或95%相同;或所述肽包含SEQ ID NO:104,105,107,108,110-131,133-135,138,140,142,145,148,151,152,169-242和243-10 242中任一个的功能变体或由其组成;
(ii)所述肽:
(a)包含SEQ ID NO:104,105,107,108,110-131,133-135,138,140,142,145,148,151,152,169-242和243-10 242中任一个的氨基酸序列或由其组成;
(b)包含SEQ ID NO:158和/或159的氨基酸序列基序;或
(c)包含与SEQ ID NO:159的氨基酸序列基序可操作地连接的SEQ ID NO:158的氨基酸序列基序;或
(iii)(i)和(ii)两者。
10、条款1至9中任一项的方法,其中,所述肽包含内体泄漏结构域(ELD)和/或细胞穿透结构域(CPD)。
11、条款10的方法,其中:
(i)所述ELD是或来自:内体溶解肽;抗菌肽(AMP);线性阳离子α-螺旋抗菌肽;天蚕素-A/蜂毒肽杂合体(CM系列)肽;pH依赖性膜活性肽(PAMP);肽两亲物;来源于流感血凝素(HA)的HA2亚基的N末端的肽;CM18;白喉毒素T结构域(DT);GALA;豌豆;INF-7;LAH4;人类基因组计划;H5WYG;HA2;EB1;VSVG;假单胞菌毒素;蜂毒肽;KALA;JST-1;C(LLKK)3C;G(LLKK)3G;或其任何组合;
(ii)所述CPD是或来自:细胞穿透肽或来自细胞穿透肽的蛋白质转导结构域;TAT;PTD4;穿透肽(Antennapedia);PVEC;M918;PEP-1;PEP-2;Xentry;精氨酸伸展;运输蛋白;SYNB1;SYNB3;或其任何组合;或(iii)(i)和(ii)两者。
12、条款10或11的方法,其中,所述肽包含:
(a)ELD,其包含SEQ ID NO:1-15,63或64中任一个的氨基酸序列,或具有内体溶解活性的其变体或片段;
(b)CPD,其包含SEQ ID NO:16-27或65中任一个的氨基酸序列,或具有细胞穿透活性的其变体或片段;或
(c)(a)和(b)两者。
13、条款10至12中任一项的方法,其中:
(i)所述肽包含ELD,其为具有SEQ ID NO:1,14或63的氨基酸序列的CM18,KALA或C(LLKK)3C,或与SEQ ID NO:1,14或63具有至少50%,55%,60%,65%,70%,75%,80%,85%,90%或95%同一性并具有内体溶解活性的其变体;
(ii)其中,所述肽包含CPD,其为具有SEQ ID NO:17或65的氨基酸序列的TAT或PTD4,或与SEQ ID NO:17或65具有至少50%,55%,60%,65%,70%,75%,80%,85%,90%或95%同一性并具有细胞穿透活性的其变体;或
(iii)(i)和(ii)两者。
14、条款1至9中任一项的方法,其中,所述肽包含SEQ ID NO:57-59,66-72或82-102中任一个的氨基酸序列,或与SEQ ID NO:57-59,66-72或82-102中的任一个具有至少85%,90%或95%同一性的其功能变体。
15、条款1至14中任一项的方法,其中:
(i)所述穿梭剂可被靶真核细胞完全代谢;和/或
(ii)与不存在所述穿梭剂相比,在所述浓度的穿梭剂存在下使靶真核细胞与多肽负荷接触导致所述多肽负荷的转导效率增加至少10倍,20倍,30倍,40倍,50倍或100倍。
16、条款1至15中任一项的方法,其是体外方法。
17、合成肽穿梭剂,其是条款1至15中任一项所定义的肽。
18、条款17的合成肽,其是长度为20至100个氨基酸的肽,包含SEQ ID NO:104,105,107,108,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135,138,140,142,145,148,151,152,169-242和243-10 242中任一个的氨基酸序列;或包含SEQ ID NO:158和/或159的氨基酸序列基序。
19、条款17或18的合成肽穿梭剂,其用于在体外将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核,其中与不存在所述合成肽穿梭剂相比,所述合成肽穿梭剂的使用浓度足以提高所述多肽负荷的转导效率。
20、条款17或18的合成肽穿梭剂,其用于在体内将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核,其中与不存在所述合成肽穿梭剂相比,所述合成肽穿梭剂的使用浓度足以提高所述多肽负荷的转导效率。
21、一种组合物,其包含如条款1至15中任一项所定义的穿梭剂,或至少2种,至少3种,至少4种或至少5种不同类型的如条款1至15中任一项所定义的穿梭剂的混合物,和待从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的多肽负荷。
22、条款1至15中任一项所定义的穿梭剂或条款18中定义的合成肽用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的用途,其中与不存在所述穿梭剂或合成肽相比,所述穿梭剂或合成肽的使用浓度足以提高所述多肽负荷的转导效率。
23、一种用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的试剂盒,所述试剂盒包含如条款1至15中任一项所定义的穿梭剂,或如条款18中定义的合成肽;和合适的容器。
24、条款1至16中任一项的方法,条款17至20中任一项的合成肽穿梭剂,条款21的组合物,条款22的用途,或条款23的试剂盒,其中,所述多肽负荷缺乏细胞穿透结构域。
25、条款1至16中任一项的方法,条款17至20中任一项的合成肽穿梭剂,条款21的组合物,条款22的用途,或条款23的试剂盒,其中,所述多肽负荷包含细胞穿透结构域。
26、条款1至16,24或25中任一项的方法,条款17至20,24或25中任一项的合成肽穿梭剂,条款21,24或25中任一项的组合物,条款22至25中任一项的用途,其中,所述多肽负荷包含亚细胞靶向结构域。
27、条款26的方法,合成肽穿梭剂,组合物,用途或试剂盒,其中,所述亚细胞靶向结构域是:
(a)核定位信号(NLS);
(b)核仁信号序列;
(c)线粒体信号序列;或
(d)过氧化物酶体信号序列。
28、条款27的方法,合成肽穿梭剂,组合物,用途或试剂盒,其中:
(a)所述NLS来自:E1a,T-Ag,c-myc,T-Ag,op-T-NLS,Vp3,核质蛋白,组蛋白2B,非洲爪蟾N1,PARP,PDX-1,QKI-5,HCDA,H2B,v-Rel,Amida,RanBP3,Pho4p,LEF-1,TCF-1,BDV-P,TR2,SOX9或Max;
(b)所述核仁信号序列来自BIRC5或RECQL4;
(c)所述线粒体信号序列来自Tim9或酵母细胞色素c氧化酶亚基IV;或
(d)所述过氧化物酶体信号序列来自PTS1。
29、条款24至29中任一项的方法,合成肽穿梭剂,组合物,用途或试剂盒,其中,所述多肽负荷与DNA和/或RNA分子复合。
30、条款24至29中任一项的方法,合成肽穿梭剂,组合物,用途或试剂盒,其中,所述多肽负荷是转录因子,核酸酶,细胞因子,激素,生长因子,抗体,肽负荷,酶,酶抑制剂或其任何组合。
31、条款30的方法,合成肽穿梭剂,组合物,用途或试剂盒,其中:
(a)所述转录因子是:HOXB4,NUP98-HOXA9,Oct3/4,Sox2,Sox9,Klf4,c-Myc,MyoD,Pdx1,Ngn3,MafA,Blimp-1,Eomes,T-bet,FOXO3A,NF-YA,SALL4,ISL1,FoxA1,Nanog,Esrrb,Lin28,HIF1-α,Hlf,Runx1t1,Pbx1,Lmo2,Zfp37,Prdm5,Bcl-6或其任何组合;
(b)所述核酸酶是催化活性或催化死亡的:RNA引导的核酸内切酶,CRISPR核酸内切酶,I型CRISPR核酸内切酶,II型CRISPR核酸内切酶,III型CRISPR核酸内切酶,IV型CRISPR核酸内切酶,V型CRISPR核酸内切酶,VI型CRISPR核酸内切酶,CRISPR相关蛋白9(Cas9),Cpf1,CasY,CasX,锌指核酸酶(ZFN),转录激活因子样效应核酸酶(TALEN),归巢核酸内切酶,大范围核酸酶,DNA引导核酸酶,格氏嗜盐碱杆菌Arg(NgAgo)或其任何组合;
(c)所述抗体识别细胞内抗原;和/或
(d)所述肽负荷识别细胞内分子。
32、条款24至31中任一项的方法,合成肽穿梭剂,组合物,用途或试剂盒,其用于细胞疗法,基因组编辑,过继细胞转移和/或再生医学。
33、条款24至32中任一项的方法,合成肽穿梭剂,组合物,用途或试剂盒,其中,所述靶真核细胞是动物细胞,哺乳动物细胞,人细胞,干细胞,原代细胞,免疫细胞,T细胞,NK细胞或树突细胞。
34、一种真核细胞,其包含如条款1至15中任一项所定义的穿梭剂,如条款18中所定义的合成肽穿梭剂,或如条款21中所定义的组合物。
35、条款34的真核细胞,其是动物细胞,哺乳动物细胞,人细胞,干细胞,原代细胞,免疫细胞,T细胞,NK细胞或树突细胞。
36、一种用于将一种或多种CRISPR相关核酸内切酶单独或与一种或多种相应的指导RNA和/或线性DNA模板一起递送至靶真核细胞的方法,所述方法包括在穿梭剂存在下使靶真核细胞与内切核酸酶接触,与不存在所述穿梭剂相比,所述穿梭剂的浓度足以提高所述内切核酸酶的转导效率,其中所述穿梭剂如条款1至15中任一项所定义。
37、条款36的方法,其是体外方法或体内方法。
38、条款36或37的方法,其中,所述一种或多种内切核酸酶是:I型CRISPR核酸内切酶,II型CRISPR核酸内切酶,III型CRISPR核酸内切酶,IV型CRISPR核酸内切酶,V型CRISPR核酸内切酶,VI型CRISPR内切核酸酶或其任何组合。
39、条款36或37的方法,其中,所述一种或多种内切核酸酶是CRISPR相关蛋白9(Cas9),Cpf1,CasX,CasY或其任何组合;或催化死亡的CRISPR相关蛋白9(dCas9),dCpf1,dCasX,dCasY或其任何组合。
40、条款36至39中任一项的方法,其中,所述靶真核细胞是动物细胞,哺乳动物细胞,人细胞,干细胞,原代细胞,免疫细胞,T细胞,NK细胞或树突状细胞。
41、条款58的方法,其中,与未经历所述方法的相应亲本真核细胞相比,所述一种或多种相应的指导RNA和/或线性DNA模板靶向一种或多种基因以降低免疫原性、改善细胞毒性和/或以其它方式改善靶真核细胞对基于细胞的疗法的有效性。
42、条款41的方法,其中,所述基于细胞的疗法是基于细胞的癌症免疫疗法。
43、条款40至42中任一项的方法,其中,所述一种或多种相应的指导RNA和/或线性DNA模板靶向CBLB基因,c-CBL基因,GSK3基因,ILT2基因,CISH基因,NKG2a基因,B2M基因或其任何组合。
44、一种用于生产合成肽穿梭剂的方法,所述合成肽穿梭剂将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核,所述方法包括合成以下肽:
(1)长度至少为20个氨基酸的肽,其包含:
(2)具有带正电荷的亲水外表面的两亲性α-螺旋基序,和
(3)疏水外表面,
其中,涉及以下参数(4)至(15)中的至少五个:
(4)基于每圈有3.6个残基的α-螺旋的开口圆柱形表示,疏水外表面包含由空间上相邻的L,I,F,V,W和/或M氨基酸组成的高疏水性核心,所述氨基酸代表肽的12%至50%的氨基酸;
(5)肽的疏水力矩(μ)为3.5至11;
(6)该肽在生理pH下的预测静电荷为至少+4;
(7)肽的等电点(pI)为8至13;
(8)肽由35%至65%的氨基酸:A,C,G,I,L,M,F,P,W,Y和V的任何组合组成;
(9)肽由0%至30%的氨基酸:N,Q,S和T的任何组合组成;
(10)肽由35%至85%的氨基酸:A,L,K或R的任何组合组成;
(11)肽由15%至45%的氨基酸:A和L的任何组合组成,条件是肽中存在至少5%的L;
(12)肽由20%至45%的氨基酸:K和R的任何组合组成;
(13)肽由0%至10%的氨基酸:D和E的任何组合组成;
(14)肽中A和L残基的百分比(%A+L)与肽中K和R残基的百分比(%K+R)之间的差异小于或等于10%;和
(15)肽由10%至45%的氨基酸:Q,Y,W,P,I,S,G,V,F,E,D,C,M,N,T和H的任何组合组成。
45、条款44的方法,其中,所述肽如条款2至15中任一项所定义。
46、一种用于鉴定穿梭剂的方法,所述穿梭剂将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核,所述方法包括:
(a)合成肽,其是如条款1至15或18中任一项所定义的肽;
(b)在所述肽存在下使靶真核细胞与多肽负荷接触;
(c)测量靶真核细胞中多肽负荷的转导效率;和
(d)当观察到靶真核细胞中所述多肽负荷的转导效率增加时,将肽鉴定为转导多肽负荷的穿梭剂。
47、条款46的方法,其中,所述多肽负荷如条款24至31中任一项所定义。
48、一种基因组编辑系统,其包括:
(a)如条款1至15或18中任一项所定义的穿梭剂;
(b)一种或多种CRISPR相关核酸内切酶;和
(c)一种或多种指导RNA。
49、条款48的基因组编辑系统,其还包括用于控制基因组编辑的线性DNA模板。
50、条款48或49的基因组编辑系统,其中,所述一种或多种CRISPR相关内切核酸酶是:I型CRISPR核酸内切酶,II型CRISPR核酸内切酶,III型CRISPR核酸内切酶,IV型CRISPR核酸内切酶,V型CRISPR内切核酸酶,VI型CRISPR内切核酸酶,CRISPR相关蛋白9(Cas9),Cpf1,CasX,CasY或其任何组合。
51、一种用于富集用目标多肽负荷转导的真核细胞的方法,所述方法包括:
(a)将靶真核细胞群与目标多肽负荷和标记蛋白共转导;和
(b)分离或浓缩用标记蛋白转导的真核细胞,从而富集用目标多肽负荷转导的真核细胞。
52、条款51的方法,其中:
(i)标记蛋白不与目标多肽负荷共价结合,标记蛋白与目标多肽负荷共价结合,标记蛋白与目标多肽负荷非共价结合,或标记蛋白通过可切割的接头与目标多肽负荷共价结合;和/或
(ii)标记蛋白包含可检测标记,或标记蛋白是荧光蛋白,荧光标记的蛋白质,生物发光蛋白质,同位素标记的蛋白质或磁性标记的蛋白质。
53、条款51或52的方法,其中,转导的标记蛋白的细胞内浓度与转导的目标多肽负荷的细胞内浓度正相关。
54、条款51至53中任一项的方法,其中,使用流式细胞术,荧光激活细胞分选术(FACS)或磁性激活细胞分选术(MACS)分离或浓缩用标记蛋白转导的真核细胞。
55、条款51至54中任一项的方法,其中,从缺乏标记蛋白的细胞分离或分选用标记蛋白转导的真核细胞,从而产生标记蛋白阳性细胞群和/或标记蛋白阴性细胞群。
56、条款55的方法,其还包括在标记蛋白阴性细胞群上,在标记蛋白阳性细胞群上或在标记蛋白阴性和标记蛋白阳性细胞群两者上重复步骤(a)和(b)一次或多次。
57、条款51至56中任一项的方法,其中,基于其标记蛋白的细胞内浓度分离或分选用标记蛋白转导的真核细胞。
58、条款51至57中任一项的方法,其中,标记蛋白是刺激细胞增殖的蛋白质,刺激细胞分化的蛋白质,促进细胞存活的蛋白质,抗凋亡蛋白质或具有另一种蛋白质生物活性的蛋白质。
59、条款51至58中任一项的方法,其中,通过在肽转导剂存在下使靶真核细胞与多肽负荷和标记蛋白接触以共转导目标多肽负荷和标记蛋白,其中,与不存在所述肽转导剂相比,所述肽转导剂的存在浓度足以提高多肽负荷和标记蛋白的转导效率。
60、条款59的方法,其中:
(a)肽转导剂是内体溶解肽;
(b)肽转导剂是或包含条款17或18中定义的合成肽穿梭剂;
(c)靶真核细胞包括动物细胞,哺乳动物细胞,人细胞,干细胞,原代细胞,免疫细胞,T细胞,NK细胞或树突细胞;
(d)目标多肽负荷是:(i)条款24至31中任一项所定义的多肽负荷;和/或(ii)单独的一种或多种CRISPR相关核酸内切酶或与条款38至43中任一项所定义的一种或多种相应的指导RNA和/或线性DNA模板一起;或
(e)(a)至(d)的任何组合。
通过阅读以下仅通过示例的方式参考附图给出的本发明的特定实施方式的非限制性描述,本说明书的其它目的、优点和特征将变得更加明显。
实施例
实施例1:
材料和方法
1.1材料
除非另外表明,全部化学品都购自Sigma-Aldrich(St.Louis,MO,USA或Oakville,ON,Canada)或为购自BioShop Canada Inc.(Mississauga,ON,Canada)或VWR(Ville Mont-Royal,QC,Canada)的等同级别。
1.2试剂
表1.1:试剂
/>
1.3细胞系
从American Type Culture Collection(Manassas,VA,USA)获得HeLa、HEK293A、HEK293T、THP-1、CHO、NIH3T3、CA46、Balb3T3、HT2、KMS-12、DOHH2、REC-1、HCC-78、NCI-H196和HT2细胞并依照制造商的指导培养。成肌细胞是由J.P.Tremblay教授(UniversitéLaval,Quebec,Canada)馈赠的原代人细胞。
表1.2:细胞系和培养条件
/>
FBS:胎牛血清
1.4蛋白纯化
在标准条件下使用含有T5启动子的异丙基β-D-1-硫代半乳糖吡喃糖苷(IPTG)诱导型载体在细菌(大肠杆菌BL21DE3)中表达融合蛋白。培养基每升含有24克酵母提取物、12g胰蛋白胨、4毫升甘油、2.3g KH2PO4和12.5g K2HPO4。细菌肉汤在37℃搅拌下与适当的抗生素(例如氨苄青霉素)温育。在光密度(600nm)0.5~0.6以1mM IPTG终浓度在30℃诱导表达3小时。在5000RPM离心后回收细菌,并将细菌沉淀储存在-20℃。
将细菌沉淀重悬于含有1mM苯基甲基磺酰氟(PMSF)的Tris缓冲液(Tris 25mM pH7.5,NaCl 100mM,咪唑5mM)中,并在1000巴通过匀浆器Panda 2KTM 3次而溶解。将溶液以15000RPM,4℃离心30分钟。收集上清液并用0.22μM过滤装置过滤。
使用FPLC(AKTA Explorer 100R),在预先用5倍柱体积(CV)的Tris缓冲液平衡的HisTrapTM FF柱上装载溶解的蛋白质。用30柱体积(CV)的补充有0.1%TritonTM X-114的Tris缓冲液,接着用30CV的具有咪唑40mM的Tris缓冲液洗涤管柱。用5CV具有350mM咪唑的Tris缓冲液洗脱并收集蛋白。通过标准变性SDS-PAGE确定对应于特定蛋白质的收集级分。
根据蛋白质的pI将纯化的蛋白质在所需pH下在Tris 20mM中稀释,并装载到预先用5CV的Tris 20mM,NaCl 30mM平衡的合适的离子交换柱(Q SepharoseTM或SPSepharoseTM)上。用10CV的20mM Tris,30mM NaCl洗涤柱,用NaCl梯度洗脱蛋白质直到15CV上的1M。通过标准变性SDS-PAGE确定对应于特定蛋白质的收集级分。然后洗涤纯化的蛋白质并在Amicon UltraTM离心过滤器10,000MWCO上于PBS 1X中浓缩。使用标准Bradford测定评估蛋白质浓度。
1.5合成肽和穿梭剂
本研究中使用的所有肽均购自GLBiochem(中国上海),其纯度通过高效液相色谱分析和质谱确认。在一些情况下,合成肽以含有C-末端半胱氨酸残基以允许制备肽二聚体。这些二聚体肽直接以两个单体的C-末端半胱氨酸之间的二硫键合成。在本实施例中测试的合成肽和穿梭剂中每一种的氨基酸序列和特征总结于表1.3、表B1和表C1。
表1.3:测试的合成肽和穿梭剂
/>
/>
/>
/>
使用ExPASyTM Bioinformatics Resource Portal提供的ProtParamTM在线工具计算结果(http://web.expasy.org/protparam/)
MW:分子量
pI:等电点
电荷:带正(+)和负(-)电荷残基的总数
实施例2:
肽穿梭剂促进内吞捕获的钙黄绿素的逃逸
2.1 内体逃逸测定
开发了基于显微镜和基于流式细胞术的荧光测定法来研究内体泄漏,并确定穿梭剂的添加是否促进多肽负荷的内体泄漏。这些方法描述于PCT/CA2016/050403的实施例2中。
2.1.1 通过显微镜观察内体泄漏
钙黄绿素是一种不透膜的荧光分子,在施用至细胞外介质中时可由细胞容易地内化。其荧光是pH依赖性的且钙黄绿素在较高浓度下自我淬灭。一旦被内化,钙黄绿素在细胞内体中以高浓度封存,并且可以通过荧光显微镜作为点状模式来观察。继内体泄漏,钙黄绿素释放到细胞质,这释放可以通过荧光显微镜以弥散模式观察。
在进行钙黄绿素测定前一天,收集处于指数生长期的细胞并铺在24孔板中(每孔80000个细胞)。如实施例1所述,通过在适当的生长培养基中温育过夜,使细胞附着。第二天,除了HEK293A(250μg/mL,400μM)之外,移除培养基并用300μL无FBS但包含62.5μg/mL(100μM)钙黄绿素的新鲜培养基替换。同时,将待测试的穿梭剂以预定的浓度添加。平板在37℃温育30分钟。细胞用1×PBS(37℃)洗涤并添加含有FBS的新鲜培养基。在37℃温育该平板2.5小时。将细胞洗涤三次,并通过相差显微镜和荧光显微镜观察(IX81TM,Olympus)。
图1A显示了一个典型的结果,其中装载有钙黄绿素(“100μM钙黄绿素”)的未处理的HEK293A细胞通过荧光显微镜观察时显示低强度点状荧光模式(左上图)。相反,用促进钙黄绿素(“100μM钙黄绿素+CM18-TAT 5μM”)的内体逃逸的穿梭剂处理的HeLa细胞在更大比例的细胞中显示出更高强度、更多弥散的荧光模式(右上图)。
2.1.2 通过流式细胞术定量内体渗漏
除显微镜,一旦钙黄绿素释放到细胞质中,流式细胞术允许随着荧光强度信号增加对内体泄漏进行更加定量的分析。与内体酸性环境相比,钙黄绿素荧光在生理pH值(例如细胞质中)是最佳的。
在进行钙黄绿素测定前一天,收集处于指数生长期的细胞并铺在96孔板(每孔20000个细胞)中。如实施例1所述,通过在适当的生长培养基中温育过夜,使细胞附着。第二天,除了HEK293A(250μg/mL,400μM)外,移除孔中的培养基并用50μL无血清但含有62.5μg/mL(100μM)钙黄绿素的新鲜培养基替换。同时,将要测试的穿梭剂以预定的浓度添加。板在37℃温育30分钟。细胞用1×PBS(37℃)洗涤并添加含有5-10%血清的新鲜培养基。在37℃温育该平板2.5小时。细胞用1×PBS洗涤并用胰蛋白酶消化分离。通过添加适当的生长培养基终止胰蛋白酶消化,使用流式细胞术定量钙黄绿素荧光(Accuri C6,Becton,Dickinsonand Company(BD))。
使用未处理的钙黄绿素装载的细胞作为对照以将由于内体捕获的钙黄绿素而具有基线荧光的细胞与由于钙黄绿素从内体释放而具有增加的荧光的细胞区分开。分析荧光信号平均值(“平均计数”)用于定量内体逃逸。在一些情况下,计算“平均因子”,其对应于平均计数相对于对照(未处理的钙黄绿素装载的细胞)的倍增。另外,分析与细胞(大小和粒度)相对应的流式细胞术扫描的事件。在扫描的总事件中用细胞百分比监测细胞死亡率。当其变得低于对照时,认为细胞碎片的数量由于毒性而增加,并放弃该测定。
图1B显示了一个典型的结果,其中与未处理的钙黄绿素装载的HeLa细胞(“钙黄绿素100μM”,左图)相比较,对于用促进内体逃逸的穿梭剂处理的钙黄绿素装载的HeLa细胞观察到荧光强度的增加(右移)(“钙黄绿素100μM+CM18-TAT 5μM”,右图)。钙黄绿素荧光的增加是由钙黄绿素从内体(酸性)释放到细胞质(生理)相关的pH的增加引起的。
2.2 内体逃逸测定的结果
2.2.1 HeLa细胞
培养HeLa细胞并在内体逃逸测定中如实施例2.1所述测试。流式细胞术分析的结果总结如下。在每种情况下,流式细胞术结果也通过荧光显微镜确认(数据未显示)。
表2.1:HeLa细胞中CM18-穿膜肽-Cys比对照
表2.2:HeLa细胞中CM18-TAT-Cys比对照
表2.1和表2.2中的结果表明,相比未处理的对照细胞或以仅单独使用的单结构域肽(CM18、TAT-Cys、穿膜肽-Cys)或一起使用的单结构域肽(CM18+TAT-Cys、CM18+穿膜肽-Cys)处理的细胞,用穿梭剂CM18-穿膜肽-Cys和CM18-TAT-Cys(具有结构域结构ELD-CPD)处理钙黄绿素装载的HeLa细胞导致平均细胞钙黄绿素荧光强度的增加。这些结果表明,CM18-穿膜肽-Cys和CM18-TAT-Cys促进了内体捕获的钙黄绿素的逃逸,但单结构域肽(单独或一起使用)不能。
表2.3:HeLa细胞中CM18-TAT-Cys的剂量响应,数据来自图2
表2.4:HeLa细胞中CM18-TAT-Cys的剂量响应
表2.5:HeLa细胞中CM18-TAT-Cys和CM18-穿膜肽-Cys的剂量响应,数据来自图3
表2.3(图2),2.4和2.5(图3)中的结果表明CM18-TAT-Cys和CM18-穿膜肽-Cys以剂量依赖性的方式促进HeLa细胞中的内体捕获的钙黄绿素的逃逸。在一些情况下,高于10μM的CM18-TAT-Cys或CM18-穿膜肽-Cys的浓度与HeLa细胞中细胞毒性的增加相关。
表2.6:HeLa细胞中CM18-TAT-Cys和CM18-穿膜肽-Cys的二聚体比单体
表2.7:HeLa细胞中CM18-TAT-Cys和CM18-穿膜肽-Cys的单体比二聚体
表2.6和2.7中的结果表明,穿梭肽二聚体(其为包含多于一种ELD和CPD的分子)能够促进与相应单体相当的钙黄绿素内体逃逸水平。
2.2.3 HEK293A细胞
为了检查穿梭剂对不同细胞系的影响,如实施例2.1所述,培养HEK293A细胞并在内体逃逸测定中进行测试。流式细胞分析的结果总结如下表2.8和图1B。
表2.8:HEK293A细胞中的CM18-TAT-Cys
表2.8和图1B的结果表明,与未处理的对照细胞相比,用穿梭剂CM18-TAT-Cys处理钙黄绿素装载的HEK293A细胞导致平均细胞钙黄绿素荧光强度增加。
2.2.2 成肌细胞
为了检测穿梭剂对原代细胞的影响,在实施例2.1中描述了原代成肌细胞在内体逃逸实验中的培养和测试。流式细胞术分析的结果总结如下表2.9和2.10以及图4。在每种情况下,流式细胞术结果也通过荧光显微镜确认。
表2.9:原代成肌细胞中CM18-TAT-Cys的剂量响应,数据来自图4
表2.10:原代成肌细胞中CM18-TAT-Cys的剂量响应
表2.9(图4中显示)和表2.10中的结果表明,CM18-TAT-Cys在原代成肌细胞中以剂量依赖性的方式促进了内体捕获的钙黄绿素的逃逸。高于10μM的CM18-TAT-Cys浓度与成肌细胞中细胞毒性的增加相关,如对于HeLa细胞。
表2.11:原代成肌细胞中CM18-TAT-Cys和CM18-穿膜肽-Cys的单体比二聚体
实施例3:
肽穿梭剂增加GFP转导效率
3.1 蛋白质转导试验
在进行转导测定前一天,收获指数生长期的细胞并接种于96孔板(每孔20000个细胞)中。将细胞在含有FBS的适当生长培养基中温育过夜(参见实施例1)。第二天,在单独的无菌1.5mL试管中,将指定浓度的负荷蛋白在37℃与作为测试穿梭剂的肽(0.5至5μM)在50μL不含血清的新鲜培养基(除非另有说明)中预混合(预温育)1或10分钟(取决于方案)。除去孔中的培养基,用预先在37℃加热的新制备的磷酸盐缓冲盐水(PBS)洗涤细胞三次。将细胞与负荷蛋白/穿梭剂混合物在37℃温育指定时间(例如1,5或60分钟)。温育后,用预先在37℃加热的新制备的PBS和/或肝素(0.5mg/mL)快速洗涤细胞三次。人THP-1血细胞需要用肝素洗涤以避免在随后分析(显微镜检查和流式细胞术)中不希望的细胞膜结合蛋白背景。最后在分析前将细胞在含有血清的50μL新鲜培养基中于37℃温育。
3.1a 方案A:贴壁细胞的蛋白质转导试验
在进行转导测定前一天,收获指数生长期的细胞并接种于96孔板(每孔20000个细胞)中。将细胞在含有血清的适当生长培养基中温育过夜(参见实施例1)。第二天,在单独的无菌1.5mL管中,在室温下将肽在无菌蒸馏水中稀释(如果负荷是或包含核酸,则使用不含核酸酶的水)。然后将载体蛋白添加到肽中,并且如果需要,添加无菌PBS或细胞培养基(无血清)以获得所需浓度的穿梭剂和负荷,其具有足够的最终体积以覆盖细胞(例如对于96孔板,每孔10至100μL)。然后立即将肽/负荷混合物用于实验。每个实验包括至少三个对照,包括:(1)单独的肽(例如在测试的最高浓度下);(2)仅负荷;和(3)没有任何负荷或穿梭剂。除去孔中的培养基,用预先在37℃加热的PBS洗涤细胞一次,并将细胞与负荷蛋白/肽混合物在37℃温育所需的时间长度。除去孔中的肽/负荷混合物,用PBS洗涤细胞一次,并加入新鲜的完全培养基。在分析之前,最后一次用PBS洗涤细胞一次并加入新鲜的完全培养基。
3.1b 方案B:悬浮细胞的蛋白质转导试验
在进行转导测定前一天,收获处于指数生长期的悬浮细胞并铺板于96孔板(每孔20000个细胞)中。将细胞在含有血清的适当生长培养基中温育过夜(参见实施例1)。第二天,在单独的无菌1.5mL管中,在室温下将肽在无菌蒸馏水中稀释(如果负荷是或包含核酸,则使用不含核酸酶的水)。然后将载体蛋白加入肽中,如果需要,添加无菌PBS或细胞培养基(无血清)以获得所需浓度的穿梭剂和负荷,其具有足够的最终体积以重悬细胞(例如96孔板中每孔10至100μL)。然后立即将穿梭剂/肽用于实验。每个实验包括至少三个对照,包括:(1)单独的肽(例如在测试的最高浓度下);(2)仅负荷;和(3)没有任何负荷或穿梭剂。将细胞以400g离心2分钟,然后除去培养基,将细胞重悬于预先在37℃加热的PBS中。将细胞再次以400g离心2分钟,除去PBS,并将细胞与载体蛋白/肽混合物在37℃下重悬浮所需的时间长度。之后,将200μL完全培养基直接添加到细胞上。将细胞以400g离心2分钟并除去培养基。将沉淀重新悬浮并在预先在37℃加热的200μL PBS中洗涤。再次离心后,除去PBS,并将细胞重悬于50μL胰蛋白酶-EDTA溶液中2分钟。直接加入200μl完全培养基,并将细胞以400g离心2分钟。除去培养基,并将细胞重悬于200μL完全培养基中。
3.2 荧光显微镜分析
使用装有荧光灯(型号U-LH100HGAPO)和不同过滤器的Olympus IX70TM显微镜(日本)观察细胞质和核细胞区室内荧光蛋白负荷的递送。使用Olympus过滤器U-MF2TM(C54942-Exc495/Em510)观察GFP和FITC标记的抗体荧光信号。使用Olympus过滤器HQ-TRTM(V-N41004-Exc555-60/Em645-75)观察mCherryTM和GFP抗体荧光信号。Olympus过滤器U-MWU2TM(Exc330/Em385)用于观察DAPI或Blue Hoechst荧光信号。通过显微镜(明场和荧光)在不同的功率场(4x到40x)直接观察在50μL新鲜培养基中温育的细胞。使用CoolSNAP-PROTM相机(系列A02D874021)观察细胞,使用Image-ProplusTM软件获取图像。
3.2a 细胞免疫标记
在24孔板中将贴壁细胞铺在无菌玻璃带上,每孔1.5×105个细胞,37℃温育过夜。为了固定,将细胞在室温下以500μL/孔的甲醛(3.7%v/v)温育15分钟,并用PBS洗涤3次5分钟。为了透化,将细胞在室温下以500μL/孔的TritonTM X-100(0.2%)温育10分钟,并用PBS洗涤3次5分钟。为了阻断,将细胞在室温下以每孔500μL含有1%BSA(PBS/BSA)的PBS温育60分钟。用PBS/BSA(1%)稀释原代小鼠单克隆抗体。于4℃在30μL一抗中过夜温育细胞。用PBS洗涤细胞3次,每次5分钟。在PBS/BSA(1%)中稀释二抗。将细胞在250μL二抗中在室温避光温育30分钟。用PBS洗涤细胞3次,每次5分钟。将含有细胞的玻璃条安装在带有10μL具有DAPI的固定培养基FluoroshieldTM的显微镜载玻片上。
3.3 流式细胞术分析:
使用流式细胞术(Accuri C6,Becton,Dickinson and Company(BD))定量GFP的荧光。使用未处理的细胞建立基线以定量由于处理的细胞中的荧光蛋白的内化而增加的荧光。具有高于未处理细胞最大荧光的荧光信号的细胞百分比,“平均%”或“阳性细胞(%)”用于鉴定阳性荧光细胞。“相对荧光强度(FL1-A)”对应于用穿梭剂递送荧光蛋白后来自具有荧光信号的每个细胞的所有荧光强度的平均值。另外,分析与细胞(大小和粒度)相对应的流式细胞术扫描的事件。监测细胞毒性(%细胞活力),比较处理的细胞相对于未处理的细胞扫描的总事件中细胞的百分比。
3.3a 活力分析
如有说明,用rezazurine测试评估细胞的活力。Rezazurine是一种钠盐着色剂,通过代谢活性细胞中的线粒体酶由蓝色转变为粉色。这种仅在活细胞中发生的比色转换可以通过光谱分析来测量,以量化活细胞的百分比。以1mg/100mL在水中制备rezazurine储液并在4℃保存。在96孔板的各孔中加入25μL的储液,在光谱分析前将细胞在37℃下温育1小时。用于rezazurine酶促反应的温育时间取决于细胞的数量和孔中使用的培养基的体积。
3.4 GFP的构建及氨基酸序列
将编码GFP的基因克隆到T5细菌表达载体中,以表达在N末端含有6x组氨酸标签和富含丝氨酸/甘氨酸的接头和在C末端含有富含丝氨酸/甘氨酸的接头和终止密码子(-)的GFP蛋白。如实施例1.4所述纯化重组GFP蛋白。GFP构建体的序列是:
(MW=31.46kDa;pI=6.19)
富含丝氨酸/甘氨酸的接头用黑体标出
GFP序列加下划线
3.5 HeLa细胞通过CM18-TAT-Cys转导GFP:荧光显微镜
HeLa细胞如实施例3.1中所述的蛋白质转导测定中培养和测试。简言之,将GFP重组蛋白与0、3或5μM的CM18-TAT共温育,然后暴露于HeLa细胞1小时。如实施例3.2所述,通过明场和荧光显微镜观察细胞。图5中给出的结果显示GFP在穿梭剂CM18-TAT的存在下细胞内递送至HeLa细胞。
3.6 HeLa细胞中通过穿梭剂的GFP转导:剂量响应(CM18-TAT-Cys、dCM18-TAT-Cys、GFP)和细胞活力
HeLa细胞在实施例3.1-3.3中所述的蛋白质转导测定中培养和测试。简言之,将GFP重组蛋白与不同浓度的CM18-TAT-Cys或二聚化的CM18-TAT-Cys(dCM18-TAT-Cys)共温育,然后暴露于HeLa细胞1小时。结果如表3.1和图6所示。
表3.1:剂量响应(CM18-TAT)和细胞活力,数据来自图6A和6B
表3.1和图6A显示了用GFP(5μM)转导的HeLa细胞的荧光强度的流式细胞术分析的结果,所述GFP(5μM)具有或不具有5、3、1和0.5μM的CM18-TAT-Cys。相应的细胞毒性数据见表3.1和图6B。这些结果表明穿梭剂CM18-TAT-Cys以剂量依赖性方式增加GFP的转导效率。
表3.2:剂量响应(GFP),数据来自图7A和7B
表3.2和图7显示了用不同浓度的GFP(1-10μM)转导的HeLa细胞的荧光强度的流式细胞术分析结果,所述GFP(1-10μM)具有或不具有5μM的CM18-TAT-Cys(图7A)或2.5μM的dCM18-TAT-Cys(图7B)。
3.7 HeLa细胞中GFP的转导:CM18-TAT-Cys和CM18-穿膜肽-Cys及其二聚体的剂量响应
HeLa细胞如实施例3.1中所述的蛋白质转导测定中培养和测试。简言之,将GFP重组蛋白(5μM)与不同浓度的CM18-TAT-Cys、CM18-穿膜肽-Cys和各自的二聚体(dCM18-TAT-Cys、dCM18-穿膜肽-Cys)共温育,然后暴露于HeLa细胞1小时。如实施例3.3所述将细胞进行流式细胞术分析。结果显示在表3.3和图8以及表3.4和图9中。
表3.3:图8中的数据
表3.3和图8的结果表明,使用穿梭剂CM18-TAT-Cys和dCM18-TAT-Cys,在HeLa细胞中GFP的转导效率增加(参见图8中的柱状图“1”和“2”)。尽管单独使用CM18-穿膜肽-Cys或dCM18-穿膜肽-Cys观察不到GFP细胞内递送(参见图8中的柱状图“3”或“4”),但CM18-TAT-Cys与CM18-穿膜肽-Cys(单体或二聚体)的组合改进了GFP蛋白的递送(参见图8中四个最右侧的柱状图)。
表3.4:图9中的数据
表3.4和图9的结果表明,使用穿梭剂CM18-TAT-Cys和dCM18-TAT-Cys,在HeLa细胞中GFP的转导效率增加(参见图9中的柱状图“1”和“2”)。尽管单独使用CM18-穿膜肽-Cys或dCM18-穿膜肽-Cys观察不到GFP细胞内递送(参见图9中的柱状图“3”或“4”),但CM18-TAT-Cys与CM18-穿膜肽-Cys(单体或二聚体)的组合改进了GFP蛋白的递送(参见图9中四个最右侧的柱状图)。
3.8 在HeLa细胞中通过穿梭剂的GFP转导:对照
HeLa细胞如实施例3.1中所述的蛋白质转导测定中培养和测试。简而言之,将GFP重组蛋白(5μM)与5μM各种下列肽共温育:TAT-Cys;CM18;穿膜肽-Cys;TAT-Cys+CM18;穿膜肽-Cys+CM18和CM18-TAT-Cys,然后暴露于HeLa细胞1小时。通过明场和荧光显微镜观察GFP荧光。显微镜检查结果(数据未显示)显示使用CM18-TAT-Cys在细胞内成功地递送GFP。然而,使用单独使用单结构域肽(CM18、TAT-Cys、穿膜肽-Cys)或一起使用(CM18+TAT-Cys、CM18+穿膜肽-Cys),GFP不能成功地在细胞内递送。这些结果与表2.1和2.2中关于钙黄绿素内体逃逸测定法所提供的那些结果一致。
实施例4:
肽穿梭剂增加TAT-GFP转导效率
实施例3中的实验显示穿梭剂在细胞内递送GFP的能力。本实施例提供的实验表明穿梭剂还可以增加与CPD融合的GFP负荷蛋白(TAT-GFP)的细胞内递送。
4.1 TAT-GFP的构建和氨基酸序列
除了在6x组氨酸标签和GFP序列之间克隆TAT序列外,如实施例3.4所述进行构建。6x组氨酸标签、TAT、GFP和终止密码子(-)由富含丝氨酸/甘氨酸的接头分开。如实施例1.4所述纯化重组TAT-GFP蛋白。TAT-GFP构建体的序列是:
[SEQ ID NO:61]
(MW=34.06kDa;pI=8.36)
TAT序列加下划线
富含丝氨酸/甘氨酸的接头用黑体标出
4.2 在HeLa细胞中通过CM18-TAT-Cys转导TAT-GFP:通过荧光显微镜观察
HeLa细胞在实施例3.1中所述的蛋白质转导测定中培养和测试。简言之,将TAT-GFP重组蛋白(5μM)与3μM的CM18-TAT-Cys共温育,然后暴露于HeLa细胞1小时,在10x和40x的放大倍数通过明场和荧光显微镜观察到细胞和GFP荧光(如实施例3.2所述),样品结果如图10所示。显微镜结果显示,在CM18-TAT-Cys不存在的情况下,TAT-GFP显示如文献中报道的低强度内体分布。相反,TAT-GFP在穿梭剂CM18-TAT-Cys的存在下被递送至细胞质和细胞核。不受理论所限,TAT肽本身可以作为核定位信号(NLS),解释TAT-GFP的核定位。这些结果表明,CM18-TAT-Cys能够增加TAT-GFP的转导效率,并允许内体捕获的TAT-GFP获得进入细胞质和细胞核区室的通路。
4.3 在HeLa细胞中通过CM18-TAT-Cys的TAT-GFP转导:转导的细胞的剂量响应和活力
HeLa细胞在实施例3.1中所述的蛋白质转导测定中培养和测试。简言之,将TAT-GFP-Cys重组蛋白(5μM)与不同浓度的CM18-TAT-Cys(0、0.5、1、3或5μM)共温育,然后暴露于HeLa细胞1小时。如实施例3.3所述将细胞进行流式细胞术分析。结果如表4.3和图11A所示。图11B给出了相应的细胞毒性数据。
表4.3:来自图11A和11B的数据
/>
1如荧光显微镜证实,荧光主要是内体的。
2如荧光显微镜证实,荧光更弥散并且也是核的。
实施例5:
肽穿梭剂增加GFP-NLS转导效率和核定位
实施例3和4中的实验显示穿梭剂在细胞内递送GFP和TAT-GFP的能力。本实施例提供的实验表明,穿梭剂可以促进与核定位信号(NLS)融合的GFP蛋白负荷的核递送。
5.1 GFP-NLS的构建和氨基酸序列
除了将优化的NLS序列克隆在GFP序列和终止密码子(-)之间之外,如实施例3.4中所述进行构建。NLS序列与GFP序列和终止密码子通过两个富含丝氨酸/甘氨酸的接头分开。如实施例1.4所述纯化重组GFP-NLS蛋白质。GFP-NLS构建体的序列是:
(MW=34.85kDa;pI=6.46)
NLS序列加下划线
富含丝氨酸/甘氨酸的接头用黑体标出
5.2 5分钟内在HeLa细胞中通过CM18-TAT-Cys核递送GFP-NLS:通过荧光显微镜观察
HeLa细胞在实施例3.1中所述的蛋白质转导测定中培养和测试。简言之,将GFP-NLS重组蛋白(5μM)与5μM的CM18-TAT-Cys共温育,然后暴露于HeLa细胞。5分钟后,在10x、20x和40x的放大倍数,通过明视场和荧光显微镜观察GFP荧光(如实施例3.2所述),样品结果示于图12。显微镜结果显示GFP-NLS在穿梭剂CM18-TAT-Cys存在下仅在温育5分钟后被有效递送至细胞核。
5.3 在HeLa细胞中通过CM18-TAT-Cys的GFP-NLS转导:转染的细胞的剂量响应和活力
HeLa细胞在实施例3.1中所述的蛋白质转导测定中培养和测试。将GFP-NLS重组蛋白(5μM)与0、0.5、1、3或5μM的CM18-TAT-Cys共温育,然后暴露于HeLa细胞1小时。如实施例3.3所述将细胞进行流式细胞术分析。结果见表5.1和图13A。相应的细胞毒性数据见图13B。
表5.1:来自图13A和13B的数据
这些结果表明CM18-TAT-Cys能够以剂量依赖性的方式增加HeLa细胞中的GFP-NLS转导效率。
5.4 通过CM18-TAT-Cys、CM18-穿膜肽-Cys及其二聚体在HeLa细胞中的GFP-NLS转导
HeLa细胞在实施例3.1中所述的蛋白质转导测定中培养和测试。将GFP-NLS重组蛋白(5μM)与不同浓度的CM18-TAT-Cys、CM18-穿膜肽-Cys和各自的二聚体(dCM18-TAT-Cys、dCM18-穿膜肽-Cys)共温育,然后暴露于HeLa细胞1小时。如实施例3.3所述将细胞进行流式细胞术分析。结果显示在表5.2和5.3以及图14和15中。
表5.2:图14中的数据
/>
表5.3:图15中的数据
表5.2和5.3以及图14和15中的结果显示使用穿梭剂CM18-TAT-Cys和dCM18-TAT-Cys在HeLa细胞中增加GFP-NLS的转导效率(参见图14和15中的柱状图“1”和“2”)。尽管单独使用CM18-穿膜肽-Cys或dCM18-穿膜肽-Cys未观察到GFP-NLS的细胞内递送(参见图14和15中的柱状图“3”和“4”),但是CM18-TAT-Cys与CM18-穿膜肽-Cys(单体或二聚体)的组合改进了GFP-NLS的细胞内递送(参见图14和15中的四个最右侧的柱状图)。
5.5 在HeLa细胞中通过穿梭剂的GFP-NLS转导:温育5分钟比1小时;有或没有FBS
HeLa细胞在实施例3.1中所述的蛋白质转导测定中培养和测试。将GFP-NLS重组蛋白(5μM)与单独的CM18-TAT-Cys(3.5μM)或与dCM18-穿膜肽-Cys(1μM)共温育。在进行实施例3.3中所述的流式细胞术分析之前,将细胞在纯DMEM培养基(“DMEM”)或含有10%FBS(“FBS”)的DMEM中温育5分钟或1小时。结果显示在表5.4和图16中。未用穿梭剂或GFP-NLS(“对照”)处理的细胞和用GFP-NLS处理而无穿梭剂处理的细胞(“GFP-NLS 5μM”)用作对照。
表5.4:图16中的数据
表5.4和图16中的结果表明,即使向CM18-TAT-Cys单体添加相对低量的二聚体dCM18-穿膜肽-Cys(1μM;“dCM18pen”),也改善了GFP-NLS转导效率。有趣的是,细胞内GFP-NLS递送在少至5分钟的温育中实现,并且在FBS存在下递送仍然可实现(尽管减少)。
5.6 通过穿梭剂在THP-1悬浮细胞中的GFP-NLS转导
在THP-1细胞中测试穿梭剂在细胞内递送GFP-NLS的能力,THP-1细胞是悬浮生长的急性单核细胞白血病细胞系。培养THP-1细胞(参见实施例1),并在实施例3.1中所述的蛋白质转导测定中进行测试。将GFP-NLS重组蛋白(5μM)与或不与1μMCM18-TAT-Cys共温育,并暴露于THP-1细胞5分钟,然后进行如实施例3.3所述流式细胞术分析。结果示于表5.5和图17A。相应的细胞毒性数据见图17B。
表5.5:图17A和17B中的数据
表5.5和图17中的结果表明穿梭剂将蛋白负荷细胞内递送到悬浮生长的人单核细胞系中的能力。
实施例6:
肽穿梭剂增加了FITC标记的抗微管蛋白抗体的转导效率
实施例3-5中的实验显示穿梭剂提高GFP、TAT-GFP和GFP-NLS的转导效率的能力。本实施例提供的实验表明穿梭剂还可以递送更大的蛋白质负荷:FITC标记的抗微管蛋白抗体。FITC标记的抗微管蛋白抗体购自(Abcam,ab64503),估计分子量为150KDa。实施例3中描述了递送和显微镜方案。
6.1 在HeLa细胞中通过CM18-TAT-Cys转导功能性抗体:显微镜观察
将FITC标记的抗微管蛋白抗体(0.5μM)与5μM的CM18-TAT-Cys共温育并暴露于HeLa细胞1小时。通过明场(20x)和荧光显微镜(20x和40x)观察抗体递送。如图18所示,可见细胞质中的荧光微管蛋白纤维,证明了细胞内抗体的功能性。
6.2 在HeLa中通过CM18-TAT-Cys、CM18-穿膜肽-Cys和二聚体转导功能性抗体:流式细胞术
HeLa细胞在实施例3.1中所述的蛋白质转导测定中培养和测试。将FITC标记的抗微管蛋白抗体(0.5μM)与3.5μM的CM18-TAT-Cys、CM18-穿膜肽-Cys或dCM18-穿膜肽-Cys或3.5μM的CM18-TAT-Cys和0.5μ的dCM18-穿膜肽-Cys的组合共温育,并暴露于HeLa细胞1小时。如实施例3.3所述将细胞进行流式细胞术分析。结果如表6.1和图19A所示。相应的细胞毒性数据见图19B。
表6.1:来自图19A和19B中的数据
/>
表6.1和图18和19中的结果显示,CM18-TAT-Cys和CM18-穿膜肽-Cys促进FITC标记的抗微管蛋白抗体的细胞内递送。与实施例3-5中的GFP、TAT-GFP和GFP-NLS的结果相比,CM18-穿膜肽-Cys在单独使用时(无CM18-TAT-Cys)能够细胞内递送抗体负荷。然而,与单独使用CM18-TAT-Cys相比,CM18-TAT-Cys和dCM18-穿膜肽-Cys的组合允许更高的细胞内递送,并且与CM18-穿膜肽-Cys和dCM18-穿膜肽-Cys相比具有较少的细胞毒性(参见图19A和19B)。
实施例7:
CM18-TAT-Cys允许细胞内质粒DNA递送,但质粒表达差
本实施例中在HEK293A细胞上使用编码GFP的质粒测试了CM18-TAT-Cys穿梭剂细胞内递送质粒DNA的能力。
7.1 HEK293A细胞中的转染测定
在进行转染测定前一天,收获处于指数生长期的哺乳动物细胞(HEK293A)并接种于24孔板(每孔50,000个细胞)中。将细胞在含有FBS的适当生长培养基中温育过夜。第二天,在分开的无菌1.5mL管中,将用Cy5TM荧光染料标记的pEGFP与CM18-TAT-Cys(0.05、0.5或5μM)在新鲜PBS中在37℃以最终100μL体积混合10分钟。移除孔中的培养基,用PBS迅速洗涤细胞三次,加入500μL不含FBS的温热培养基。将pEGFP和CM18-TAT-Cys溶液加入到细胞中并在37℃下温育4小时。温育后,将细胞用PBS洗涤,加入含FBS的新鲜培养基。细胞在37℃温育,然后进行流式细胞术分析,如实施例3所述。
7.2 用CM18-TAT-Cys进行质粒DNA递送
按照制造商的说明书(Mirus Bio LLC),用Cy5TM染料标记质粒DNA(pEGFP)。与使用标准转染方案的未标记质粒相比,Cy5TM Moiety不影响转染效率(数据未显示)。对应于DNA细胞内递送和GFP发射、对应于成功的核递送、DNA转录和蛋白质表达,流式细胞术分析允许定量Cy5TM发射。结果如表7.1和图20所示。
表7.1:来自图20中的数据
表7.1和图20中显示的结果显示,与仅用DNA温育的细胞相比,当以0.05、0.5和5μM浓度使用时,CM18-TAT-Cys能够增加质粒DNA的细胞内递送(“pEGFP-Cy5”)。然而,在细胞中没有检测到GFP的表达,这表明很少的质粒DNA获得进入细胞质区室的通路,允许核定位。不受理论所限,质粒DNA可能在大量封存在内体中,防止逃逸到细胞质区室。Salomone等人,2013报道了使用CM18-TAT11杂交肽在细胞内传递质粒DNA。他们使用萤光素酶报告基因测定来评估转染效率,这对于定量细胞质/核输送的效率可能不是理想的,因为从内体成功释放并递送到核的质粒DNA的比例由于萤光素酶的有效活性可能被高估。在这方面,Salomone等人,2013年的作者甚至指出,萤光素酶的表达与大量的(裸)DNA分子在囊泡中的大量捕获同时发生,这与表7.1和图20所示的结果一致。
7.3 肽在HeLa细胞中的质粒DNA递送
在HEK293A细胞中观察到的肽CM18-TAT-Cys(0.1%,参见表7.1)的转染效率差后,在另一细胞系(HeLa)中用CM18-TAT-Cys以及在表1.3,表B1和表C1中列出的其它肽重复实验。
在进行转染测定前一天,收获指数生长期的HeLa细胞并接种于96孔板(每孔10000个细胞)中。将细胞在含有FBS的适当生长培养基中温育过夜。第二天,在单独的无菌1.5mL管中,将待测肽和多核苷酸载体(pEGFP-C1)在37℃下在无血清培养基中以50μL的终体积混合10分钟。除去孔中的培养基,用PBS在37℃下快速洗涤细胞一次。将含有待测肽和多核苷酸载体的混合物加入细胞中,并在37℃温育指定的时间(例如1分钟,1小时或4小时)。温育后,用PBS在37℃洗涤细胞一次,并加入含有FBS的新鲜培养基。将细胞在37℃温育,然后如实施例3.2中所述进行流式细胞术分析,以鉴定转染效率(即细胞表达EGFP)和活力。结果如表7.2所示。
表7.2.使用肽在HeLa细胞中转染DNA
/>
表7.2中测试的所有肽显示转染效率低于1%。此外,在HeLa细胞中证实了CM18-TAT-Cys的低转染效率(0.08%)。这些结果表明,适合递送多肽负荷的肽可能不一定适合于递送质粒DNA。例如,本文显示了穿梭剂His-CM18-PTD4-His有效转导多肽负荷(例如参见实施例10),但该肽仅显示0.34%的DNA质粒转染效率(表7.2)。
实施例8:
穿梭剂中添加组氨酸富集结构域可进一步改进GFP-NLS转导效率
8.1 在HeLa细胞中通过His-CM18-TAT-Cys转导GFP-NLS:显微镜观察
将GFP-NLS(5μM;参见实施例5)与5μM的CM18-TAT-Cys或His-CM18-TAT共温育,并暴露于HeLa细胞1小时。通过荧光显微镜证实细胞内递送的GFP-NLS的核荧光(数据未显示),表明GFP-NLS成功递送至核。
8.2 在HeLa细胞中通过His-CM18-TAT转导GFP-NLS:流式细胞术
HeLa细胞在实施例3.1中描述的蛋白质转导测定中培养和测试。将GFP-NLS(5μM)与0、1、3或5μM的CM18-TAT-Cys或His-CM18-TAT共温育,并暴露于HeLa细胞1小时。如实施例3.3所述将细胞进行流式细胞术分析。结果如表8.1和图21A所示。相应的细胞毒性数据如图21B所示。
表8.1:来自图21A和21B中的数据
令人惊讶的是,表8.1和图21中的结果显示与CM18-TAT-Cys相比,His-CM18-TAT能够在3μM和5μM浓度下将GFP-NLS蛋白转导效率增加约2倍。这些结果表明,将组氨酸富集结构域添加到包含ELD和CPD的穿梭剂中可显著增加其肽负荷转导效率。或者或平行地,将穿梭剂与含有与CPD(但缺乏ELD)融合的组氨酸富集结构域的另一独立合成肽组合,可为蛋白质转导提供类似的优点,具有额外的优势是允许组氨酸富集结构域的浓度独立于穿梭剂的浓度而改变或受控。不受理论限制,组氨酸富集结构域可能在内体中起到质子海绵的作用,提供内体膜不稳定化的另一种机制。
实施例9:
His-CM18-PTD4增加GFP-NLS、mCherryTM-NLS和FITC标记的抗微管蛋白抗体的转导效率和核递送
9.1 蛋白质转导方案
方案A:在细胞培养基中递送的蛋白质转导测定
在进行转导测定前一天,收获指数生长期的细胞并铺在96孔板(每孔20,000个细胞)中。将细胞在含有FBS的适当生长培养基中温育过夜(参见实施例1)。第二天,在分开的无菌1.5-mL管中,将所需浓度的负荷蛋白在37℃与预期浓度的穿梭剂在50μL新鲜无血清培养基中预混合(预温育)10分钟(除非另外表明)。移除孔中的培养基,并用预先在37℃加热的PBS洗涤细胞1-3次(取决于使用的细胞的类型)。将细胞与负荷蛋白/穿梭剂混合物在37℃温育所需的时间长度。温育后,将细胞用预先在37℃加热的PBS和/或肝素(0.5mg/mL)洗涤三次。在随后的分析(显微镜和流式细胞术)中,将使用肝素的洗涤用于人THP-1血细胞以避免不希望的细胞膜结合蛋白背景。在分析之前,将细胞最终在37℃具有血清的50μL新鲜培养基中温育。
方案B:在PBS中贴壁细胞的蛋白转导测定
在进行转导测定前一天,收获指数生长期的细胞并铺在96孔板(每孔20,000个细胞)中。将细胞在含有血清的适当生长培养基中温育过夜(参见实施例1)。第二天,在分开的无菌1.5-mL管中,穿梭剂在室温下用无菌蒸馏水稀释(如果负荷是或包含核酸,则使用无核酸酶的水)。然后将负荷蛋白添加至穿梭剂,如果需要的话,加入无菌PBS以获得预期的在足够覆盖细胞的最终体积(例如,对于96孔板,每孔10至100μL)中的穿梭剂和负荷的浓度。然后立即将穿梭剂/负荷混合物用于实验。每个实验至少包括三个对照,包括:(1)单独的穿梭剂(例如在测试的最高浓度);(2)单独的负荷;和(3)没有任何负荷或穿梭剂。移除孔中的培养基,用先前在37℃加热的PBS洗涤细胞一次,然后添加穿梭剂/负荷混合物以覆盖所有细胞达所需的时间长度。移除孔中的穿梭剂/负荷混合物,用PBS洗涤细胞一次,添加新鲜的完全培养基。分析前,用PBS洗涤细胞一次并添加新鲜的完全培养基。
方案C:PBS中悬浮细胞的蛋白质转导测定
在进行转导测定的前一天,收获指数生长期的悬浮细胞并铺在96孔板(每孔20,000个细胞)中。将细胞在含有血清的适当生长培养基中温育过夜(参见实施例1)。第二天,在分开的无菌1.5-mL管中,在室温下用无菌蒸馏水稀释穿梭剂(如果负荷是或包含核酸,则使用无核酸酶的水)。然后将负荷蛋白添加至穿梭剂,如果需要,添加无菌PBS或细胞培养基(不含血清)获得预期的在足够重悬细胞的最终体积(例如,对于96孔板,每孔10至100μL)中的穿梭剂和负荷的浓度。随后立即将穿梭剂/负荷混合物用于实验。每个实验至少包括三个对照,包括:单独的穿梭剂(例如在测试的最高浓度);(2)单独的负荷;和(3)没有任何负荷或穿梭剂。将细胞在400g下离心2分钟,然后移除培养基,将细胞再悬浮于预先在37℃加热的PBS中。将细胞在400g下再离心2分钟,除去PBS,并将细胞重悬于穿梭剂/负荷混合物中。在所需的温育时间之后,将100μL完全培养基直接添加到细胞上。将细胞以400g离心2分钟并移除培养基。重悬沉淀,并在预先加热到37℃的200μL PBS中洗涤。再次离心后,移除PBS,将细胞重悬于100μL完全培养基中。分析前重复最后两步一次。
9.2 使用方案A或B在HeLa细胞中通过His-CM18-PTD4转导GFP-NLS:流式细胞术
为了比较不同方案对穿梭剂转导效率的影响,将HeLa细胞在实施例9.1中描述的方案A或B的蛋白质转导测定中进行培养和测试。简言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)使用方案A与10μM的His-CM18-PTD4共温育并暴露于HeLa细胞1小时,或使用方案B与35μM的His-CM18-PTD4共温育并暴露于HeLa细胞10秒。如实施例3.3中所述对细胞进行流式细胞术分析。结果如表9.1和图22A所示。(“阳性细胞(%)”是发出GFP信号的细胞的百分比)。
表9.1:蛋白质转导方案A和B的比较:来自图22A的数据
上述结果表明,与方案A相比,使用方案B获得了使用穿梭剂His-CM18-PTD4的负荷GFP-NLS的更高的蛋白质转导效率。
9.3 使用方案B在HeLa细胞中通过His-CM18-PTD4的GFP-NLS转导:流式细胞术
进行剂量响应实验以评估His-CM18-PTD4浓度对蛋白质转导效率的影响。HeLa细胞在实施例9.1的方案B所述的蛋白质转导测定中进行培养和测试。简而言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与0、50、35、25或10μM的His-CM18-PTD4共温育,然后暴露于HeLa细胞10秒钟。如实施例3.3所述将细胞进行流式细胞术分析。结果见表9.2和图22B。
表9.2:使用方案B的穿梭剂的剂量响应:图22B的数据
上述结果表明,His-CM18-PTD4能够以剂量依赖性的方式增加HeLa细胞中的GFP-NLS转导效率。
9.4 使用方案B在HeLa细胞中通过His-CM18-PTD4的GFP-NLS转导:通过显微镜观察
将GFP-NLS重组蛋白(5μM;参见实施例5.1)与35μM的His-CM18-PTD4共温育,然后如实施例9.1中所述使用方案B暴露于HeLa细胞10秒钟。然后如实施例3.2和3.2a中所述对细胞进行荧光显微镜分析。
对于图23和图24所示的样品结果,在最终洗涤步骤后HeLa细胞的GFP荧光立即通过明场和荧光显微镜于4x,20x和40x放大倍数下观察。
在图23中,A、B和C的上图分别显示放大倍数为4x,20x和40x的核标记(DAPI),而下图显示对应的GFP-NLS荧光。在图C中,白色三角窗指示核(DAPI)和GFP-NLS信号之间共标记的区域的实例。在图D中,上图和下图显示了HeLa细胞的样品明场图像,中图显示了相应的FACS分析的结果(如实施例3.3中所述进行),其指示96孔板中具有GFP信号的细胞百分比。在阴性对照样品(即暴露于没有任何穿梭剂的GFP-NLS的细胞;数据未显示)中未观察到显著的GFP荧光。
图24显示明视场(图A)和荧光图像(图B)。图B的插图显示了相应的FACS分析的结果(按照实施例3.3中所述进行),其显示具有GFP信号的96孔板中细胞的百分比。在阴性对照样品(即暴露于没有任何穿梭剂的GFP-NLS的细胞;数据未显示)中未观察到显著的GFP荧光。
对于图25所示的样品结果,如实施例3.2中所述用荧光显微镜观察前,将HeLa细胞如实施例3.2a所述固定、透化并进行免疫标记。使用原代小鼠单克隆抗GFP抗体(Feldan,#A017)和山羊抗小鼠AlexaTM-594二抗(Abcam#150116)标记GFP-NLS。图25中的上图显示了核标记(DAPI),下图显示了GFP-NLS的相应标记。图A和B分别以20x和40x放大倍数显示样品图像。白色三角形窗口表示核与GFP-NLS之间共标记区域的实例。在阴性对照样品(即暴露于没有任何穿梭剂的GFP-NLS的细胞;数据未显示)中未观察到显著的GFP-NLS标记。
图26显示在63倍放大倍数下用共聚焦显微镜捕获的活细胞的样品图像。图26的图A显示明场图像,而图B显示相应的荧光GFP-NLS。图C是图A和图B的图像之间的重叠。在阴性对照样品(即暴露于没有任何穿梭剂的GFP-NLS的细胞;数据未显示)中没有观察到显著的GFP-NLS荧光。
9.4a 使用方案B在HeLa细胞中通过His-CM18-PTD4的FTIC标记的抗微管蛋白抗体转导:通过显微镜观察
将FITC标记的抗微管蛋白抗体(0.5μM;Abcam,ab64503)与50μM的His-CM18-PTD4共温育,然后如实施例9.1中所述使用方案B将其暴露于HeLa细胞10秒钟。然后如实施例3.2和3.2a所述对细胞进行荧光显微镜分析,其中在最终洗涤步骤之后,通过明视场和荧光显微镜在20x放大倍数下立即使HeLa细胞中的抗微管蛋白抗体的FITC荧光可视化。样品结果显示在图24C和24D中。在阴性对照样品(即暴露于没有任何穿梭剂的FITC标记的抗微管蛋白抗体的细胞;数据未显示)中未观察到显著的FITC荧光。
总的来说,实施例9.4和9.4a的结果显示GFP-NLS和FITC标记的抗微管蛋白抗体负荷在穿梭剂His-CM18-PTD4存在下成功转导并递送至HeLa细胞的细胞核和/或细胞质。
9.5 在HeLa细胞中通过His-CM18-PTD4的GFP-NLS动力学转导:显微镜观察
将GFP-NLS重组蛋白(5μM;参见实施例5.1)与50μM的His-CM18-PTD4共温育,然后如实施例9.1中所述使用方案B暴露于HeLa细胞10秒钟。洗涤步骤后,不同的时间间隔后HeLa细胞的GFP荧光立即通过荧光显微镜(实施例3.2)在20x放大倍数观察。典型的结果显示在图27中,其中荧光显微镜图像在45、75、100和120秒后被捕获(分别参见图A、B、C和D)。
如图27A所示,在45秒后通常观察到弥散的细胞GFP荧光,伴随许多细胞中核内的GFP荧光较低的区域。这些结果表明在45秒后经由穿梭剂细胞内递送的GPF-NLS主要是细胞质的和低核分布。图27B-27D显示在暴露于His-CM18-PTD4穿梭剂和GFP-GFP负荷后,在75秒(图B)、100秒(图C)和120秒(图D),GFP荧光逐渐再分布至细胞核。在阴性对照样品(即暴露于没有任何穿梭剂的GFP-NLS的细胞;数据未显示)中未观察到显著的细胞GFP荧光。
实施例9.5的结果表明GFP-NLS在穿梭剂His-CM18-PTD4存在下2分钟成功递送至HeLa细胞的核。
9.6 在HeLa细胞中通过His-CM18-PTD4的GFP-NLS和mCherryTM-NLS的共转导:显微镜观察
如实施例1.4所述,从细菌表达系统构建、表达和纯化mCherryTM-NLS重组蛋白。mCherryTM-NLS重组蛋白的序列为:
(MW=34.71kDa;pI=6.68)
NLS序列加下划线
富含丝氨酸/甘氨酸的接头用黑体标出
将GFP-NLS重组蛋白(5μM;参见实施例5.1)和mCherryTM-NLS重组蛋白(5μM)与35μM的His-CM18-PTD4共温育,然后使用如实施例9.1所述的方案B暴露于HeLa细胞10秒。洗涤步骤后,如实施例3.2所述,通过明视场和荧光显微镜以20x放大倍数立即观察细胞。样品结果显示在图28中,其中显示了显示明场(图A)、DAPI荧光(图B)、GFP-NLS荧光(图C)和mmCherryTM-NLS荧光(图D)的相应图像。白色三角窗指示细胞核中GFP-NLS和mCherryTM荧光信号之间共标记的区域的实例。在阴性对照样品(即暴露于没有任何穿梭剂的GFP-NLS或mCherryTM的细胞;数据未显示)中未观察到显著的细胞GFP或mCherryTM荧光。
这些结果表明GFP-NLS和mCherryTM-NLS在穿梭剂His-CM18-PTD4存在下成功地一起递送到HeLa细胞的细胞核中。
9.7 在THP-1悬浮细胞中通过His-CM18-PTD4转导GFP-NLS:流式细胞术
使用THP-1细胞测试His-CM18-PTD4在悬浮细胞的核中递送GFP-NLS的能力。THP-1细胞在实施例9.1所述的蛋白质转导测定中使用方案A和C进行培养和测试。将GFP-NLS(5μM;参见实施例5.1)与1μM的His-CM18-PTD4共温育并暴露于THP-1细胞1小时(方案A),或者与5μM的His-CM18-PTD4共温育并暴露于THP-1细胞15秒(方案C)。如实施例3.3所述将细胞进行流式细胞术分析。结果见表9.3和图31。
表9.3:来自图31的数据
9.8 在THP-1细胞中通过His-CM18-PTD4的GFP-NLS转导:显微镜观察
将GFP-NLS重组蛋白(5μM;参见实施例5.1)与5μM的His-CM18-PTD4共温育,然后如实施例9.1中所述使用方案C暴露于THP-1细胞15秒。如实施例3.2所述将细胞进行显微镜观察。
对于图32中所示的样品结果,在最终洗涤步骤后立即通过4x,10x和40x放大倍数(分别为图A-C)的明场(上图)和荧光(下图)显微镜观察HeLa细胞的GFP荧光。图C中的白色三角形窗口指示明场和荧光图像之间共标记的区域的实例。图D显示了相应的FACS分析的典型结果(如实施例3.3所述进行),其表示96孔板中具有GFP信号的细胞的百分比。其它结果如图33所示,其中图A和B显示明场图像,图C和D显示相应的荧光图像。白色三角形窗口指示了图A和图C以及图B和图D之间的共标记的区域的实例。最右侧的图显示了相应的FACS分析的典型结果(如实施例3.3中所述进行),其指示在96孔板中具有GFP信号的细胞的百分比。
在阴性对照样品(即暴露于无任何穿梭剂的GFP-NLS的细胞;数据未显示)中未观察到显著的细胞GFP荧光。
本实施例的结果表明GFP-NLS在穿梭剂His-CM18-PTD4存在下在THP-1细胞中成功地细胞内递送。
实施例10:
不同的多结构域穿梭剂(而不是单结构域肽)在HeLa和THP-1细胞中成功转导GFP-NLS
10.1 在HeLa细胞中通过不同穿梭剂的GFP-NLS转导:流式细胞术
HeLa细胞在实施例9.1中描述的使用方案B的蛋白质转导测定中进行培养和测试。简而言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与50μM不同的穿梭剂共温育并暴露于HeLa细胞10秒钟。如实施例3.3所述将细胞进行流式细胞术分析。结果见表10.1和图29A。“阳性细胞(%)”是发出GFP信号的所有细胞的平均百分比。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何穿梭剂一起温育的细胞。
表10.1:来自图29A的数据
*His-LAH4-PTD4:通过荧光显微镜观察细胞内GFP荧光模式为点状,表明GFP负荷仍然被困在内体中。
10.2 在HeLa中通过不同穿梭剂使用不同温育时间的GFP-NLS转导:流式细胞术
HeLa细胞在实施例9.1中描述的使用方案B的蛋白质转导测定中进行培养和测试。简言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与10μM的TAT-KALA、His-CM18-PTD4或His-C(LLKK)3C-PTD4共温育1、2或5分钟。在最后的洗涤步骤后,如实施例3.3所述对细胞进行流式细胞术分析。结果如表10.2和图29B所示。“阳性细胞(%)”是发出GFP信号的所有细胞的平均百分比。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何穿梭剂共温育的细胞。
表10.2:来自图29B的数据
/>
10.3 在HeLa中通过TAT-KALA、His-CM18-PTD4和His-C(LLKK)3C-PTD4使用不同温育时间的GFP-NLS的转导:流式细胞术
HeLa细胞在实施例9.1中描述的使用方案C的蛋白质转导测定中进行培养和测试。简言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与5μM的TAT-KALA、His-CM18-PTD4或His-C(LLKK)3C-PTD4共温育1、2或5分钟。在最后的洗涤步骤之后,如实施例3.3所述对细胞进行流式细胞术分析。结果如表10.3和图29C所示。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何穿梭剂一起温育的细胞。
表10.3:来自图29C的数据
10.4 在HeLa细胞中通过不同穿梭剂的GFP-NLS转导:流式细胞术
HeLa细胞在实施例9.1中描述的使用方案B的蛋白质转导测定中进行培养和测试。简而言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与50μM不同的穿梭剂(氨基酸序列和性质参见表1.3)共温育并暴露于HeLa细胞10秒钟。如实施例3.3所述将细胞进行流式细胞术分析。结果显示在表10.3a和10.3b以及图29E和29F中。“阳性细胞(%)”是发出GFP信号的所有细胞的平均百分比。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何穿梭剂共温育的细胞。
表10.3a:来自图29E的数据
*His-LAH4-PTD4:通过荧光显微镜观察细胞内GFP荧光模式为点状,表明GFP负荷仍然被困在内体中。
**图29E中未显示。
表10.3b:来自图29F的数据
HeLa细胞在实施例9.1中描述的使用方案B的蛋白质转导测定中进行培养和测试。简言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与10μM的TAT-KALA、His-CM18-PTD4或His-C(LLKK)3C-PTD4共温育1、2或5分钟。在最后的洗涤步骤之后,如实施例3.3所述对细胞进行流式细胞术分析。结果显示在表10.3c和10.3b以及图29G和29H中。“阳性细胞(%)”是发出GFP信号的所有细胞的平均百分比。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何穿梭剂一起温育的细胞。
表10.3c:来自图29G的数据
表10.3d:来自图29H的数据
/>
将穿梭剂CM18-PTD4用作模型来证明单个蛋白质结构域的模块性质以及它们被修饰的能力。更具体地,研究了N-末端半胱氨酸残基(“Cys”)的存在或不存在;ELD和CPD结构域间的不同柔性接头(“L1”:GGS;“L2”:GGSGGGS;和“L3”:GGSGGGSGGGS)和不同长度、位置和组氨酸富集的结构域变体。
HeLa细胞在实施例9.1中描述的使用方案B的蛋白质转导测定中进行培养和测试。简而言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与20μM的穿梭剂His-CM18-PTD4的不同穿梭肽变体(氨基酸序列和性质参见表1.3)共温育1分钟。在最后的洗涤步骤之后,如实施例3.3所述对细胞进行流式细胞术分析。结果见表10.3e和图29I。“阳性细胞(%)”是发出GFP信号的所有细胞的平均百分比。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而没有任何穿梭剂一起温育的细胞。
表10.3e:来自图29I的数据
这些结果表明,给定穿梭剂(例如CM18-PTD4)的变化可以用于调节给定穿梭剂的转导效率和细胞活力的程度。更具体地,向CM18-PTD4(参见Cys-CM18-PTD4)添加N-末端半胱氨酸残基使GFP-NLS转导效率降低了11%(从47.6%降至36.6%),但是使细胞活力从33.9%增加至78.7%。在CM18和PTD4结构域之间引入不同长度的柔性接头结构域(L1、L2和L3)并没有导致转导效率的显著损失,而是增加了细胞活力(参见CM18-L1-PTD4、CM18-L2-PTD4和CM18-L3-PTD4)。最后,组氨酸富集结构域的氨基酸序列和/或位置的变化没有导致His-CM18-PTD4的转导效率和细胞活性完全丧失(参见3His-CM18-PTD4、12His-CM18-PTD4、HA-CM18-PTD4、3HA-CM18-PTD4、CM18-His-PTD4和His-CM18-PTD4-His)。值得注意的是,在His-CM18-PTD4的C末端添加第二个组氨酸富集结构域(即His-CM18-PTD4-His),转导效率从60%增加到68%,细胞活力相似。
10.5 在HeLa细胞中通过单结构域肽或His-CPD肽的GFP-NLS转导的缺乏:流式细胞术
HeLa细胞在实施例9.1中描述的使用方案B的蛋白质转导测定中进行培养和测试。简言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与50μM不同的单结构域肽(TAT;PTD4;穿膜肽;CM18;C(LLKK)3C;KALA)或双结构域肽His-PTD4(缺乏ELD)共温育,并暴露于HeLa细胞10秒钟。在最后的洗涤步骤之后,如实施例3.3所述对细胞进行流式细胞术分析。结果如表10.4和图29D所示。“阳性细胞(%)”是发出GFP信号的所有细胞的平均百分比。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何单结构域肽或穿梭剂一起温育的细胞。
表10.4:来自图29D的数据
这些结果显示,单结构域肽TAT、PTD4、穿膜肽、CM18、C(LLKK)3C、KALA或双结构域肽His-PTD4(缺乏ELD)在HeLa细胞中不能成功转导GFP-NLS。
10.6 在HeLa细胞中通过TAT-KALA、His-CM18-PTD4、His-C(LLKK)3C-PTD4、PTD4-KALA、EB1-PTD4和His-CM18-PTD4-His转导GFP-NLS:通过显微镜观察
将GFP-NLS重组蛋白(5μM;参见实施例5.1)与50μM穿梭剂共温育,然后如实施例9.1中所述使用方案B暴露于HeLa细胞10秒钟。如实施例3.2中所述,在2分钟的温育时间后,通过显微镜观察细胞。
对于图30所示的样品结果,在最终洗涤步骤后HeLa细胞的GFP荧光通过在20x或40x放大倍数的明场(下行图)和荧光(上和中行图)显微镜立即观察。穿梭剂TAT-KALA、His-CM18-PTD4和His-C(LLKK)3C-PTD4的结果分别显示在图A、B和C中。穿梭剂PTD4-KALA、EB1-PTD4和His-CM18-PTD4-His的结果分别显示在图D、E和F中。最下面一排中的插图显示了相应的FACS分析的结果(按照实施例3.3中的描述进行),其表示96孔板中具有GFP信号的细胞的百分比。在阴性对照样品(即暴露于无任何穿梭剂的GFP-NLS的细胞;数据未显示)中未观察到显著的细胞GFP荧光。
10.7 在THP-1细胞中使用不同温育时间通过TAT-KALA、His-CM18-PTD4和His-C(LLKK)3C-PTD4转导GFP-NLS细胞:流式细胞术
THP-1细胞在实施例9.1所述的使用方案C的蛋白质转导测定中培养和测试。简而言之,将GFP-NLS重组蛋白(5μM;参见实施例5.1)与1μM的TAT-KALA、His-CM18-PTD4或His-C(LLKK)3C-PTD4共温育15、30、60、或120秒。在最终的洗涤步骤之后,如实施例3.3所述对细胞进行流式细胞术分析。细胞发出GFP信号的平均百分比(“阳性细胞(%)”)见表10.4a和图34A。平均荧光强度见表10.5和图34B。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何穿梭剂一起温育的细胞。
表10.4a:来自图34A的数据
表10.5:来自图34B的数据
实施例11:
血清存在下使用低浓度穿梭剂每日重复处理导致THP-1细胞中的GFP-NLS转导
11.1 在THP-1细胞中使用His-CM18-PTD4或His-C(LLKK)3C-PTD4转导GFP-NLS:流式细胞术
THP-1细胞在实施例9.1中所述的使用方案A的蛋白质转导测定中培养和测试,但进行了以下修改。将GFP-NLS重组蛋白(5、2.5或1μM;参见实施例5.1)与0.5或0.8μM的His-CM18-PTD4或与0.8μM的His-C(LLKK)3C-PTD4共温育,然后在含有血清的细胞培养基存在下每天暴露于THP-1细胞150分钟。反复暴露于穿梭剂/负荷1或3天后,洗涤细胞并如实施例3.3所述进行流式细胞术分析。结果显示在表11.1和图35A、B、C和F中。阴性对照(“对照”)对应于与GFP-NLS重组蛋白(5μM)而无任何穿梭剂一起温育的细胞。
表11.1:来自图35A、B、C和F的数据
/>
如实施例3.3a所述确定重复暴露于His-CM18-PTD4和GFP-NLS的THP-1细胞的活力。结果显示在表11.2和11.3以及图35D和35E中。表11.2和图35D的结果显示THP-1细胞在1、2、4和24h后的代谢活性指数,表11.3和图35E中的结果显示1至4天后THP-1细胞的代谢活性指数。
表11.2:来自图35D的数据
表11.3:来自图35E的数据
/>
实施例11中的结果表明,血清存在下用相对低浓度的His-CM18-PTD4或His-C(LLKK)3C-PTD4反复每日(或长期)处理导致GFP-NLS在THP-1细胞中的细胞内递送。结果还表明穿梭剂和负荷的剂量可以独立调节以改进负荷的转导效率和/或细胞活力。
实施例12:
His-CM18-PTD4增加多种细胞系中GFP-NLS的转导效率和核递送
12.1 在不同贴壁&悬浮细胞中使用His-CM18-PTD4转导GFP-NLS:流式细胞术
检查了如实施例9.1所述使用方案B(贴壁细胞)或C(悬浮细胞)穿梭剂His-CM18-PTD4将GFP-NLS递送至不同贴壁细胞和悬浮细胞的核的能力。测试的细胞系包括:HeLa、Balb3T3、HEK293T、CHO、NIH3T3、成肌细胞、Jurkat、THP-1、CA46和HT2细胞,如实施例1所述进行培养。将GFP-NLS(5μM;参见实施例5.1)与35μM的His-CM18-PTD4共温育并暴露于贴壁细胞10秒钟(方案B),或者与5μM的His-CM18-PTD4共温育并暴露于悬浮细胞悬液15秒(方案C)。洗涤细胞并如实施例3.3所述进行流式细胞术分析。结果如表12.1和图36所示。“阳性细胞(%)”是发出GFP信号的所有细胞的平均百分比。
表12.1:来自图36的数据
12.2 在数种贴壁和悬浮细胞中使用His-CM18-PTD4转导GFP-NLS:显微镜观察
将GFP-NLS重组蛋白(5μM;参见实施例5.1)与35μM的His-CM18-PTD4共温育,并使用方案A暴露于贴壁细胞10秒,或者与5μM的His-CM18-PTD4共温育,并如实施例9.1所述用方案B暴露于悬浮细胞15秒。洗涤细胞后,通过明场和荧光显微镜观察GFP荧光。图37显示了在10x放大倍数捕获的(A)293T、(B)Balb3T3、(C)CHO、(D)成肌细胞、(E)Jurkat、(F)CA46、(G)HT2和(H)NIH3T3细胞显示GFP荧光的样品图像。插图显示如实施例3.3所述进行的相应的流式细胞术结果,表明GFP-NLS阳性细胞的百分比。在阴性对照样品(即暴露于无任何穿梭剂的GFP-NLS的细胞;数据未显示)中未观察到显著的细胞GFP荧光。
如实施例3.2a所述,使用细胞免疫标记在固定和透化的成肌细胞中进一步证实了GFP-NLS的核定位。使用原代小鼠单克隆抗GFP抗体(Feldan,#A017)和山羊抗小鼠AlexaTM-594二抗(Abcam#150116)标记GFP-NLS。核用DAPI标记。原代人成肌细胞的样品结果显示在图38中,其中GFP免疫标记显示在图A中,GFP免疫标记和DAPI标记的重叠显示在图B中。在阴性对照样品中没有观察到显著的细胞GFP标记(即暴露于无任何穿梭剂的GFP-NLS的细胞;数据未显示)。
显微镜检查结果显示,使用穿梭剂His-CM18-PTD4将GFP-NLS成功递送至所有测试细胞的核。
实施例13:
His-CM18-PTD4允许在Hela细胞中转导CRISPR/Cas9-NLS系统和基因组编辑
13.1 Cas9-NLS重组蛋白
如实施例1.4所述,从细菌表达系统构建、表达和纯化Cas9-NLS重组蛋白。产生的Cas9-NLS重组蛋白的序列是:
(MW=162.9kDa;pI=9.05)
NLS序列加下划线
富含丝氨酸/甘氨酸的接头用黑体标出
13.2 转染质粒替代测定
该测定允许目测鉴定已成功递送活性CRISPR/Cas9复合物的细胞。如图39A所示,该测定涉及用编码荧光蛋白mCherryTM和GFP(用终止密码子分离它们的两个开放阅读框)的表达质粒DNA转染细胞。用表达质粒转染细胞导致mCherryTM表达,但没有GFP表达(图39B)。然后将已设计/程序化以在终止密码子处切割质粒DNA的CRISPR/Cas9复合物细胞内递送至转染的表达mCherryTM的细胞(图39D)。成功转导活性CRISPR/Cas9复合物导致CRISPR/Cas9复合物在终止密码子处切割质粒DNA(图39C)。在细胞的一部分中,发生切割的质粒的随机非同源DNA修复,并导致终止密码子的移除,从而导致GFP的表达和荧光(图39E)。
在转染质粒替代测定的第1天,将用于不同实验条件(250ng)的DNA质粒在单独的无菌1.5-mL管中的DMEM(50μL)中稀释,涡旋并短暂离心。在单独的无菌1.5-mL管中,将FastfectTM转染试剂在不含血清且不含抗生素的DMEM(50μL)中以3:1的比例(3μL的FastfectTM转染试剂对应1μg的DNA)稀释,然后快速涡旋并短暂离心。然后将FastfectTM/DMEM混合物添加到DNA混合物中并快速涡旋并短暂离心。然后将FastfectTM/DMEM/DNA混合物在室温温育15-20分钟,然后添加至细胞(每孔100μL)。然后将细胞在37℃和5%CO2下温育5小时。然后将培养基更换为完全培养基(含血清),并进一步在37℃和5%CO2温育24-48小时。然后在荧光显微镜下观察细胞,以观察mCherryTM信号。
13.3 His-CM18-PTD4介导的CRISPR/Cas9-NLS系统递送和质粒DNA的切割
设计RNA(crRNA和tracrRNA)以靶向EMX1基因的核苷酸序列,在实施例13.2的质粒中的mCherryTM和GFP编码序列之间含有终止密码子。
使用的crRNA和tracrRNA的序列如下:
培养HeLa细胞,并按照实施例13.2所述进行转染质粒替代测定。在第1天,如图39A所示,用编码mCherryTM蛋白质的质粒替代物转染HeLa细胞。在第2天,将Cas9-NLS重组蛋白(2μM;参见实施例13.1)和RNA(crRNA和tracrRNA;2μM;参见上文)的混合物与50μM的His-CM18-PTD4共温育,并如实施例9.1所述使用方案B将混合物(CRISPR/Cas9复合物)暴露于HeLa细胞10秒钟。通过CRISPR/Cas9复合物在mCherryTM和GFP编码序列之间的终止密码子处切割双链质粒DNA(图39B),并且随后通过细胞的非同源修复在一些情况下导致STOP密码子的移除(图39C),从而允许mCherryTM和GFP荧光蛋白在第3天在同一细胞中的表达(图39D-E)。图D和E中的白色三角形窗口指示mCherryTM和GFP之间的共标记区域的实例。
作为CRISPR/Cas9-NLS系统的阳性对照,培养HeLa细胞并使用三种质粒共转染:质粒替代物(如实施例13.2中所述)和编码Cas9-NLS蛋白质的其它表达质粒(实施例13.1)和crRNA/tracrRNA(实施例13.3)。典型的荧光显微镜结果如图40A-D所示。图A和B显示转染后24小时的细胞,而图C和D显示转染后72小时的细胞。
图40E-H显示了使用35μM穿梭剂His-CM18-PTD4进行的平行转染质粒替代测定的结果,如图39所述。图E和F显示转导后24小时的细胞,而图G和H显示转导后48小时的细胞。图E和G显示mCherryTM荧光,图F和H显示GFP荧光,后者由转导的CRISPR/Cas9-NLS复合物去除终止密码子并随后由细胞非同源修复而产生。在阴性对照样品(即暴露于无任何穿梭剂的CRISPR/Cas9-NLS复合物的细胞;数据未显示)中未观察到显著的细胞GFP荧光。
13.4 T7E1测定
用Edit-RTM合成crRNA阳性对照(Dharmacon#U-007000-05)和T7核酸内切酶I(NEB,Cat#M0302S)进行T7E1测定。在CRISPR/Cas9复合物递送之后,将细胞在100μL具有添加剂的PhusionTM高保真DNA聚合酶(NEB#M0530S)实验室中溶解。将细胞在56℃温育15-30分钟,然后在96℃下失活5分钟。将平板短暂离心以收集孔底部的液体。为每个待分析样品设置50μLPCR样品。将PCR样品加热至95℃10分钟,然后缓慢(>15分钟)冷却至室温。然后在琼脂糖凝胶(2%)上分离PCR产物(~5μL)以确认扩增。将15μL各反应物与T7E1核酸酶在37℃温育25分钟。立即用琼脂糖凝胶(2%)上合适的凝胶上样缓冲液运行整个反应体积。
13.5 His-CM18-PTD4和His-C(LLKK)3C-PTD4介导的CRISPR/Cas9-NLS系统递送和基因组PPIB序列的切割
由靶向PPIB基因核苷酸序列的Cas9-NLS重组蛋白(25nM;实施例13.1)和crRNA/tracrRNA(50nM;参见下文)组成的混合物与10μM的His-CM18-PTD4或His-C(LLKK)3C-PTD4共温育,并与HeLa细胞在没有血清的培养基中如实施例9.1中所述的方案A温育16小时。
构建的crRNA和tracrRNA的序列及其靶标为:
16小时后,用PBS洗涤HeLa细胞,并在具有血清的培养基中温育48小时。收获HeLa细胞以进行T7E1方案测定,如实施例13.4所述。
图41A显示PCR扩增后具有PPIB DNA序列的琼脂糖凝胶。泳道A显示HeLa细胞中扩增的PPIB DNA序列,没有任何处理(即没有穿梭或Cas9/RNA复合物)。泳道B:白框#1中所框的两条带是在用穿梭剂His-C(LLKK)3C-PTD4递送复合物之后通过CRIPR/Cas9复合物的PPIB DNA序列的切割产物。泳道C:这些条带显示HeLa细胞与Cas9/RNA复合物在没有穿梭剂(阴性对照)的情况下温育后的扩增的PPIB DNA序列。泳道D:在白框#2中所框条带显示HeLa细胞与Cas9/RNA复合物在脂质转染剂(DharmaFectTM转染试剂#T-20XX-01)(阳性对照)存在下温育后扩增的PPIB DNA序列。使用穿梭剂His-CM18-PTD4获得了类似的结果(数据未显示)。
图41B显示了PCR扩增后的具有PPIB DNA序列的琼脂糖凝胶。左图显示在HeLa细胞中用穿梭剂His-CM18-PTD4递送复合物之后通过CRIPR/Cas9复合物扩增的PPIB DNA序列的切割产物。右图显示在T7E1消化步骤之前扩增的DNA序列作为阴性对照。
图41C显示了PCR扩增后具有PPIB DNA序列的琼脂糖凝胶。左图显示HeLa细胞与Cas9/RNA复合物在脂质转染剂(DharmaFectTM转染试剂#T-20XX-01)(阳性对照)存在下温育后的扩增的PPIB DNA序列。右图显示在T7E1消化步骤之前扩增的DNA序列作为阴性对照。
这些结果表明穿梭剂His-CM18-PTD4和His-C(LLKK)3C-PTD4成功地将功能性CRISPR/Cas9复合物递送到HeLa细胞的核,并且该递送导致CRISPR/Cas9-介导的基因组DNA的切割。
13.6 通过不同穿梭剂的CRISPR/Cas9-NLS系统递送,以及HeLa和Jurkat细胞中基因组HPTR序列的切割
将靶向HPTR基因的核苷酸序列的由Cas9-NLS重组蛋白(2.5μM;实施例13.1)和crRNA/tracrRNA(2μM;参见下文)组成的混合物与35μM的His-CM18-PTD4、His-CM18-PTD4-His、His-C(LLKK)3C-PTD4或EB1-PTD4共温育,并与HeLa或Jurkat细胞在PBS中如实施例9.1所述使用方案B温育2分钟。
构建的crRNA和tracrRNA的序列及其靶标为:
2分钟后,用PBS洗涤细胞,并在具有血清的培养基中温育48小时。收获细胞以如实施例13.4所述进行T7E1方案测定。图46显示了PCR扩增后具有HPTR DNA序列的琼脂糖凝胶和在用不同穿梭剂递送复合物之后通过CRISPR/Cas9复合物的扩增的HPTR DNA序列的切割产物。图A显示HeLa细胞中使用下述穿梭剂的结果:His-CM18-PTD4,His-CM18-PTD4-His和His-C(LLKK)3C-PTD4。图B显示了Jurkat细胞中使用His-CM18-PTD4和His-CM18-L2-PTD4的结果。在不存在穿梭剂的情况下,将细胞与CRISPR/Cas9复合物温育后,阴性对照(泳道4)显示扩增的HPTR DNA序列。在脂质转染剂(RNAiMAXTM转染试剂ThermoFisher产品号13778100)存在下,将细胞与Cas9/RNA复合物温育后,阳性对照(图A和B中的泳道5)显示扩增的HPTR DNA序列。
这些结果表明,本发明的不同多肽穿梭剂可以成功地将功能性CRISPR/Cas9复合物递送到HeLa和Jurkat细胞的核,并且该递送导致CRISPR/Cas9介导的基因组DNA的切割。
实施例14:
His-CM18-PTD4允许THP-1细胞中的转录因子HOXB4的转导
14.1 HOXB4-WT重组蛋白
如实施例1.4所述,从细菌表达系统构建、表达和纯化人HOXB4重组蛋白质。产生的HOXB4-WT重组蛋白的序列是:
(MW=28.54kDa;pI=9.89)
起始甲硫氨酸和6x组氨酸标签以黑体显示。
14.2 实时聚合酶链式反应(rt-PCR)
将对照和处理的细胞转移到不同的无菌1.5-mL管中,并在300g离心5分钟。将细胞沉淀重悬于合适的缓冲液中以切割细胞。然后加入无RNA酶的70%乙醇,随后通过移液混合。将切割物转移至RNeasyTM Mini离心柱,并在13000RPM离心30秒。用适当的缓冲液和离心步骤洗涤几次后,将洗脱液收集在冰上的无菌1.5-mL试管中,然后用分光光度计定量每个试管中的RNA量。对于DNA酶处理,将2μg的RNA在15μL无RNA酶的水中稀释。然后加入1.75μL的10X DNA酶缓冲液和0.75μL的DNA酶,随后在37℃温育15分钟。对于逆转录酶处理,加入0.88μL的EDTA(50nM),然后在75℃温育5分钟。在PCR管中,将0.5μg的DNA酶处理的RNA与4μL的iScriptTM逆转录超混合物(5X)和20μL无核酸酶的水混合。混合物在PCR仪中用以下程序温育:在25℃ 5分钟,在42℃ 30分钟和在85℃ 5分钟。将新合成的cDNA转移到无菌1.5-mL管中并用2μL无核酸酶的水稀释。然后将每孔18μL的qPCR仪(CFX-96TM)混合物加入到PCR板中用于分析。
14.3 THP-1细胞中通过His-CM18-PTD4的HOXB4-WT转导:剂量响应和活力
THP-1细胞在实施例9.1描述的使用方案A的蛋白质转导测定中培养和测试。简言之,THP-1细胞在转导前一天以30 000个细胞/孔接种。将HOXB4-WT重组蛋白(0.3、0.9或1.5μM;实施例14.1)与不同浓度的His-CM18-PTD4(0、0.5、7.5、0.8或1μM)共温育,然后在血清存在下暴露于THP-1细胞2.5小时。如实施例14.2所述的对细胞进行实时PCR分析以测量作为HOXB4活性标记的靶基因的mRNA水平,然后将其标准化为在阴性对照细胞中检测到的靶基因mRNA水平(无治疗),以获得“超过对照的倍数”的值。总RNA水平(ng/μL)也作为细胞存活力的标记进行测量。结果见表14.1和图42。
表14.1:来自图42的数据
这些结果表明,在血清存在下将THP-1细胞暴露于穿梭剂His-CM18-PTD4和转录因子HOXB4-WT的混合物2.5小时导致靶基因的mRNA转录的剂量依赖性增加。这些结果表明,HOXB4-WT以活性形式成功递送至THP-1细胞的核,其在核中可介导转录激活。
14.4 通过His-CM18-PTD4在THP-1细胞中的HOXB4-WT转导:时程和活力(0至48小时)
THP-1细胞在实施例9.1所述的使用方案A的蛋白质转导测定中培养和测试。简言之,THP-1细胞在第一次时程实验前一天以30 000个细胞/孔接种。将HOXB4-WT重组蛋白(1.5μM;实施例14.1)与His-CM18-PTD4(0.8μM)共温育,然后在血清存在下暴露于THP-1细胞0、2.5、4、24或48小时。如实施例14.2所述对细胞进行实时PCR分析以测量作为HOXB4活性的标记的靶基因的mRNA水平,然后将其标准化为在阴性对照细胞中检测到的靶基因mRNA水平(无处理),以获得“超过对照的倍数”的值。总RNA水平(ng/μL)也作为细胞存活力的标记进行测量。结果如表14.2和图43所示。
表14.2:来自图43的数据
14.5 通过His-CM18-PTD4在THP-1细胞中的HOXB4-WT转导:时程和活力(0-4小时)
THP-1细胞在实施例9.1所述的使用方案A的蛋白质转导测定中培养和测试。简言之,THP-1细胞在第一次时程实验前一天以30 000个细胞/孔接种。将HOXB4-WT重组蛋白(0.3μM;实施例14.1)与His-CM18-PTD4(0.8μM)共温育,然后在血清存在下暴露于THP-1细胞0、0.5、1、2、2.5、3或4小时。如实施例14.2所述对细胞进行实时PCR分析以测量作为HOXB4活性的标记的靶基因的mRNA水平,然后将其标准化为在阴性对照细胞中检测到的靶基因mRNA水平(无处理),以获得“超过对照的倍数”的值。总RNA水平(ng/μL)也作为细胞存活力的标记进行测量。结果见表14.3和图44。
表14.3:来自图44的数据
14.6 通过His-CM18-PTD4在HeLa细胞中的HOXB4-WT转导:免疫标记和显微镜观察
如实施例9.1中所述,使用方案B将重组HOXB4-WT转录因子(25μM;实施例14.1)与35μM的His-CM18-PTD4共温育并使用方案B暴露于HeLa细胞10秒钟。30分钟的温育以使转导的HOXB4-WT在核中积累后,如实施例3.2a所述将细胞固定、透化和免疫标记。用1/500稀释的小鼠抗HOXB4单克隆一抗(Novus Bio#NBP2-37257)和1/1000稀释的抗小鼠二抗AlexaTM-594(Abcam#150116)标记HOXB4-WT。核用DAPI标记。如实施例3.2所述,通过明场和荧光显微镜以20x和40x的放大倍数观察细胞,并且样品结果显示在图45中。在核标记(图A和C)和HOXB4-WT标记(图B和D)之间观察到共定位,表明HOXB4-WT在穿梭剂His-CM18-PTD4存在下30分钟后成功递送至核。白色三角窗显示细胞核(DAPI)和HOXB4-WT免疫标记之间共定位区域的实例。
14.7 通过不同穿梭剂在THP-1细胞中的HOXB4-WT转导:剂量响应和活力
THP-1细胞如实施例9.1中所述使用方案A在蛋白质转导测定中培养和测试。简言之,THP-1细胞在第一次时程实验前一天以30 000个细胞/孔接种。HOXB4-WT重组蛋白(1.5μM;实施例14.1)与穿梭剂His-CM18-PTD4、TAT-KALA、EB1-PTD4、His-C(LLKK)3C-PTD4和His-CM18-PTD4-His以0.8μM共温育,然后在血清存在下暴露于THP-1细胞2.5小时。如实施例14.2所述对细胞进行实时PCR分析以测量作为HOXB4活性标记的靶基因的mRNA水平,然后将其标准化为在阴性对照细胞中检测到的靶基因mRNA水平(无处理),以获得“超过对照的倍数”的值。总RNA水平(ng/μL)也作为细胞存活力的标记进行测量。结果如表14.4和图47所示。
表14.4:来自图47的数据
实施例15:
通过His-CM18-PTD4在大鼠顶叶皮层中体内递送GFP-NLS
测试了穿梭剂His-CM18-PTD4在大鼠脑细胞的核中体内递送GFP-NLS的能力。
在单独的无菌1.5-mL管中,穿梭剂His-CM18-PTD4在室温下在无菌蒸馏水中稀释。然后将用作负荷蛋白的GFP-NLS加入穿梭剂中,并且如果需要,加入无菌PBS以获得在足以用于在大鼠脑中注射的最终体积(例如5μL每个脑注射位点)中的预期浓度的穿梭剂和负荷。穿梭剂/负荷混合物立即用于实验。实验中包括一个阴性对照,其对应于单独的GFP-NLS的注射。
在三只大鼠的顶叶皮层中进行双侧注射。在左侧顶叶皮层(同侧),注射由穿梭剂(20μM)和GFP-NLS(20μM)组成的混合物,而在右顶叶皮层(对侧)仅注射GFP-NLS(20μM)作为阴性对照。对于外科手术,将小鼠用异氟烷麻醉。然后将动物置于立体框架中,暴露颅骨表面。在适当的位点钻两个孔,以允许使用5μL汉密尔顿注射器双侧输注穿梭剂/负荷混合物或单独的GFP-NLS(20μM)。前-后(AP),侧(L)和背-腹(DV)坐标相对于前囟:(a)AP+0.48mm,L±3mm,V–5mm;(b)AP–2mm,L±1.3mm,V–1.5mm;(c)AP–2.6mm,L±1.5mm,V–1.5mm。穿梭/负荷混合物或单独的负荷的注入量为每个注射部位5μL,注射进行10分钟。之后,实验者等待1分钟,然后从脑中取出针。所有的措施都是在手术前、手术过程中和手术后进行的,以减少动物的疼痛和不适。手术后2h通过灌注多聚甲醛(4%)处死动物,收集脑并制备用于显微镜分析。实验流程由动物护理委员会根据加拿大动物护理委员会的指导方针批准。
收集腹背-侧大鼠脑切片并通过荧光显微镜分析,结果如图48在(A)4x,(C)10x和(D)20x放大倍数所示。注射部位位于顶叶皮层(PCx)的最深层。穿梭剂His-CM18-PTD4存在情况下,GFP-NLS在PCx、胼胝体(Cc)和纹状体(Str)的细胞核中扩散(白色曲线意指脑结构之间的限制)。图B显示来自Franklin和Paxinos的大鼠脑图谱的注射部位(黑色箭头)的立体坐标。在His-CM18-PTD4存在下注射GFP-NLS在大脑左侧部分进行,阴性对照(仅注射GFP-NLS)在对侧部位进行。图B上的黑色圆圈和黑色连线显示在荧光照片(A、C和D)中观察到的区域。
该实验证明负载GFP-NLS在穿梭剂His-CM18-PTD4存在下在其大鼠顶叶皮质中立体定位注射后的细胞递送。结果显示GFP-NLS在从顶层皮层(注射部位)的深层到胼胝体以及纹状体(壳核)的背部水平的细胞核中的递送。相反,阴性对照中GFP-NLS仅在注射部位周围局部检测到。这个实验表明,穿梭剂诱导了注射部位(顶叶皮质)负荷的核递送,并且通过邻近的脑区(胼胝体和纹状体大鼠脑)扩散。
实施例A:
基于结构域的肽穿梭剂的物理化学性质
最初筛选多种不同的肽,目的是鉴定基于多肽的穿梭剂,其可以将独立的多肽负荷细胞内递送至真核细胞的胞质溶胶/细胞核。一方面,这些大规模筛选努力导致发现基于结构域的肽穿梭剂(参见实施例1-15),其包含可操作地连接至细胞穿透结构域(CPD)的内体渗漏结构域(ELD),并且任选地一个或多个富含组氨酸的结构域可以增加真核细胞中独立多肽负荷的转导效率,使得负荷进入胞质溶胶/核区室。相反,这些筛选努力揭示了一些肽没有或具有低多肽负荷转导能力,过度毒性和/或其它不期望的性质(例如差的溶解度和/或稳定性)。
基于这些经验数据,比较成功的、不太成功的和失败的肽的生理化学性质,以便更好地理解更成功的穿梭剂的共同特性。该方法涉及根据转导性能手动分层不同的肽,同时充分考虑到:(1)它们的溶解度/稳定性/合成的容易性;(2)它们促进钙黄绿素内体逃逸的能力(例如参见实施例2);(3)它们在细胞内递送一种或多种类型的独立多肽负荷的能力,如在不同类型的细胞和细胞系(例如原代,永生化,粘附,悬浮等)以及在不同的转导方案下通过流式细胞术所评估(例如参见实施例3-6和8-15);以及(4)在不同的转导方案下将多肽负荷递送至胞质溶胶和/或细胞核的能力,增加的转录活性(例如转录因子负荷)或基因组编辑能力(例如对于核酸酶负荷,例如CRISPR/Cas9或CRISPR/Cpf1),以及对不同类型的细胞和细胞系(例如原代,永生化,粘附,悬浮等)的毒性,如通过荧光显微镜(例如荧光标记的负荷)所评估(例如参见实施例3-6和8-15)。
与上述手动处理同时,对于给定的荧光标记的负荷(GFP,GFP-NLS或荧光标记的抗体)和细胞系,每种肽的转导能力和细胞毒性被组合成单个“转导评分”,作为进一步的筛选工具,其计算如下:[(通过流式细胞术观察到的细胞类型中给定肽的最高百分比转导效率)x(测试细胞系中肽的活力百分比)]/1000,给出对于给定的细胞类型和多肽负荷,总转导评分在0和10之间。这些分析鉴定了基于结构域的肽,其具有约8(例如对于成功的基于结构域的肽穿梭剂)至低至0.067(例如对于单结构域阴性对照肽)的转导评分。
上述手动控制和基于“转导评分”的分析揭示了许多成功的基于结构域的穿梭剂所共有的许多参数。其中一些参数列于表A1中。使用GFP作为多肽负荷的HeLa细胞中基于“转导评分”的分析的实例显示在表A2中。还进行了使用除HeLa之外的细胞系和除GFP之外的多肽负荷的其它基于转导评分的分析,但是为了简洁起见,这里未示出。
没有发现成功的穿梭剂长度少于20个氨基酸残基(参见表A1和A2中的参数1)。四种氨基酸丙氨酸,亮氨酸,赖氨酸和精氨酸是大多数成功穿梭剂中的主要和最复发的残基(肽的残基的35-85%;参见参数10)。这些残基决定了这些肽序列的α-螺旋结构和两亲性质(参数2-5)。穿梭剂(参数11,12和14)中A/L残基(15-45%)和K/R残基(20-45%)的百分比之间通常存在平衡,带负电残基的百分比经常发现不大于10%(参数14)。相反,16个其它氨基酸残基(除A,L,K和R外)通常代表10-45%的穿梭剂(参数15)。成功的穿梭剂通常具有8-13之间的预测等电点(pI)(参数7)和预测的净电荷大于或等于+4(参数6),其中dCM18-TAT-Cys具有预测的净电荷高达+26。疏水残基(A,C,G,I,L,M,F,P,W,Y,V)通常由35-65%的穿梭剂和通常表示为0-30%的中性亲水残基(N,Q,S,T)组成(参数8和9)。
如表A2所示,最成功的穿梭剂(例如转导评分高于5.0)通常很少具有在表A1中列出的范围之外的参数。然而,对于不满足若干参数的穿梭剂也观察到转导效率的显著增加,这取决于例如未满足的参数落在推荐范围之外的程度,和/或其它参数是否接近中间推荐范围。因此,具有落入“最佳”范围内的若干参数的穿梭剂可以补偿落在推荐范围之外的其它参数。如上所述,短于20个氨基酸的肽没有显示出任何显著的转导能力(例如转导评分小于0.4),无论满足多少其它参数。在长度大于20个氨基酸且具有低于0.4的转导评分的肽中,VSVG-PTD4(得分0.35)不能满足六个参数,而JST-PTD4(得分0.083)不能满足十个参数。KALA(得分为0.12)未能满足四个参数,参数11和14远远超过推荐范围,反映了A/L残基过多以及A/L和L/R残基百分比之间的巨大不平衡。应当理解,表A2中出现的转导得分范围是任意选择的,并且可以选择其它范围并且在本说明书的范围内。
表A1.成功的基于结构域的肽穿梭剂的一般物理化学性质
/>
表A2.基于结构域的肽的物理化学特性通过转导评分分层
(在使用GFP与GFP-NLS作为负荷的HeLa细胞中)
Y=是;N=否;单元=值落在表A1中列出的参数范围内;/>单元=值落在表A1中列出的参数范围之外。His-LAH4-PTD4产生高于5.0的转导评分,但是从该分析中排除,因为通过荧光显微镜观察到细胞内GFP荧光模式为点状,表明GFP负荷仍然被困在内体中。然而,值得注意的是,His-LAH4-PTD4在参数2,3,11,12,14和15方面具有落在表A1所示范围之外的若干参数。
实施例B:
合成肽穿梭剂的合理设计
表A1中列出的参数和获得的经验知识(例如来自实施例1-15)用于手动设计表B1中列出的肽,以评估参数是否可用于设计成功的肽穿梭剂。
使用如实施例3.1a中一般描述的蛋白质转导测定法测试表B1中列出的肽在HeLa细胞中转导GFP-NLS负荷(参见实施例3.4)的能力。将GFP-NLS重组蛋白(10μM)与10μM肽共温育,然后暴露于HeLa细胞1分钟。如实施例3.3中所述对细胞进行流式细胞术分析。结果显示在表B2和B3中。如实施例A所讨论的,还进行基于“转导评分”的分析,结果显示在表B4中。如实施例3.2中所述,通过荧光显微镜确认转导的GFP-NLS的成功核递送(通常仅暴露于肽后1分钟)(数据未显示)。
肽FSD1-FSD5最初是基于成功的基于结构域的穿梭剂His CM18PTD4-His设计的,其中肽FSD1-FSD4被设计为故意不涉及表A1中列出的一个或多个参数,并且FSD5被设计为涉及所有十五个参数。从表B2可以看出,肽FSD1-FSD4显示出2.45%至37.6%的转导效率。相反,肽FSD5显示出高转导效率(70.5%)和低毒性(细胞存活率为86%)。
使用PEP-FOLD(一种用于从头肽结构预测的在线资源)的三维建模预测了FSD5的α-螺旋构象(参见图49C;http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD/)。相比之下,预测仅显示3.5%转导效率的肽VSVG-PTD4(见表10.3a)采用不同的结构,包括较短的α螺旋,短β-折叠(白色箭头)和随机线圈(白色无形线)。
图49A和49B所示的FSD5和VSVG-PTD4的螺旋轮投影和侧面开口圆柱形表示(改编自:http://rzlab.ucr.edu/scripts/wheel/wheel.cgi)说明了FSD5与VSVG-PTD4相比的两亲性。每个氨基酸残基的几何形状对应于其基于残基侧链的生化特性(即疏水性,电荷或亲水性)。FSD5和VSVG-PTD4的两个开口圆柱形表示之间的主要差异之一是在FSD5中存在高疏水性核心(图49A左图和右图中概述),其在VSVG PTD4中不存在。图49A和49B的下中间板中的圆柱表示右侧板中开口圆柱形表示的简化形式,其中:“H”表示高疏水表面区域;“h”表示低疏水表面积;“+”表示带正电荷的残基;“h”代表亲水残基。
鉴于FSD5的高转导效率,我们使用该穿梭剂作为模型来设计肽FSD6-FSD26。如表B2所示,只要涉及表A1中列出的大多数设计参数,就可以在不完全丧失转导能力的情况下进行相对高程度的氨基酸取代。在FSD6-FSD26中显示几乎完全丧失转导效率的唯一肽是FSD6,预计不会采用两亲性α-螺旋结构。有趣的是,当在10μM使用时,肽FSD18在HeLa细胞中显示出高毒性,但是当在其它类型的细胞中使用时显示高转导效率和相对低的毒性(参见实施例E和G),表明肽毒性可根据类型而变化。细胞使用PEP-FOLD的三维建模预测了FSD18的两个单独的α-螺旋(参见图49D)。
设计肽FSN1-FSN8以在不涉及表A1中列出的一个或多个设计参数时探索对转导效率的影响。例如,FSN7仅显示3.56%的转导效率,并且通过PEP-FOLD预测形成两个β-折叠并且没有α-螺旋(图49F)。
表B1.手动设计的合成肽和穿梭剂
使用从ExPASyTM Bioinformatics Resource Portal(http://web.expasy.org/protparam/)可获得的ProtParamTM在线工具计算结果;pI:等电点;电荷:带正电荷(+)和负电荷(-)的总数
表B2.GFP-NLS在HeLa细胞中的转导
“-”=没有超出表A1中所示限制的参数。
表B3.GFP-NLS在HeLa细胞中的转导
表B4.通过转导评分分层的肽的理化性质
(在使用GFP-NLS作为负荷的HeLa细胞中)
Y=是;N=否;单元=值落在表A1中列出的参数范围内;/>单元=值落在表A1中列出的参数范围之外。
肽FSD5,FSD16,FSD18,FSD19,FSD20,FSD22和FSD23的一级氨基酸序列是相关的,如下面的比对所示。
实施例C:
计算机辅助设计合成肽穿梭剂
C.1机器学习辅助设计方法
使用SébastienGiguère等人的文章中描述的算法设计表C1中列出的肽。题为“用于药物发现的高活性肽的机器学习辅助设计”(Giguère等人,2014)。该计算预测方法基于使用基于核和机器学习方法的算法(Shawe-Taylor J.和Cristianini N.,2004)。这些算法旨在根据感兴趣的生物效应对具有最大生物活性的肽进行分选。在这里,我们考虑了迄今为止在蛋白质转导测定中测试的所有肽,并将它们分成三个不同的组。组的组成基于如实施例A中所述计算的“转导评分”。第1组由证明有效细胞递送且具有低毒性的肽组成;第2组由显示有效细胞递送但毒性增加的肽组成;第3组由未显示任何显著多肽负荷转导能力的肽组成。
每组中肽的得分用作产生其它肽变体的起始数据点。该算法被编程为使用肽序列和第1组肽的得分作为预测具有有效转导能力的肽变体的阳性参考。第2组和第3组的序列和分数作为阴性对照包括在算法中以描绘搜索区域。由该算法产生的肽变体限于具有35个氨基酸长度的肽变体。运行后,预测方法生成16个序列(FSD27到FSD42)。在根据表A1中列出的设计参数分析这16个序列的序列后,只有肽FSD27,FSD34和FSD40满足所有设计参数(参见表C2)。其它肽变体具有表A1中列出的那些之外的一个或多个参数。
表C1.机器设计的测试的合成肽和穿梭剂
使用从ExPASyTM Bioinformatics Resource Portal(http://web.expasy.org/protparam/)中可获得的ProtParamTM在线工具计算结果;pI:等电点;电荷:带正电荷(+)和负电荷(-)的总数
表C2:FSD27至FSD42序列和性质
培养HeLa细胞并在实施例3.1a中描述的蛋白质转导测定中进行测试。将GFP-NLS重组蛋白(10μM)与10μM肽共温育,然后暴露于HeLa细胞1分钟。如实施例3.3中所述对细胞进行流式细胞术分析。结果显示在表C3中。
表C3.通过机器设计的合成肽在HeLa细胞中转导GFP-NLS
*证明转导效率高于10%的肽以粗体显示。
有趣的是,使用尊重表A1中列出的所有设计参数的算法产生的三种肽(即FSD27,FSD34和FSD40)各自表现出25-33%的转导效率,细胞活力范围为83.9%-98%。除FSD41外,其它肽通常表现出低于12%的转导效率,FSD41的转导效率为37%(尽管毒性高于FSD27,FSD34和FSD40)。尽管仅使用单个参数(即效率得分)来编程算法,但FSD27,FSD34和FSD40的结果验证了表A1中列出的设计参数的有用性。
C.2计算机辅助生成肽变体
采用计算机辅助设计方法来证明设计和产生肽变体的可行性,所述肽变体涉及表A1中列出的大多数或所有设计参数。首先,这种方法涉及手动考虑和比较结构不同但成功的肽穿梭剂的一级氨基酸序列,以鉴定导致涉及结构参数(2),(3)和(4)的一般共有序列(即两亲性α-螺旋形成,带正电的面和12%-50%的高疏水性核心。其次,该方法涉及计算机辅助的随机肽序列生成,随后是描述符过滤,实现共有序列,以及一个或多个设计参数(1)和(5)-(15),以生成肽列表几乎涵盖所有设计参数的变体。这将在下面更详细地讨论。
首先,使用在线多序列比对工具包括CLUSTALW 2.1(http://www.genome.jp/tools-bin/clustalw);通过Log-Expectation的多个序列比较(MUSCLE)(https://www.ebi.ac.uk/Tools/msa/muscle/);和PRALINE(http://www.ibi.vu.nl/programs/pralinewww/)比较本文所示具有相对高转导效率得分的肽的一级氨基酸序列。选择用于比较的肽包括以下11种肽:His-CM18-PTD4;EB1-PTD4;His-C(LLKK)3C-PTD4;FSD5;FSD10;FSD19;FSD20;FSD21;FSD44;FSD46;和FSD63,但分析不仅限于这11种肽。图49G显示了使用PRALINE比对11种示例性肽,其中每个比对的残基位置底部的“一致性”得分代表该残基位置的保守程度(0是最不保守的,10是最保守的)。例如,相对位置29处的丙氨酸(A)在图49G中所示的所有11种肽中是保守的,并且这被指定为“一致性”得分为10。本文所述肽文库(和其它)的这种多序列分析揭示了以下一般结构:
(a)[X1]-[X2]-[接头]-[X3]-[X4](式1);
(b)[X1]-[X2]-[接头]-[X4]-[X3](式2);
(c)[X2]-[X1]-[接头]-[X3]-[X4](式3);
(d)[X2]-[X1]-[接头]-[X4]-[X3](式4);
(e)[X3]-[X4]-[接头]-[X1]-[X2](式5);
(f)[X3]-[X4]-[接头]-[X2]-[X1](式6);
(g)[X4]-[X3]-[接头]-[X1]-[X2](式7);或
(h)[X4]-[X3]-[接头]-[X2]-[X1](式8),
其中[X1],[X2],[X3],[X4]和[接头]如下表所定义:
表C4
/>
其次,脚本是用编程语言Python设计和构建的,用于随机生成和过滤关于所有参数的序列(预测的等电点(pI,参数7)除外,因为计算此参数的源代码在准备本实施例的时候不可用)。表A1中描述的结构参数2,3,4(两亲性α-螺旋,带正电荷的表面和高疏水性核心)通过输入式1至8和表C4中所示的共有序列(序列中的适当疏水性交替,阳离子,亲水,Ala和Gly氨基酸)为代码而涉及,并且表A1中描述的生化参数(1),(5),(6)和(8)-(15)均单独包括在代码中产生10000个变体肽序列。这些变体肽序列对应于SEQ ID NO:243-10 242。
实施例D:
合理设计的肽促进内体捕获的钙黄绿素的逃逸
如实施例2中一般描述的进行钙黄绿素内体逃逸测定,并通过荧光显微术(数据未显示)和流式细胞术(FSD5的结果如下所示)进行表征。FSD18显示了与FSD5类似的结果(数据未显示)。
表D1:钙黄绿素内体逃逸测定
荧光显微镜和流式细胞术实验的结果表明,合理设计的肽穿梭剂以剂量依赖的方式促进内体捕获的钙黄绿素逃逸,类似于基于结构域的肽穿梭剂。
实施例E:
合理设计的肽增加不同细胞类型的转导效率
在通过流式细胞术(实施例3.3)和荧光显微术(实施例3.2)表征之前,使用指定浓度的合理设计的肽,10μM GFP-NLS作为负荷,并且在指示时间下,如实施例3.1a(贴壁细胞)或实施例3.1b(悬浮细胞)中的一般描述进行不同细胞类型的蛋白质转导测定。流式细胞术的结果显示在下表中。通过荧光显微镜验证GFP-NLS成功递送至细胞核(数据未显示)。
表E1:HeLa细胞中的GFP-NLS转导
表E2:HCC-78细胞(人非小细胞肺癌)中的GFP-NLS转导
表E3:NCI-H196细胞(人小细胞肺癌)中的GFP-NLS转导
表E4:THP-1细胞中的GFP-NLS转导
表E5.各种悬浮细胞中的GFP-NLS转导
*对于所有测试的细胞系,阴性对照(“无肽”)的定量是相似的。因此,数据(*)代表所有测试细胞系的“无肽”对照的平均值。
实施例F:
合理设计的肽穿梭剂能够转导抗体
F.1在HeLa细胞中通过FSD5转导荧光标记的抗体
按照实施例3.1中的一般描述进行蛋白质转导测定,使用肽FSD5和抗体作为负荷,温育1分钟后,然后通过荧光显微镜表征(实施例3.2)。图50显示了通过肽FSD5(8μM)在HeLa细胞中递送的山羊抗小鼠IgG H&L(Alexa488)和山羊抗兔IgG H&L(Alexa/>594)抗体的细胞质转导1分钟的结果,并且通过荧光显微镜在20x放大倍数下观察到AlexaFluor 594Ab(图50A);对于Alexa Fluor488Ab的放大倍数为10倍和20倍(分别为图50B和50C)。活细胞的明视野和荧光图像分别显示在上面板和下面板中。
以下实验表明,其它FSD肽也可以递送功能性抗体:标记核膜的抗NUP98抗体,以及结合和灭活促凋亡半胱天冬酶3蛋白的两种抗活性半胱天冬酶3抗体。递送、显微镜检查和细胞免疫标记方案描述于实施例3中。
F.2在HeLa细胞中通过FSD19转导抗NUP98抗体
将抗NUP98抗体(10μg)与7.5μM FSD19共温育,并暴露于HeLa细胞4小时。洗涤细胞,用4%多聚甲醛固定,用0.1%TritonTM透化,并用荧光标记的(AlexaTM Fluor 488)山羊抗大鼠抗体标记。通过荧光显微镜在20x(上图)和40x(下图)处观察与核周膜和细胞核结合的抗体。如图50D所示,绿色荧光信号从核膜(左图)发出并与Hoechst染色(右图)重叠,证明了抗NUP98抗体在其转导后在细胞内保持其功能。
F.3在THP-1和Jurkat细胞中通过FSD23转导两种功能性抗活性半胱天冬酶3抗体:通过ELISA切割的PARP测定法定量
将单克隆(mAb)和多克隆(pAb)抗活性半胱天冬酶3抗体(2μg)与THP-1和Jurkat细胞在7.5μM的FSD23存在下独立共温育5分钟。用ELISA切割的PARP测定法通过半胱天冬酶3激活的细胞凋亡水平评估每种抗体的抗细胞凋亡作用,并通过如下所述的光谱测定法定量。
在实验当天,收获处于指数生长期的细胞,离心(400g,3分钟)并重悬于96孔板中的无血清RPMI(每孔150μL 500000个细胞)中。将细胞离心并与由待测肽(7.5μM)和2μg待转导抗体组成的混合物温育5分钟。将细胞离心并在24孔板中在含有血清的RPMI中于37℃重悬浮1小时。将放线菌素D(2μg/mL)(细胞凋亡的细胞毒性诱导剂)与细胞一起温育4小时。用冷PBS洗涤细胞,并根据制造商的说明书使用PARP(切割的)[214/215]人ELISA试剂盒(ThermoFisher)进行测试,然后进行光谱分析。结果显示在表F1中。
表F1.在THP 1和Jurkat细胞中通过FSD23转导抗TNF或抗活性半胱天冬酶3抗体后切割的PARP ELISA测定
/>
THP-1和Jurkat细胞中的结果显示FSD23成功转导功能性抗活性半胱天冬酶3抗体。抗TNF抗体用作非特异性阴性对照,放线菌素D用作细胞凋亡的细胞毒性诱导剂。在没有放线菌素D(“-”)的情况下,与“抗TNF”对照相比,每种抗活性半胱天冬酶3mAb和pAb的递送导致凋亡的基础水平降低,其中递送抗TNF抗体对细胞活力没有可辨别的影响。在放线菌素D(“+”)存在下,与“抗TNF”对照相比,在用FSD23递送两种抗活性胱天蛋白酶3抗体后,所得细胞凋亡减少。
实施例G:
合理设计的肽穿梭剂能够转导基于CRISPR的基因组编辑复合物
我们使用标准DNA切割测定法测试了合理设计的肽穿梭剂将功能性基于CRISPR的基因组编辑复合物递送至真核细胞核的能力。这些测定分别用于测量CRISPR/Cas9和CRISPR/Cpf1介导的细胞基因组DNA序列HPRT(次黄嘌呤磷酸核糖基转移酶1)和DNMT1(DNA(胞嘧啶-5-)-甲基转移酶1)的切割。在HPRT基因组切割位点进行短(72bp)和长(1631bp)DNA模板的同源定向重组(HDR),并在用不同穿梭剂细胞内递送基因组编辑复合物后测量。
G.1通过合理设计的肽穿梭剂的CRISPR/Cas9-NLS复合物转导,基因组靶序列的切割和不同细胞系中的同源定向重组
G.1.1功能性CRISPR/Cas9-NLS复合物的转导
如实施例13.1中所述制备Cas9-NLS重组蛋白。将由靶向HPTR基因的核苷酸序列的Cas9NLS重组蛋白和crRNA/tracrRNA(见下文)组成的混合物与不同浓度的FSD5,FSD8,FSD10或FSD18共温育,并与HeLa,HCC-78,NIC-H196或REC-1细胞在PBS中一起温育2分钟,或在含有血清的培养基中一起温育48小时,使用如实施例3.1a中一般描述的转导方案。然后用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。
构建的crRNA和tracrRNA的序列及其靶标是:
图51A-51F显示了在通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD5,FSD8,FSD10或FSD18下和不同类型的细胞:HeLa(图51A和51B);NK(图51C);NIC-196H(图51D);HCC-78(图51E)和REC 1细胞(图51F)中用CRISPR/Cas9(2.5μM)和crRNA/tracrRNA(2μM)切割靶基因组HPRT DNA序列的结果。在一些情况下,凝胶泳道一式两份加载。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的切割产物的条带,这表明功能性CRISPR/Cas9NLS基因组编辑复合物的成功转导。我们使用Bio-Rad ImageLabTM软件(版本5.2.1,Bio-Rad,http://www.bio-rad.com/en-ca/product/image-lab-software?tab=Download)来量化直接在凝胶上的每个不同条带的相对信号强度。给定泳道中所有条带的总和对应于信号的100%,并且每条泳道底部的斜体数值是仅两个切割产物条带(较粗实线箭头)的相对信号(%)的总和。在阴性对照(“-ctrl”,即在没有穿梭剂的情况下暴露于CRISPR/Cas9-NLS复合物的细胞)中没有发现切割产物条带。这些结果表明CRISPR基因组编辑复合物成功递送至细胞核,导致靶基因的切割。
G.1.2用短线性DNA模板转导CRISPR/Cas9-NLS复合物,导致同源定向重组
所制备的混合物含有:Cas9NLS重组蛋白(2.5μM)(参见实施例13.1);靶向HPTR基因的核苷酸序列的crRNA/tracrRNA(2μM)(参见上文);肽穿梭剂FSD5(15μM);和0ng或500ng的短线性模板DNA(72bp;参见下文)。
将该混合物在含有血清的培养基中暴露于HeLa细胞48小时。然后洗涤细胞并如实施例13.4所述进行T7E1方案测定。
图51G显示了在不存在(“无模板”)或存在(+500ng)短DNA模板的情况下由FSD5(15μM)转导的CRISPR/Cas9复合物对靶向HPRT基因组序列的切割。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的切割产物的条带,这表明完全功能性基因组编辑复合物的成功转导。每个泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。这些结果显示FSD5可以在存在或不存在模板DNA的情况下转导功能性CRISPR/Cas9复合物。
为了验证是否发生了同源定向重组,我们使用从FSD5/CRISPR/短DNA模板处理的细胞中提取的基因组DNA,用特异设计的靶向该序列的寡核苷酸引物扩增短DNA模板序列。短DNA模板序列的扩增证实了在通过CRISPR/Cas9-NLS基因组编辑复合物切割HPRT基因后该模板插入基因组中。通过琼脂糖凝胶电泳解析PCR产物,结果显示在图51H中。在“无模板”样品中未检测到扩增,其中切割基因组DNA但未提供DNA模板(图51H)。相反,对于“+500ng”样品检测到适当大小的扩增子(图51H,粗实线),其中切割基因组DNA并提供DNA模板。扩增子的检测表明短DNA模板序列成功插入基因组中。这些结果显示FSD5可以在短DNA模板存在下转导CRISPR/Cas9复合物,导致同源定向重组。
G.1.3用长线性DNA模板转导CRISPR/Cas9-NLS复合物,导致同源定向重组
所制备的混合物含有:Cas9NLS重组蛋白(2.5μM)(参见实施例13.1);靶向HPTR基因的核苷酸序列的crRNA/tracrRNA(2μM)(参见上文);肽穿梭剂FSD5(15μM);和0ng或500ng编码GFP的长线性模板DNA(1631bp;参见下文)。
将该混合物在含有血清的培养基中暴露于HeLa细胞48小时。然后用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。
图51I显示了在不存在(“无模板”)或存在(“+500ng”)长DNA模板的情况下由FSD5(15μM)转导的CRISPR/Cas9复合物对靶基因组HPRT基因组序列的切割。切割产物用粗实线箭头表示。这些结果显示FSD5可以在存在或不存在长模板DNA的情况下转导功能性CRISPR/Cas9复合物。
为了验证是否发生了同源定向重组,我们使用从FSD5/CRISPR/长DNA模板处理的细胞中提取的基因组DNA,用特定设计的寡核苷酸引物扩增长DNA模板序列,所述寡核苷酸引物位于该序列的侧翼。长DNA模板序列的扩增证实了在通过CRISPR/Cas9-NLS基因组编辑复合物切割HPRT基因后该模板插入基因组中。通过琼脂糖凝胶电泳解析PCR产物,结果显示在图51J中。在“无模板”样品中,检测到对应于缺少长DNA模板插入的扩增子的单一条带。相反,对于“+500ng”(微弱)和“+1000ng”(较暗)样品检测到另外的较大条带(用箭头表示),表明已经发生了一些长DNA模板插入基因组DNA中。这些结果表明FSD5可以在长DNA模板存在下转导CRISPR/Cas9复合物,导致同源定向重组。
G.2通过合理设计的穿梭剂的CRISPR/Cpf1-NLS复合物转导,HeLa和NK细胞中基因 组靶序列的切割
将靶向DNMT1基因的核苷酸序列的Cpf1-NLS重组蛋白(2.5μM)和crRNA(2μM;参见下文)组成的混合物与不同浓度的FSD18共温育,并与HeLa或NK细胞在PBS中或在不含血清的培养基中在HeLa细胞中温育2分钟,或在NK细胞中温育90秒,使用如实施例3.1a中所述的转导方案。
产生的Cpf1-NLS重组蛋白的序列是:
(MW=155.7kDa;pI=8.34)
NLS序列加下划线
富含丝氨酸/甘氨酸的接头为粗体
使用的crRNA序列如下:
在2分钟(HeLa)或90秒(NK)后,用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。将PCR扩增的DNMT1DNA序列和该序列的PCR扩增的切割产物在琼脂糖凝胶上分离,结果显示在图51K(HeLa细胞)和51L(NK细胞)中。阴性对照(“-ctrl”)对应于在不存在穿梭剂的情况下暴露于CRISPR/Cpf1-NLS复合物的细胞。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的切割产物的条带,这表明完全功能性CRISPR/Cpf1-NLS基因组编辑复合物的成功转导。每个泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。这些结果显示FSD18可以将功能性CRISPR/Cpf1-NLS复合物转导到这些细胞的细胞核中以实现靶基因的切割。
CRISPRMAXTM技术是商业上可获得的基于脂质体的转染试剂,其针对CRISPR-Cas9蛋白递送进行了优化。然而,目前不存在用于转导CRISPR-Cpf1的等同试剂。有趣的是,当我们使用CRISPRMAXTM试剂时,它无法在贴壁细胞和悬浮细胞中递送CRISPR/Cpf1-NLS复合物。相反,FSD18能够在HeLa细胞中强力切割DNMT1靶标,并在NK细胞中实现较低但可观察到的切割。
这些结果表明穿梭剂FSD18成功地将功能性CRISPR/Cpf1-NLS复合物递送至HeLa和NK细胞的细胞核,并且该递送导致CRISPR/Cpf1-NLS介导的基因组DNA切割。
实施例G.3-G.10:
合理设计的肽穿梭剂能够进行单个或多个基因靶向,和/或共同递送不同的基于CRISPR的基因组编辑复合物
这些实施例支持合理设计的肽穿梭剂能够同时递送和编辑多个基因靶标的能力。将功能性基于CRISPR的基因组编辑复合物递送至真核细胞的细胞核,并使用标准DNA切割测定法评估成功的基因组编辑。这些测定用于测量CRISPR/Cas9介导的细胞基因组DNA序列HPRT(次黄嘌呤磷酸核糖基转移酶1)和B2M(β2微球蛋白HLA亚基)的切割,并测量CRISPR/Cpf1介导的细胞基因组DNA序列NKG2A(抑制性NK细胞受体2A),GSK3(糖原合成酶激酶3),CBLB(E3泛素蛋白-连接酶),DNMT1(DNA(胞嘧啶-5-)-甲基转移酶1)和B2M(β2微球蛋白HLA亚基)的切割。我们还进行了更复杂的基因组编辑方法,提供了针对同一细胞中一个或两个基因的多个CRISPR系统。CRISPR/Cas9和CRISPR/Cpf1复合物在HeLa细胞中一起递送以分别编辑HPRT和DNMT1基因,或编辑外显子2的两个不同基因座中的B2M基因。最后,我们共同递送了两个CRISPR/Cpf1复合物,每个携带特定的crRNA以编辑NK细胞中B2M基因的两个外显子。
G.3不同的合理设计的肽穿梭剂为HeLa,THP-1和NK细胞中的B2M基因编辑递送CRISPR/Cas9-NLS和CRISPR/Cpf1复合物
如实施例13.1中所述制备Cas9-NLS重组蛋白。如实施例G.2中所述制备Cpf1-NLS重组蛋白。由Cas9NLS重组蛋白及其各自的crRNA/tracrRNA组成,或由Cpf1-NLS重组蛋白及其各自靶向B2M基因的核苷酸序列的单一指导crRNA(见下文)组成的混合物与不同浓度的多肽FSD10,FSD18,FSD19,FSD21,FSD22或FSD23共培养,并与HeLa,THP-1或NK细胞在PBS中温育90秒,或在无血清的培养基中温育1小时,或在血清培养基中温育48小时,使用如实施例3.1a中一般描述的转导方案。然后用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。
构建的crRNA和tracrRNA的序列及其靶标是:
图52A-52D显示了经琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在(“-ctrl”)在以不同浓度,暴露时间使用的肽FSD10,FSD18,FSD19,FSD21或FSD23下和在不同类型细胞:THP-1(图52A)和NK(图52B,52C,52D)中用crRNA-1或crRNA-2(2μM)递送CRISPR/Cpf1(1.33μM)后切割靶向基因组B2M DNA序列的结果。图52D显示了分别在FSD18或FSD21存在下递送携带特异性单指导RNA(crRNA-1或crRNA-2)的CRISPR/Cpf1复合物后基因组B2M外显子2DNA序列的切割产物。图52E显示了在通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以10μM使用的肽FSD22用CRISPR/Cas9(2.5μM)和crRNA(2μM)在HeLa细胞中1小时的基因组B2M外显子2DNA序列的切割产物。将凝胶泳道一式两份加载。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的切割产物的条带,这表明完全功能性CRISPR基因组编辑复合物的成功转导。我们使用Bio-Rad ImageLabTM软件(版本5.2.1,Bio-Rad,http://www.bio-rad.com/en-ca/product/image-lab-software?tab=Download)来量化直接在凝胶上的每个不同条带的相对信号强度。给定泳道中所有条带的总和对应于信号的100%,并且每条泳道底部的斜体数值是仅两个切割产物条带(粗实线箭头)的相对信号(%)的总和。在阴性对照(“-ctrl”,即在没有FSD肽的情况下暴露于CRISPR系统的细胞)中没有发现切割产物条带。这些结果表明CRISPR基因组编辑复合物成功递送至细胞核,导致靶基因的切割。
G.4不同的合理设计的肽穿梭剂为NK,THP-1和原代成肌细胞中的GSK3,CBLB和DNMT1基因编辑递送CRISPR/Cpf1系统。
如实施例G.2中所述制备Cpf1-NLS重组蛋白。将由Cpf1-NLS重组蛋白与靶向GSK3,CBLB或DNMT1基因的核苷酸序列的单一指导crRNA(见下文)组成的混合物与不同浓度的FSD10,FSD18,FSD19或FSD23共温育,并与NK细胞在含有血清的培养基中温育培养48小时,并且与THP-1或原代成肌细胞在PBS中培养90秒,使用如实施例3.1a中一般描述的转导方案。然后用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。
构建的crRNA序列及其靶标为:
图52F-52I显示了在通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD10,FSD18,FSD19或FSD23下和在不同类型的细胞:NK(图52F和52G),THP-1(图52H)和原代成肌细胞(图52I)中用CRISPR/Cpf1(1.33μM)和crRNA(2μM)切割靶基因组GSK3,CBLB和DNMT1DNA序列的结果。将凝胶泳道一式两份加载。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的切割产物的条带,这表明完全功能性CRISPR基因组编辑复合物的成功转导。
G.5不同的合理设计的肽穿梭剂为NK细胞中的NKG2A基因编辑递送CRISPR/Cpf1系统。
如实施例G.2中所述制备Cpf1-NLS重组蛋白。将由Cpf1-NLS重组蛋白与靶向NKG2A基因的核苷酸序列的单一指导crRNA(见下文)组成的混合物与不同浓度的FSD10,FSD21,FSD22或FSD23共温育,并与NK和NK-92细胞在PBS中一起温育90秒,使用如实施例3.1a中一般描述的转导方案。然后用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。
构建的crRNA序列及其靶标为:
图52J-52N显示了通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD10,FSD21,FSD22或FSD23下和在NK和NK-92细胞中用CRISPR/Cpf1(1.33μM)和crRNA(2μM)切割靶基因组NKG2A DNA序列的结果。将凝胶泳道一式两份加载。细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的切割产物的条带,这表明完全功能性CRISPR基因组编辑复合物的成功转导。
G.6不同的合理设计的肽穿梭剂共同递送CRISPR/Cas9和CRISPR/Cpf1复合物用于HeLa和NK细胞中的HPRT,DNMT1和B2M基因编辑
如实施例13.1中所述制备Cas9-NLS重组蛋白。如实施例G.2中所述制备Cpf1-NLS重组蛋白。将由Cas9NLS重组蛋白及其各自的crRNA/tracrRNA或Cpf1-NLS重组蛋白及其各自靶向DNMT1,HPRT和B2M基因的核苷酸序列的单一指导crRNA(见下文)组成的混合物与不同浓度的FSD10,FSD18,FSD21或FSD23共温育,并与HeLa或NK细胞在PBS中温育90秒或2分钟,使用如实施例3.1a中一般描述的转导方案。然后用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。
构建的crRNA和tracrRNA的序列及其靶标是:
图53A-53C显示了在通过琼脂糖凝胶电泳分离后,在不存在(“-ctrl”)或存在以不同浓度,暴露时间使用的穿梭剂FSD10,FSD18,FSD21或FSD23下和在HeLa和NK细胞中用不同CRISPR系统切割靶向基因组DNMT1,HPRT和B2M DNA序列的结果。图53A显示了在HeLa细胞中共同递送DNMT1靶向CRISPR/Cpf1(1.25μM)复合物和HPRT靶向CRISPR/Cas9(1.25μM)复合物后来自相同基因组DNA提取物的DNMT1(左图)和HPRT(右图)DNA切割产物。图53B显示了在HeLa细胞中共同递送CRISPR/Cpf1(1.25μM)和CRISPR/Cas9(1.25μM)后来自相同基因组DNA提取物的B2M外显子2的切割产物。每个复合物通过特定的Cpf1侧翼crRNA(左图)或特定的Cas9侧翼crRNA(右图)靶向B2M外显子2中的不同基因座。图53C显示了共同递送CRISPR/Cpf1(1.33μM)复合物后从基因组提取物中切割B2M外显子2的结果,每个复合物在存在FSD10(上图),FSD21(中图)或FSD23(下图)下携带特异性单一指导crRNA-1或crRNA-2(2μM)。对于每个实验,将NK细胞暴露于具有crRNA-1的CRISPR/Cpf1或具有crRNA-2的CRISPR/Cpf1或两种复合物。
G.7不同的合理设计的肽穿梭剂为T细胞中的B2M基因编辑提送CRISPR/Cpf1复合物-流式细胞术分析
如实施例G.2中所述制备Cpf1-NLS重组蛋白。
除非另有说明,否则本文使用的T细胞获自在肝素化管中收集的健康人血液。使用FicollTM技术(Ficoll-PaqueTM GE或LymphoprepTM Stem Cell Technologies)分离T细胞。简而言之,将血液与FicollTM溶液在锥形管(50mL)中混合,并以2280rpm离心20分钟。收获单核细胞并转移到另一个锥形管(50mL)中,然后用PBS洗涤并以1100rpm离心10分钟。将细胞重悬于5mL含有20%FBS的PBS中。计数细胞并然后在由RPMI高级(cat:12633012ThermoFisher),10%FBS,1%Penstrep(15140122ThermoFisher),1%L-谷氨酰胺(25030081ThermoFisher)IL-2 30U/ml)组成的培养基中温育。接下来,按照制造商的说明,通过阴性选择,用人T细胞富集试剂盒(StemCell#cat:19051)富集T细胞。使用特异性抗CD3抗体(Biolegend#cat:300438)验证富集的T细胞。在该步骤中,收集的细胞通常为约99%T细胞。在实验前,通过在完全培养基中加入30U/mL的IL-2和抗CD28抗体(ThermoFisher#cat:16-0289-85)5天来激活T细胞。然后用抗CD25和抗CD137抗体两者双重检查T细胞扩增的激活。
将由Cpf1-NLS重组蛋白与靶向B2M基因的核苷酸序列的单个指导crRNA组成的混合物与不同浓度的FSD21或FSD18肽穿梭剂共温育,并与T细胞在PBS中温育90秒,使用如实施例3.1a中一般描述的转导方案。B2M crRNA的每个被设计成介导B2M基因的CRISPR/基于Cpf1的切割,其表型效果可以通过细胞表面HLA的破坏看到,这通过流式细胞术使用荧光APC小鼠抗人HLA-ABC抗体是可检测的。
然后将细胞重悬浮于含有1%FBS和4μLAPC小鼠抗人HLA-ABC抗体的100μL PBS中,然后在黑暗中,在环境温度下温育20分钟。然后,将1mL含有1%FBS的PBS加入悬浮液中,然后进行500rpm离心5分钟。最后,在流式细胞术分析之前,将沉淀重悬于100至200μL含有1%FBS的PBS中。
基于细胞大小和粒度的流式细胞术结果分别使用前向散射(FSC)和侧向散射(SSC)参数显示,转导的T细胞的活力基本上不受不同测试浓度的具有CRISPR/Cpf1系统的FSD21或FSD18肽穿梭剂的共同递送的影响(数据未显示)。
图54A-54D和55A-55D分别显示了经由穿梭肽FSD21和FSD18递送CRISPR/Cpf1基因组编辑复合物。如图54A和55A所示,未暴露于CRISPR/Cpf1或穿梭肽的“未处理的”阴性对照细胞未显示出显著的基因组编辑(缺乏HLA阴性细胞)。图54B-54D显示了8μM,10μM和12μM的FSD21浓度产生9.87%,8.68%和12.2%的HLA阴性细胞,表明功能性CRISPR/Cpf1基因组编辑复合物的成功核递送和随后的基因组编辑。图55B-55D显示了8μM,10μM和12μM的FSD18浓度产生8.0%,9.43%和7.9%的HLA阴性细胞,表明功能性CRISPR/Cpf1基因组编辑复合物的成功核递送和随后的基因组编辑。
G.8使用单个合理设计的肽穿梭剂在THP-1细胞系中转导含有靶向B2M的多指导crRNA的CRISPR/Cpf1复合物
如实施例G.2中所述制备Cpf1-NLS重组蛋白。将由Cpf1-NLS重组蛋白与靶向B2M基因的三个选定核苷酸序列之一的单个指导crRNA组成的混合物(见下文)与(3μM)FSD18共温育,并与THP-1细胞在PBS中共温育90秒,使用如实施例3.1a中一般描述的转导方案。使用由Cpf1-NLS重组蛋白与三个指导crRNA(见下文)组成的混合物进行相同的实验,每个指导CrRNA都靶向B2M基因的三个不同核苷酸序列。如实施例G.7中所述进行流式细胞术实验。此外,为了进行如实施例13.4中所述的T7E1方案测定,用PBS洗涤细胞并收获。
构建的crRNA序列及其靶标为:
基于细胞大小和粒度的流式细胞术结果分别使用前向散射(FSC)和侧向散射(SSC)参数显示,转导的THP-1细胞的活力基本上不受包含单独或组合使用的指导crRNA(RNA-E,RNA-G,RNA-J)的CRISPR/Cpf1系统的存在所影响(数据未显示)。
如图56A所示,未暴露于CRISPR/Cpf1或穿梭肽的“未处理的”阴性对照细胞未显示出显著的基因组编辑(缺乏HLA阴性细胞)。图56B-56D显示了单独使用的每个指导crRNA(RNA-E,RNA-G,RNA-J)提供了相当的HLA KO效率,而图56E显示了三个指导crRNA的组合使HLA KO效率几乎提高了两倍。通过如实施例13.4所述进行T7E1切割测定然后进行琼脂糖凝胶电泳证实了这些观察结果(数据未显示)。
G.9基因组编辑的NK细胞的细胞毒性增加以使NKG2A基因失活
在NK-92细胞中进行基因组编辑以评估内源性NKG2A基因的失活是否会增加NK-92细胞的细胞毒性。简而言之,将100万个NK-92细胞与靶向NKG2A基因的Cpf1-NLS(1.5μM)gRNA复合物和FSD23(6μM)温育90秒。转导后,将细胞在含有IL-2(20ng/mL)的完全培养基中于37℃温育48小时。然后按照制造商的推荐,用藻红蛋白(PE)标记的抗-NKG2A抗体(Miltenyi Biotec#CD159a)对NK-92细胞进行免疫标记。然后用FACS分析NK-92细胞,并根据其抗NKG2A检测(PE荧光)水平评分,结果显示在图57A中。作为对照,未标记的野生型NK-92细胞(“未标记的WT细胞”)没有抗体信号,标记的野生型NK-92细胞(“标记的WT细胞”)具有完全免疫标记信号。对于NKG2A-KO NK-92细胞,观察到两个细胞群(峰):一个在细胞表面完全敲除NKG2A受体表达(“完整NKG2A KO细胞”),另一个部分缺乏表达(“部分NKG2A KO细胞”)。
为了研究NKG2A基因失活对NK-92细胞的细胞毒性的影响,我们评估了WT和NKG2AKO NK-92细胞杀死靶HeLa细胞的能力。NK细胞中由NKG2A基因编码的NKG2A受体通常结合在潜在靶细胞表面上表达的HLA-E表位,其抑制NK细胞(效应子)的细胞毒活性。为了改善这种效应子:靶细胞结合,用干扰素(50ng/mL)处理HeLa细胞以增加它们的HLA-E细胞表面表达。在暴露于效应子NK-92细胞之前,将干扰素处理的HeLa细胞在37℃暴露于Calcein-AM(ThermoFisher#C3099)45分钟,Calcein-AM是一种非荧光的疏水化合物,其容易渗透完整的活细胞。通过细胞内酯酶水解钙黄绿素-AM产生钙黄绿素,是一种亲水的强烈荧光化合物,其在细胞质中很好地保留。然后将具有细胞内钙黄绿素的HeLa细胞离心并在完全培养基中温育,然后在96孔板中在37℃下暴露于WT或NKG2A-KO NK细胞4小时。效应子NK细胞杀死靶HeLa细胞导致细胞内钙黄绿素释放到细胞外培养基中。然后将96孔板以1250rpm离心5分钟,并通过分光光度法分析上清液中的钙黄绿素信号,激发波长为488nm,检测波长为510nm。结果显示在图57B中,其显示靶HeLa细胞的切割百分比(通过钙黄绿素释放测量)根据效应子NK细胞与靶HeLa细胞的不同比率(E:T比)的函数。结果表明,与野生型NK-92细胞相比,敲除NK-92细胞表面上的NKG2A受体表达(“NK92NKG2A-KO”)增加了效应细胞的细胞毒活性(“NK92-WT”)。更具体地,在测试的不同效应子:靶标比率(E:T比率)下,NKG2A-KO NK-92效应细胞比WT NK-92细胞杀死10-15%更多的靶HeLa细胞。
G.10不同的合理设计的肽穿梭剂为HeLa和NK-92细胞中的B2M和NKG2A基因编辑递送CRISPR/Cpf1系统。
如实施例G.2中所述制备Cpf1-NLS重组蛋白。将由Cpf1-NLS重组蛋白与靶向B2M或NKG2A基因的核苷酸序列的单一指导crRNA(见下文)组成的混合物与20μM或6μM的指定肽共温育,并分别与HeLa或NK-92细胞在PBS中一起温育1分钟,使用如实施例3.1a中一般描述的转导方案。然后用PBS洗涤细胞并收获以进行如实施例13.4中所述的T7E1方案测定。
构建的crRNA及其靶标是:B2M crRNA-G(SEQ ID NO:168)和NKG2A crRNA(SEQ IDNO:165)。
表G1显示了用CRISPR/Cpf1(1.33μM)和crRNA(2μM)切割靶基因组B2M和NKG2A DNA序列所导致的插入和缺失百分比(%INDEL),其在T7E1测定和琼脂糖凝胶电泳上直接定量(n=2)后用不同浓度的指定肽在HeLa和NK-92细胞中转导。不涉及参数(5)(低疏水力矩)的肽FSD67未能转导CRISPR/Cpf1。
OK=肽序列涉及参数(1)-(15)。
实施例H:
合理设计的肽穿梭剂能够转导转录因子HOXB4
如实施例1.4中所述,从细菌表达系统构建、表达和纯化人HOXB4重组蛋白(实施例14.1)。如实施例3.1b中一般描述的,在蛋白质转导测定中培养和测试THP-1细胞。简言之,在转导前一天将THP-1细胞以30000个细胞/孔铺板。将HOXB4-WT重组蛋白(300nM或50nM)与FSD10或FSD18(1μM)共温育,然后在血清存在下暴露于THP-1细胞30分钟。如实施例14.2所述对细胞进行实时PCR分析以测量靶基因的mRNA水平作为HOXB4活性的标记,然后将其标准化为在阴性对照细胞(未处理)中检测的靶基因mRNA水平,以获得“相对于对照的倍数”值。还测量了总RNA水平(ng/μL)作为细胞活力的标记。结果如下所示。
表H1:THP-1细胞中FSD10和FSD18的HOXB4-WT转导
这些结果表明穿梭剂FSD10和FSD18能够在血清存在下将转录因子HOXB4-WT递送至THP-1细胞的细胞核,导致靶基因的mRNA转录的剂量依赖性增加。
实施例I:
与独立荧光蛋白标记的共转导能够分离成功转导的细胞
本文所述的基于结构域和合理设计的肽穿梭剂同时共转导两种不同多肽负荷的能力显示在实施例9.6(即荧光蛋白GFP-NLS和mCherry-NLS的共转导)中和实施例G.6(即基因组编辑复合物CRISPR/Cas9和CRISPR/Cpf1的共转导)中。
实施例I中呈现的结果证明了荧光蛋白标记(例如GFP-NLS)和基因组编辑复合物(例如CRISPR/Cpf1)的成功共转导。令人惊讶的是,虽然没有发现与荧光蛋白标记的共转导显著提高整体基因组编辑效率本身,但是对于荧光蛋白标记而言,对基因组工程阳性的显著高比例的细胞是阳性的。分离对荧光蛋白标记阳性的细胞导致成功基因组编辑细胞的比例显著增加。此外,发现相关性是浓度特异性的,因为表现出蛋白质标记的最高荧光的细胞群体也表现出成功的基因组编辑的最高比例。
I.1共转导CRIPSR/Cpf1-NLS和GFP-NLS后通过FACS富集基因组编辑的T细胞
如实施例G.2中所述制备Cpf1-NLS重组蛋白,并如实施例5.1中所述制备GFP-NLS重组蛋白。
除非另有说明,否则本文使用的T细胞获自在肝素化管中收集的健康人血液。使用FicollTM技术(Ficoll-PaqueTM GE或Lymphoprep Stem Cell Technologies)分离T细胞。简而言之,将血液与FicollTM溶液在锥形管(50mL)中混合,并以2280rpm离心20分钟。收获单核细胞并转移到另一个锥形管(50mL)中,然后用PBS洗涤并以1100rpm离心10分钟。将细胞重悬于5mL含有20%FBS的PBS中。计数细胞,然后在由RPMI高级(cat:12633012ThermoFisher),10%FBS,1%Penstrep(15140122ThermoFisher),1%L-谷氨酰胺(25030081ThermoFisher)IL-2 30U/ml)组成的培养基中温育。接下来,按照制造商的说明,通过阴性选择,用人T细胞富集试剂盒(StemCell#cat:19051)富集T细胞。使用特异性抗CD3抗体(Biolegend#cat:300438)验证富集的T细胞。在该步骤中,收集的细胞通常为约99%T细胞。在实验前,通过在完全培养基中加入30U/mL的IL-2和抗CD28抗体(ThermoFisher#cat:16-0289-85)5天来激活T细胞。然后用抗CD25和抗CD137抗体两者双重检查T细胞扩增的激活。
用包含指导RNA(B2M crRNA-E,SEQ ID NO:166)的CRISPR/Cpf1复合物转导T细胞,所述指导RNA设计用于切割和灭活B2M基因,如实施例G.2中一般描述的,导致基因组编辑细胞中的细胞表面HLA的失活。简而言之,每种条件使用400万活化的T细胞。在一个实验条件下,在与细胞温育90秒之前,用含有15μM肽FSD18和CRISPR/Cpf1-NLS复合物的混合物处理细胞。在第二实验条件下,将GFP-NLS(20μM)加入到含有15μM的FSD18和CRISPR/Cpf1-NLS复合物的混合物中,恰好在与细胞温育90秒之前。未处理的细胞用作阴性对照。转导后,洗涤细胞并重悬于培养基中。未处理的细胞和用CRISPR/Cpf1-NLS复合物处理的细胞在完全培养基中温育48小时,然后进行流式细胞术和T7E1分析。在流式细胞术和T7E1分析之前,将用CRISPR/Cpf1-NLS和GFP-NLS复合物处理的细胞的第一部分在T细胞培养基中温育48小时。将第二部分细胞离心并重悬于含有1%血清的PBS中。使用基于荧光信号的细胞分选仪分离GFP阳性(+)和GFP阴性(-)细胞,收集级分并在T细胞培养基中温育48小时,然后进行流式细胞术和T7E1分析。
结果显示在图58A-58F中,其中象限1(Q1)代表HLA阳性(非基因组编辑)和GFP阴性的细胞;象限2(Q2)代表HLA阳性(非基因组编辑)和GFP阳性的细胞;象限3(Q3)代表HLA阴性(成功进行基因组编辑)和GFP阳性的细胞;象限4(Q4)代表HLA阴性(成功进行基因组编辑)和GFP阴性的细胞。流式细胞术基于分别使用前向散射(FSC)和侧向散射(SSC)参数的细胞大小和粒度结果显示,GFP-NLS和CRISPR/Cpf1在系统的测试条件下的共递送没有显著影响转导T细胞的活力(数据未显示)。
如图58A所示,未暴露于肽穿梭剂、GFP和CRISPR/Cpf1的“未处理的”阴性对照细胞在Q1(非基因组编辑,GFP阴性)中产生99%的细胞。图58B示出了暴露于肽FSD18(15μM)和CRISPR/Cpf1的细胞在不存在GFP-NLS下导致10.1%的细胞在Q4-即HLA-阴性(成功的基因组编辑)和GFP-阴性。图58C示出了暴露于GFP-NLS和CRISPR/Cpf1的细胞在肽FSD18存在下导致65.7%(54.4%+11.3%)GFP阳性细胞在Q2+Q3中,和11.7%(0.441%+11.3%)HLA阴性细胞(成功进行基因组编辑)在Q3+Q4中。比较图58B和图58C,未发现GFP的存在或不存在显著增加总体基因组编辑效率(10.1%对比11.7%的HLA阴性细胞)。令人惊讶的是,观察到超过96%的基因组编辑的细胞(HLA阴性)也是GFP阳性的[图58C,Q3/(Q3+Q4)]。基于其GFP-荧光进入GFP阴性级分(图58E)和GFP阳性级分(图58F)的细胞的荧光激活细胞分选(图58D)导致基因组编辑(HLA阴性)细胞比例增加至29.7%GFP阳性级分(图58F)。引人注目的是,GFP阴性级分(图58E)中基因组编辑(HLA阴性)细胞的比例小于0.1%。
然后如实施例13.4所述对每个细胞级分进行T7E1切割测定,并对不同的样品进行琼脂糖凝胶电泳。结果显示在图58G中,其中细虚线箭头表示对应于靶基因的条带,粗实线箭头表示对应于该靶基因的CRISPR系统介导的切割产物的条带,这表明完全功能性CRISPR/Cpf1NLS基因组编辑复合物的成功转导。从图58G中可以看出,与分选前的细胞(“无细胞分选”;泳道3)相比,GFP阳性细胞级分(“GFP+细胞”;泳道4)具有增加的基因组编辑效率。具有GFP-NLS(泳道3)和没有GFL-NLS(泳道2)的肽FSD18和CRISPR/Cpf1-NLS复合物显示相同的基因组编辑水平,表明添加GFP-NLS不影响转导过程。GFP阴性细胞级分(泳道5)和阴性对照(“未处理”;泳道1)证明没有可检测的基因组编辑。
I.2在CRIPSR/Cpf1-NLS和GFP-NLS共转导后通过FACS进一步富集基因组编辑的T细胞
使用12μM或15μM的肽FSD18在活化的T细胞上重复实施例I.1中描述的实验。由于两种浓度的FSD18产生相似的结果,因此本文仅显示使用15μM FSD18的结果。流式细胞术基于分别使用前向散射(FSC)和侧向散射(SSC)参数的细胞大小和粒度结果显示,GFP-NLS和CRISPR/Cpf1在系统的测试条件下的共递送没有显著影响的转导T细胞的活力(数据未显示)。
图59A和59B显示未暴露于肽穿梭剂、GFP和CRISPR/Cpf1的“未处理的”阴性对照细胞的结果,其通过流式细胞术分析GFP荧光(图59A)和细胞表面HLA表达(图59B)。通过肽FSD18(15μM)将T细胞用GFP-NLS和CRISPR/Cpf1两者共转导,并基于它们的荧光信号分选,收集细胞级分并温育48小时。对于GFP荧光分布分选的所得细胞级分显示在图59C中。图59C中的两个门表示被认为是GFP阳性的细胞级分(“GFP+”;93.2%)和被认为表现出高GFP荧光的细胞亚级分(“GFP高”;33.1%)。进行荧光激活细胞分选分析以与被认为表现出高GFP荧光的细胞相比较(图59E),定量被认为是GFP阳性的细胞中的细胞表面HLA表达水平(图59D)。从图59D中可以看出,21.8%的GFP阳性细胞是HLA阴性的(成功的基因组编辑),而在显示高GFP荧光的细胞中该值升高至惊人的41.6%(图59E)。因此,成功的基因组编辑(HLA阴性)细胞的比例随着荧光蛋白标记(GFP-NLS)的荧光水平而增加。
使用12μM或15μM FSD18重复上述共转导实验,然后将荧光激活细胞分选到GFP阳性和GFP阴性细胞级分中。如实施例13.4所述对每个级分进行T7E1切割测定,并对不同的样品进行琼脂糖凝胶电泳。与上述流式细胞术实验的结果一致,来自T7E1切割测定的结果显示,与GFP阴性细胞级分相比,GFP阳性细胞级分具有增加的基因组编辑效率(数据未显示)。
I.3共转导CRIPSR/Cpf1-NLS和GFP-NLS后通过FACS富集基因组编辑的THP-1细胞
在THP-1细胞中再现实施例I.1和I.2中进行的实验,得到类似的结果。在2μMSFD18存在下共转导CRIPSR/Cpf1-NLS和GFP-NLS,然后对GFP阳性细胞进行荧光激活细胞分选,导致基因组编辑细胞的显著富集(数据未显示)。
I.4先前分选的GFP阴性细胞的成功后续转导
该实施例表明,用肽穿梭剂进行第一轮转导后的未转导细胞不一定对随后的转导顽固。
如实施例I.1中所述获得的T细胞通过共温育FSD18(10μM)和GFP-NLS(20μM)90秒进行第一次转导,然后洗涤并在37℃温育。“未处理的”阴性对照细胞未显示GFP信号(图60A)。在GFP-NLS转导后18小时进行细胞分选。使用基于荧光信号的细胞分选仪分离GFP阳性和GFP阴性细胞(参见图60B),并收获并分离GFP阴性细胞(参见图60C)。使用与第一次转导相同的方案对GFP阴性T细胞群进行第二次GFP-NLS转导。如前所述18小时后通过流式细胞术分析GFP-NLS转导,并通过流式细胞术对GFP阳性细胞进行评分。该第二次转导的结果显示在图60D中,其中发现GFP-NLS转导效率为60.6%。
这些结果表明,用肽穿梭剂进行第一轮转导后的未转导细胞不一定对随后的转导顽固,并且通过对未转导细胞级分的重复连续转导实验可以增加起始细胞群中的总转导效率。这种重复连续转导实验的方法,以及实施例I.1,I.2和I.3中给出的共转导结果,暗示了一种在有价值细胞群(例如用于细胞治疗的患者来源的细胞)和/或在固有地更难以转导的细胞群中增加基因组编辑效率的有吸引力的方法。
参考文献
Andreu,D.,Ubach,J.,Boman,A.,Wahlin,B.,Wade,D.,Merrifield,R.B.和Boman,H.G.(1992)Shortened cecropin A-melittin hybrids.Significant size reductionretains potent antibiotic activity.FEBS letters 296,190-194
Aguila,J.R.,W.Liao,J.Yang,C.Avila,N.Hagag,L.Senzel和Y.Ma(2011)."SALL4is a robust stimulator for the expansion of hematopoietic stem cells."Blood 118(3):576-585.
Akinci,E.,A.Banga,L.V.Greder,J.R.Dutton和J.M.Slack(2012)."Reprogramming of pancreatic exocrine cells towards a beta(beta)cell characterusing Pdx1,Ngn3and MafA."Biochem J 442(3):539-550.
Alford等人,(2009).“Toxicity of organic fluorophores used in molecularimaging:literature review.”Mol Imaging.8(6):341-54.
Amand,H.L.,B.Norden和K.Fant(2012)."Functionalization with C-terminalcysteine enhances transfection efficiency of cell-penetrating peptidesthrough dimer formation."Biochem Biophys Res Commun 418(3):469-474.
Aoukaty,A.&Tan,R.(2005).Role for glycogen synthase kinase-3in NK cellcytotoxicity and X-linked lymphoproliferative disease.J Immunol 174,4551-8.
Barrangou,R.和Luciano A.Marraffini(2014).‘’CRISPR-Cas Systems:Prokaryotes Upgrade to Adaptive Immunity”.Cell Volume 54,Issue 2,p234–244,2014年4月24日.
Bejarano,L.A.和C.Gonzalez(1999)."Motif trap:a rapid method to clonemotifs that can target proteins to defined subcellular localisations."J CellSci 112(Pt 23):4207-4211.
Bikard等人,Programmable repression and activation of bacterial geneexpression using an engineered CRISPR-Cas system.Nucleic Acids Res.41,7429–7437.
Boman,H.G.,Wade,D.,Boman,I.A.,Wahlin,B.和Merrifield,R.B.(1989)Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids.FEBS letters 259,103-106.
Braud,V.M.,Allan,D.S.,O'Callaghan,C.A.,Soderstrom,K.,D'Andrea,A.,Ogg,G.S.,Lazetic,S.,Young,N.T.,Bell,J.I.,Phillips,J.H.,Lanier,L.L.&McMichael,A.J.(1998).HLA-E binds to natural killer cell receptors CD94/NKG2A,B and C.Nature391,795-9.
Buganim等人,(2014)“The Developmental Potential of iPSCs Is GreatlyInfluenced by Reprogramming Factor Selection”.Cell stem cell.15,295-309.
Burstein等人,(2017),“New CRISPR-Cas systems from uncultivatedmicrobes.”Nature.542(7640):237-241.
Chan,C.K.和D.A.Jans(1999)."Enhancement of polylysine-mediatedtransferrinfection by nuclear localization sequences:polylysine does notfunction as a nuclear localization sequence."Hum Gene Ther 10(10):1695-1702.
Chan,C.K.和D.A.Jans(2001)."Enhancement of MSH receptor-and GAL4-mediated gene transfer by switching the nuclear import pathway."Gene Ther 8(2):166-171.
Cong等人,(2013).Multiplex genome engineering using CRISPR/Cassystems.Science 339,819–823.
Cooper,M.A.,Fehniger,T.A.&Caligiuri,M.A.(2001).The biology of humannatural killer-cell subsets.Trends Immunol 22,633-40.
Cox等人(2015).“Therapeutic genome editing:prospects and challenges”.Nature medicine,21:121-131.
de Kruijf,E.M.,Sajet,A.,van Nes,J.G.,Natanov,R.,Putter,H.,Smit,V.T.,Liefers,G.J.,van den Elsen,P.J.,van de Velde,C.J.&Kuppen,P.J.(2010).HLA-E andHLA-G expression in classical HLA class I-negative tumors is of prognosticvalue for clinical outcome of early breast cancer patients.J Immunol 185,7452-9.
Delconte,R.B.,Kolesnik,T.B.,Dagley,L.F.,Rautela,J.,Shi,W.,Putz,E.M.,Stannard,K.,Zhang,J.G.,Teh,C.,Firth,M.,Ushiki,T.,Andoniou,C.E.,Degli-Esposti,M.A.,Sharp,P.P.,Sanvitale,C.E.,Infusini,G.,Liau,N.P.,Linossi,E.M.,Burns,C.J.,Carotta,S.,Gray,D.H.,Seillet,C.,Hutchinson,D.S.,Belz,G.T.,Webb,A.I.,Alexander,W.S.,Li,S.S.,Bullock,A.N.,Babon,J.J.,Smyth,M.J.,Nicholson,S.E.&Huntington,N.D.(2016).CIS is a potent checkpoint in NK cell-mediated tumorimmunity.Nat Immunol 17,816-24.
Denman,C.J.,Senyukov,V.V.,Somanchi,S.S.,Phatarpekar,P.V.,Kopp,L.M.,Johnson,J.L.,Singh,H.,Hurton,L.,Maiti,S.N.,Huls,M.H.,Champlin,R.E.,Cooper,L.J.&Lee,D.A.(2012).Membrane-bound IL-21promotes sustained ex vivoproliferation of human natural killer cells.PLoS ONE 7,e30264.
Dolfini,D.,M.Minuzzo,G.Pavesi和R.Mantovani(2012)."The short isoformof NF-YA belongs to the embryonic stem cell transcription factor circuitry."Stem Cells 30(11):2450-2459.
Drin,G.,S.Cottin,E.Blanc,A.R.Rees和J.Temsamani(2003)."Studies ontheinternalization mechanism of cationic cell-penetrating peptides."J BiolChem 278(33):31192-31201.
Eisenberg等人,(1982).“The helical hydrophobic moment:a measure of theamphiphilicity of a helix”.Nature 299,371–374.
El-Andaloussi,S.,H.J.Johansson,T.Holm和U.Langel(2007)."A novel cell-penetrating peptide,M918,for efficient delivery of proteins and peptidenucleic acids."Mol Ther 15(10):1820-1826.
El-Sayed,A.,S.Futaki和H.Harashima(2009)."Delivery of macromoleculesusingarginine-rich cell-penetrating peptides:ways to overcome endosomalentrapment."AAPS J 11(1):13-22.
Elmquist,A.,M.Lindgren,T.Bartfai和U.Langel(2001)."VE-cadherin-derivedcell-penetrating peptide,pVEC,with carrier functions."Exp Cell Res 269(2):237-244.
Erazo-Oliveras等人,(2014)“Protein delivery into live cells byincubation with an endosomolytic agent.”Nat Methods.(8):861-7.
Fanara,P.,M.R.Hodel,A.H.Corbett和A.E.Hodel(2000)."Quantitativeanalysis of nuclear localization signal(NLS)-importin alpha interactionthrough fluorescence depolarization.Evidence for auto-inhibitory regulationof NLS binding."J Biol Chem 275(28):21218-21223.
Fasoli A等人,(2014)“Mechanistic insight into CM18-Tat11peptidemembrane-perturbing action by whole-cell patch-clamp recording.”Molecules.19(7):9228-39.
Fawell,S.,J.Seery,Y.Daikh,C.Moore,L.L.Chen,B.Pepinsky和J.Barsoum(1994)."Tat-mediated delivery of heterologous proteins into cells."Proc NatlAcad Sci U S A 91(2):664-668.
Fominaya,J.,C.Uherek和W.Wels(1998)."A chimeric fusion proteincontaining transforming growth factor-alpha mediates gene transfer viabinding to the EGF receptor."Gene Ther 5(4):521-530.
Fominaya,J.和W.Wels(1996)."Target cell-specific DNA transfer mediatedby a chimeric multidomain protein.Novel non-viral gene delivery system."JBiol Chem 271(18):10560-10568.
Fonoudi,H.,M.Yeganeh,F.Fattahi,Z.Ghazizadeh,H.Rassouli,M.Alikhani,B.A.Mojarad,H.Baharvand,G.H.Salekdeh和N.Aghdami(2013)."ISL1proteintransduction promotescardiomyocyte differentiation from human embryonic stemcells."PLoS One 8(1):e55577.
Gao等人,(2016)DNA-guided genome editing using the Natronobacteriumgregoryi Argonaute.Nature Biotechnology 34,768–773.
Giguère等人,Machine learning assisted design of highly activepeptides for drug discovery.PLoS Comput Biol.2015Apr 7;11(4):e1004074.
Gilbert等人,CRISPR-mediated modular RNA-guided regulation oftranscription in eukaryotes.Cell 154,442–451.
Gilmore,T.D.和H.M.Temin(1988)."v-rel oncoproteins in the nucleus andin the cytoplasm transform chicken spleen cells."J Virol 62(3):703-714.
Glover,D.J.,S.M.Ng,A.Mechler,L.L.Martin和D.A.Jans(2009)."Multifunctional protein nanocarriers for targeted nuclear gene delivery innondividing cells."FASEB J 23(9):2996-3006.
Gordon,S.M.,J.Chaix,L.J.Rupp,J.Wu,S.Madera,J.C.Sun,T.Lindsten和S.L.Reiner(2012)."The transcription factors T-bet and Eomes control keycheckpoints of natural killer cell maturation."Immunity 36(1):55-67.
Gottschalk,S.,J.T.Sparrow,J.Hauer,M.P.Mims,F.E.Leland,S.L.Woo和L.C.Smith(1996)."A novel DNA-peptide complex for efficient gene transfer andexpression in mammalian cells."Gene Ther 3(5):448-457.
Gould,S.J.,G.A.Keller,N.Hosken,J.Wilkinson和S.Subramani(1989)."Aconserved tripeptide sorts proteins to peroxisomes."J Cell Biol 108(5):1657-1664.
Green,M.和P.M.Loewenstein(1988)."Autonomous functional domains ofchemicallysynthesized human immunodeficiency virus tat trans-activatorprotein."Cell 55(6):1179-1188.
Grimes,M.L.,J.Zhou,E.C.Beattie,E.C.Yuen,D.E.Hall,J.S.Valletta,K.S.Topp,J.H.LaVail,N.W.Bunnett和W.C.Mobley(1996)."Endocytosis of activatedTrkA:evidence that nerve growth factor induces formation of signalingendosomes."J Neurosci 16(24):7950-7964.
Guo,Z.Y.,Lv,Y.G.,Wang,L.,Shi,S.J.,Yang,F.,Zheng,G.X.,Wen,W.H.&Yang,A.G.(2015).Predictive value of HLA-G and HLA-E in the prognosis of colorectalcancer patients.Cell Immunol 293,10-6.
Hallbrink,M.,A.Floren,A.Elmquist,M.Pooga,T.Bartfai和U.Langel(2001)."Cargo delivery kinetics of cell-penetrating peptides."Biochim Biophys Acta1515(2):101-109.
Herce,H.D.和A.E.Garcia(2007)."Molecular dynamics simulations suggesta mechanism for translocation of the HIV-1TAT peptide across lipidmembranes."Proc Natl Acad Sci U S A 104(52):20805-20810.
Ho等人,(2001).“Synthetic protein transduction domains:enhancedtransduction potential in vivo.”Cancer Research 61:474-477.
Horng,T.,Bezbradica,J.S.&Medzhitov,R.(2007).NKG2D signaling iscoupled to the interleukin 15receptor signaling pathway.Nat Immunol 8,1345-52.
Hurt,E.C.,B.Pesold-Hurt,K.Suda,W.Oppliger和G.Schatz(1985)."The firsttwelve amino acids(less than half of the pre-sequence)of an importedmitochondrial protein can direct mouse cytosolic dihydrofolate reductase intothe yeast mitochondrial matrix."EMBO J 4(8):2061-2068.
Ichii,H.,A.Sakamoto,Y.Kuroda和T.Tokuhisa(2004)."Bcl6acts as anamplifier for the generation and proliferative capacity of central memory CD8+T cells."J Immunol 173(2):883-891.
Irie,Y.,K.Yamagata,Y.Gan,K.Miyamoto,E.Do,C.H.Kuo,E.Taira和N.Miki(2000)."Molecular cloning and characterization of Amida,a novel protein whichinteracts with a neuron-specific immediate early gene product arc,containsnovel nuclear localization signals,and causes cell death in cultured cells."JBiol Chem 275(4):2647-2653.
Ishigami,S.,Arigami,T.,Okumura,H.,Uchikado,Y.,Kita,Y.,Kurahara,H.,Maemura,K.,Kijima,Y.,Ishihara,Y.,Sasaki,K.,Uenosono,Y.&Natsugoe,S.(2015).Human leukocyte antigen(HLA)-E and HLA-F expression in gastriccancer.Anticancer Res 35,2279-85.
Kakudo,T.,S.Chaki,S.Futaki,I.Nakase,K.Akaji,T.Kawakami,K.Maruyama,H.Kamiya和H.Harashima(2004)."Transferrin-modified liposomes equipped with apH-sensitive fusogenic peptide:an artificial viral-like delivery system."Biochemistry 43(19):5618-5628.
Karniely,S.和O.Pines(2005)."Single translation--dual destination:mechanisms of dual protein targeting in eukaryotes."EMBO Rep 6(5):420-425.
Kato,G.J.,W.M.Lee,L.L.Chen和C.V.Dang(1992)."Max:functional domainsand interaction with c-Myc."Genes Dev 6(1):81-92.
Kichler,A.,A.J.Mason和B.Bechinger(2006)."Cationic amphipathichistidine-rich peptides for gene delivery."Biochim Biophys Acta 1758(3):301-307.
Kichler等人,(2003).“Histidine-rich amphipathic peptide antibioticspromote efficient delivery of DNA into mammalian cells”.Proc Natl Acad Sci US A.2003Feb 18;100(4):1564–1568.
Kira等人,(2011).‘’Unification of Cas protein families and a simplescenario for the origin and evolution of CRISPR-Cas systems”.BiolDirect.2011;6:38.
Kirwan,S.E.&Burshtyn,D.N.(2005).Killer cell Ig-like receptor-dependent signaling by Ig-like transcript 2(ILT2/CD85j/LILRB1/LIR-1).JImmunol 175,5006-15.
Kleinschmidt,J.A.和A.Seiter(1988)."Identification of domains involvedin nuclear uptake and histone binding of protein N1of Xenopus laevis."EMBO J7(6):1605-1614.
Kohler,M.,D.Gorlich,E.Hartmann和J.Franke(2001)."Adenoviral E1Aprotein nuclear import is preferentially mediated by importin alpha3invitro."Virology 289(2):186-191.
Kwon,等人,(2010).“A Truncated HGP Peptide Sequence That RetainsEndosomolytic Activity and Improves Gene Delivery Efficiencies”.Mol.Pharmaceutics,7:1260–65.
Lamiable等人,(2016).“PEP-FOLD3:faster de novo structure predictionfor linear peptides in solution and in complex”Nucleic Acids Res.44(W1):W449-54.
Lanford,R.E.,P.Kanda和R.C.Kennedy(1986)."Induction of nucleartransport with a synthetic peptide homologous to the SV40T antigen transportsignal."Cell 46(4):575-582.
Lee,N.,Llano,M.,Carretero,M.,Ishitani,A.,Navarro,F.,Lopez-Botet,M.&Geraghty,D.E.(1998).HLA-E is a major ligand for the natural killer inhibitoryreceptor CD94/NKG2A.Proc Natl Acad Sci U S A 95,5199-204.
Levy,E.M.,Bianchini,M.,Von Euw,E.M.,Barrio,M.M.,Bravo,A.I.,Furman,D.,Domenichini,E.,Macagno,C.,Pinsky,V.,Zucchini,C.,Valvassori,L.&Mordoh,J.(2008).Human leukocyte antigen-E protein is overexpressed in primary humancolorectal cancer.Int J Oncol 32,633-41.
Li,W.,F.Nicol和F.C.Szoka,Jr.(2004)."GALA:a designed synthetic pH-responsive amphipathic peptide with applications in drug and gene delivery."Adv Drug Deliv Rev 56(7):967-985.
Lin,M.H.,F.C.Chou,L.T.Yeh,S.H.Fu,H.Y.Chiou,K.I.Lin,D.M.Chang和H.K.Sytwu(2013)."B lymphocyte-induced maturation protein 1(BLIMP-1)attenuatesautoimmune diabetes in NOD mice by suppressing Th1and Th17cells."Diabetologia56(1):136-146.
Liu,X.,P.K.Tian,D.W.Ju,M.H.Zhang,M.Yao,X.T.Cao和J.R.Gu(2003)."Systemic genetic transfer of p21WAF-1and GM-CSF utilizing of a noveloligopeptide-based EGF receptor targeting polyplex."Cancer Gene Ther 10(7):529-539.
Loeser,S.,Loser,K.,Bijker,M.S.,Rangachari,M.,van der Burg,S.H.,Wada,T.,Beissert,S.,Melief,C.J.&Penninger,J.M.(2007).Spontaneous tumor rejectionby cbl-b-deficient CD8+T cells.J Exp Med 204,879-91.
London,E.(1992)."Diphtheria toxin:membrane interaction and membranetranslocation."Biochim Biophys Acta 1113(1):25-51.
Lord-Dufour等人,(2009)“Evidence for transcriptional regulation of theglucose-6-phosphate transporter by HIF-1alpha:Targeting G6PT withmumbaistatin analogs in hypoxic mesenchymal stromal cells”.Stem cells 27:489-497.
Lorieau,J.L.,J.M.Louis和A.Bax(2010)."The complete influenzahemagglutinin fusion domain adopts a tight helical hairpin arrangement at thelipid:water interface."Proc Natl Acad Sci U S A 107(25):11341-11346.
Lin,A.,Yan,W.H.,Xu,H.H.,Gan,M.F.,Cai,J.F.,Zhu,M.&Zhou,M.Y.(2007).HLA-G expression in human ovarian carcinoma counteracts NK cell function.AnnOncol 18,1804-9.
Liu,Q.,Zhou,H.,Langdon,W.Y.&Zhang,J.(2014).E3ubiquitin ligase Cbl-bin innate and adaptive immunity.Cell Cycle 13,1875-84.
Lu,S.J.,Q.Feng,Y.Ivanova,C.Luo,T.Li,F.Li,G.R.Honig and R.Lanza(2007)."Recombinant HoxB4fusion proteins enhance hematopoieticdifferentiation of human embryonic stem cells."Stem Cells Dev 16(4):547-559.
Luan等人,(2015).“Peptide amphiphiles with multifunctional fragmentspromoting cellular uptake and endosomal escape as efficient gene vectors.”J.Mater.Chem.B,3:1068-1078.
Lutz-Nicoladoni,C.,Wolf,D.&Sopper,S.(2015).Modulation of Immune CellFunctions by the E3Ligase Cbl-b.Front Oncol 5,58.
Mack,M.,B.Luckow,P.J.Nelson,J.Cihak,G.Simmons,P.R.Clapham,N.Signoret,M.Marsh,M.Stangassinger,F.Borlat,T.N.Wells,D.Schlondorff和A.E.Proudfoot(1998)."Aminooxypentane-RANTES induces CCR5internalization but inhibitsrecycling:a novel inhibitory mechanism of HIV infectivity."J Exp Med 187(8):1215-1224.
Maeng,C.H.,J.H.Yi,J.Lee,J.Y.Hong,M.K.Choi,H.A.Jung,J.O.Park,S.H.Park,Y.S.Park,W.K.Kang和H.Y.Lim(2013)."Effects of single nucleotide polymorphismson treatment outcomes and toxicity in patients treated with sunitinib."Anticancer Res 33(10):4619-4626.
Mahlum,E.,D.Mandal,C.Halder,A.Maran,M.J.Yaszemski,R.B.Jenkins,M.E.Bolander和G.Sarkar(2007)."Engineering a noncarrier to a highly efficientcarrier peptide for noncovalently delivering biologically active proteinsinto human cells."Anal Biochem 365(2):215-221.
Makarova等人,(2011)“Evolution and classification of the CRISPR-Cassystems”.Nat Rev Microbiol.9(6):467-77.
Makkerh,J.P.,C.Dingwall和R.A.Laskey(1996)."Comparative mutagenesis ofnuclear localization signals reveals the importance of neutral and acidicamino acids."Curr Biol 6(8):1025-1027.
Martinez-Fong,D.,I.Navarro-Quiroga,I.Ochoa,I.Alvarez-Maya,M.A.Meraz,J.Luna和J.A.Arias-Montano(1999)."Neurotensin-SPDP-poly-L-lysine conjugate:anonviral vector for targeted gene delivery to neural cells."Brain Res MolBrain Res 69(2):249-262.
Matalon,O.,Fried,S.,Ben-Shmuel,A.,Pauker,M.H.,Joseph,N.,Keizer,D.,Piterburg,M.&Barda-Saad,M.(2016).Dephosphorylation of the adaptor LAT andphospholipase C-gamma by SHP-1inhibits natural killer cell cytotoxicity.SciSignal 9,ra54.
Maurer,M.和E.von Stebut(2004)."Macrophage inflammatory protein-1."IntJ Biochem Cell Biol 36(10):1882-1886.
McKay,T.,P.Reynolds,S.Jezzard,D.Curiel和C.Coutelle(2002)."Secretin-mediated gene delivery,a specific targeting mechanism with potential fortreatment of biliary and pancreatic disease in cystic fibrosis."Mol Ther 5(4):447-454.
Midoux,P.,A.Kichler,V.Boutin,J.C.Maurizot和M.Monsigny(1998)."Membranepermeabilization and efficient gene transfer by a peptide containing severalhistidines."Bioconjug Chem 9(2):260-267.
Milenkovic,D.,T.Ramming,J.M.Muller,L.S.Wenz,N.Gebert,A.Schulze-Specking,D.Stojanovski,S.Rospert和A.Chacinska(2009)."Identification of thesignal directing Tim9and Tim10into the intermembrane space of mitochondria."Mol Biol Cell 20(10):2530-2539.
Miyoshi,I.,N.Kasai和Y.Hayashizaki(1994)."[Structure and regulation ofhuman thyroid-stimulating hormone(TSH)gene]."Nihon Rinsho 52(4):940-947.
Moede,T.,B.Leibiger,H.G.Pour,P.Berggren和I.B.Leibiger(1999)."Identification of a nuclear localization signal,RRMKWKK,in the homeodomaintranscription factor PDX-1."FEBS Lett 461(3):229-234.
Montrose,K.,Y.Yang,X.Sun,S.Wiles和G.W.Krissansen(2013)."Xentry,a newclass of cell-penetrating peptide uniquely equipped for delivery of drugs."Sci Rep 3:1661.
Moreland,R.B.,G.L.Langevin,R.H.Singer,R.L.Garcea和L.M.Hereford(1987)."Amino acid sequences that determine the nuclear localization of yeasthistone 2B."Mol Cell Biol 7(11):4048-4057.
Morris,M.C.,L.Chaloin,M.Choob,J.Archdeacon,F.Heitz和G.Divita(2004)."Combination of a new generation of PNAs with a peptide-based carrier enablesefficient targeting of cell cycle progression."Gene Ther 11(9):757-764.
Morris,M.C.,J.Depollier,J.Mery,F.Heitz和G.Divita(2001)."A peptidecarrier for the delivery of biologically active proteins into mammaliancells."Nat Biotechnol 19(12):1173-1176.
Nakanishi,A.,D.Shum,H.Morioka,E.Otsuka和H.Kasamatsu(2002)."Interaction of the Vp3nuclear localization signal with the importin alpha 2/beta heterodimer directs nuclear entry of infecting simian virus 40."J Virol76(18):9368-9377.
O'Keefe,D.O.(1992)."Characterization of a full-length,active-sitemutant of diphtheria toxin."Arch Biochem Biophys 296(2):678-684.
Paolino,M.,Choidas,A.,Wallner,S.,Pranjic,B.,Uribesalgo,I.,Loeser,S.,Jamieson,A.M.,Langdon,W.Y.,Ikeda,F.,Fededa,J.P.,Cronin,S.J.,Nitsch,R.,Schultz-Fademrecht,C.,Eickhoff,J.,Menninger,S.,Unger,A.,Torka,R.,Gruber,T.,Hinterleitner,R.,Baier,G.,Wolf,D.,Ullrich,A.,Klebl,B.M.&Penninger,J.M.(2014).The E3ligase Cbl-b and TAM receptors regulate cancer metastasis via naturalkiller cells.Nature 507,508-12.
Parente,R.A.,S.Nir和F.C.Szoka,Jr.(1990)."Mechanism of leakage ofphospholipid vesicle contents induced by the peptide GALA."Biochemistry 29(37):8720-8728.
Parameswaran,R.,Ramakrishnan,P.,Moreton,S.A.,Xia,Z.,Hou,Y.,Lee,D.A.,Gupta,K.,deLima,M.,Beck,R.C.&Wald,D.N.(2016).Repression of GSK3restores NKcell cytotoxicity in AML patients.Nat Commun 7,11154.
Patel,P.&Woodgett,J.R.(2017).Glycogen Synthase Kinase 3:A Kinase forAll Pathways?Curr Top Dev Biol 123,277-302.
Paul,R.W.,K.E.Weisser,A.Loomis,D.L.Sloane,D.LaFoe,E.M.Atkinson和R.W.Overell(1997)."Gene transfer using a novel fusion protein,GAL4/invasin."Hum Gene Ther 8(10):1253-1262.
Perez,F.,A.Joliot,E.Bloch-Gallego,A.Zahraoui,A.Triller和A.Prochiantz(1992)."Antennapedia homeobox as a signal for the cellular internalizationand nuclear addressing of a small exogenous peptide."J Cell Sci 102(Pt 4):717-722.
Pimenta,D.C.,V.C.Chen,J.Chao,M.A.Juliano和L.Juliano(2000)."Alpha1-antichymotrypsin and kallistatin hydrolysis by human cathepsin D."J ProteinChem 19(5):411-418.
Poli,A.,Michel,T.,Theresine,M.,Andres,E.,Hentges,F.&Zimmer,J.(2009).CD56bright natural killer(NK)cells:an important NK cell subset.Immunology126,458-65.
Prieve,M.G.和M.L.Waterman(1999)."Nuclear localization and formationof beta-catenin-lymphoid enhancer factor 1complexes are not sufficient foractivation of gene expression."Mol Cell Biol 19(6):4503-4515.
Rajagopalan,R.,J.Xavier,N.Rangaraj,N.M.Rao和V.Gopal(2007)."Recombinant fusion proteins TAT-Mu,Mu and Mu-Mu mediate efficient non-viralgene delivery."J Gene Med 9(4):275-286.
Riddell等人,(2014)“Reprogramming committed murine blood cells toinduced hematopoietic stem cells with defined factors”.Cell,157:549-564
Salomone,F.,F.Cardarelli,M.Di Luca,C.Boccardi,R.Nifosi,G.Bardi,L.DiBari,M.Serresi和F.Beltram(2012)."A novel chimeric cell-penetrating peptidewith membrane-disruptive properties for efficient endosomal escape."J ControlRelease 163(3):293-303.
Salomone F.,Cardarelli F,Signore G,Boccardi C,Beltram F.(2013)“Invitro efficient transfection by CM18-Tat11hybrid peptide:a new tool for gene-delivery applications.”PLoS One.8(7):e70108.
Schneider,H.,R.P.Harbottle,Y.Yokosaki,J.Kunde,D.Sheppard和C.Coutelle(1998)."A novel peptide,PLAEIDGIELTY,for the targeting of alpha9beta1-integrins."FEBS Lett 429(3):269-273.
Schreiber,V.,M.Molinete,H.Boeuf,G.de Murcia和J.Menissier-de Murcia(1992)."The human poly(ADP-ribose)polymerase nuclear localization signal is abipartite element functionally separate from DNA binding and catalyticactivity."EMBO J 11(9):3263-3269.
Schuster,M.J.,G.Y.Wu,C.M.Walton和C.H.Wu(1999)."Multicomponent DNAcarrier with a vesicular stomatitis virus G-peptide greatly enhances liver-targeted gene expression in mice."Bioconjug Chem 10(6):1075-1083.
Scott,M.S.,F.M.Boisvert,M.D.McDowall,A.I.Lamond和G.J.Barton(2010)."Characterization and prediction of protein nucleolar localization sequences."Nucleic Acids Res 38(21):7388-7399.
Shaw,P.A.,I.R.Catchpole,C.A.Goddard和W.H.Colledge(2008)."Comparisonof protein transduction domains in mediating cell delivery of a secreted CREprotein."Biochemistry 47(4):1157-1166.
Shawe-Taylor J,Cristianini N(2004)Kernel methods for patternanalysis.Cambridge university press.
Shen等人,(2014)“Improved PEP-FOLD approach for peptide andminiprotein structure prediction”.J.Chem.Theor.Comput.10:4745-4758.
Shoya,Y.,T.Kobayashi,T.Koda,K.Ikuta,M.Kakinuma和M.Kishi(1998)."Twoproline-rich nuclear localization signals in the amino-and carboxyl-terminalregions of the Borna disease virus phosphoprotein."J Virol 72(12):9755-9762.
Somasekaram,A.,A.Jarmuz,A.How,J.Scott和N.Navaratnam(1999)."Intracellular localization of human cytidine deaminase.Identification of afunctional nuclear localization signal."J Biol Chem 274(40):28405-28412.
Stojanovski,D.,M.Bohnert,N.Pfanner和M.van der Laan(2012)."Mechanismsof protein sorting in mitochondria."Cold Spring Harb Perspect Biol 4(10).
Sudbeck,P.and G.Scherer(1997)."Two independent nuclear localizationsignals are present in the DNA-binding high-mobility group domains of SRY andSOX9."J Biol Chem 272(44):27848-27852.
Sung,M.S.,J.Y.Mun,O.Kwon,K.S.Kwon和D.B.Oh(2013)."Efficient myogenicdifferentiation of human adipose-derived stem cells by the transduction ofengineered MyoD protein."Biochem Biophys Res Commun 437(1):156-161.
Takahashi,K.和S.Yamanaka(2006)."Induction of pluripotent stem cellsfrom mouse embryonic and adult fibroblast cultures by defined factors."Cell126(4):663-676.
Takeda,A.,C.Goolsby和N.R.Yaseen(2006)."NUP98-HOXA9induces long-termproliferation and blocks differentiation of primary human CD34+hematopoieticcells."Cancer Res 66(13):6628-6637.
Tan,Y.,Z.Xie,M.Ding,Z.Wang,Q.Yu,L.Meng,H.Zhu,X.Huang,L.Yu,X.Meng和Y.Chen(2010)."Increased levels of FoxA1transcription factor in pluripotentP19embryonal carcinoma cells stimulate neural differentiation."Stem Cells Dev19(9):1365-1374.
Tan,Y.X.,C.Chen,Y.L.Wang,S.Lin,Y.Wang,S.B.Li,X.P.Jin,H.W.Gao,F.S.Du,F.Gong和S.P.Ji(2012)."Truncated peptides from melittin and its analog withhigh lytic activity at endosomal pH enhance branched polyethylenimine-mediated gene transfection."J Gene Med 14(4):241-250.
Thévenet等人,“PEP-FOLD:an updated de novo structure prediction serverfor both linear and disulfide bonded cyclic peptides.”Nucleic AcidsRes.2012.40,W288-293.
Uherek,C.,J.Fominaya和W.Wels(1998)."A modular DNA carrier proteinbased on the structure of diphtheria toxin mediates target cell-specific genedelivery."J Biol Chem 273(15):8835-8841.
Varkouhi,A.K.,M.Scholte,G.Storm和H.J.Haisma(2011)."Endosomal escapepathways for delivery of biologicals."J Control Release 151(3):220-228.
Veach,R.A.,D.Liu,S.Yao,Y.Chen,X.Y.Liu,S.Downs和J.Hawiger(2004)."Receptor/transporter-independent targeting of functional peptides across theplasma membrane."J Biol Chem 279(12):11425-11431.
Vives,E.,P.Brodin和B.Lebleu(1997)."A truncated HIV-1Tat protein basicdomain rapidly translocates through the plasma membrane and accumulates inthe cell nucleus."J Biol Chem 272(25):16010-16017.
Wagstaff,K.M.,D.J.Glover,D.J.Tremethick和D.A.Jans(2007)."Histone-mediated transduction as an efficient means for gene delivery."Mol Ther 15(4):721-731.
Warr,M.R.,M.Binnewies,J.Flach,D.Reynaud,T.Garg,R.Malhotra,J.Debnath和E.Passegue(2013)."FOXO3A directs a protective autophagy program inhaematopoietic stem cells."Nature494(7437):323-327.
Welch,K.,J.Franke,M.Kohler和I.G.Macara(1999)."RanBP3contains anunusual nuclear localization signal that is imported preferentially byimportin-alpha3."Mol Cell Biol 19(12):8400-8411.
Wiedenheft等人,(2011).RNA-guided complex from a bacterial immunesystem enhances target recognition through seed sequence interactions.Proc.Natl.Acad.Sci.USA 108,10092–10097.
Witzel,I.,M.Graeser,T.Karn,M.Schmidt,R.Wirtz,D.Schutze,A.Rausch,F.Janicke,K.Milde-Langosch和V.Muller(2013)."Androgen receptor expression is apredictive marker in chemotherapy-treated patients with endocrine receptor-positive primary breast cancers."J Cancer Res Clin Oncol 139(5):809-816.
Wu,J.,L.Zhou,K.Tonissen,R.Tee和K.Artzt(1999)."The quaking I-5protein(QKI-5)has a novel nuclear localization signal and shuttles between thenucleus and the cytoplasm."J Biol Chem 274(41):29202-29210.
Wu,D.,Kuiaste,I.,Moreau,P.,Carosella,E.&Yotnda,P.(2015).Rescuinglymphocytes from HLA-G immunosuppressive effects mediated by the tumormicroenvironment.Oncotarget 6,37385-97.
Wyman,T.B.,F.Nicol,O.Zelphati,P.V.Scaria,C.Plank和F.C.Szoka,Jr.(1997)."Design,synthesis,and characterization of a cationic peptide thatbinds to nucleic acids and permeabilizes bilayers."Biochemistry 36(10):3008-3017.
Ye,S.R.,Yang,H.,Li,K.,Dong,D.D.,Lin,X.M.&Yie,S.M.(2007a).Humanleukocyte antigen G expression:as a significant prognostic indicator forpatients with colorectal cancer.Mod Pathol 20,375-83.
Yie,S.M.,Yang,H.,Ye,S.R.,Li,K.,Dong,D.D.&Lin,X.M.(2007b).Expressionof human leukocyte antigen G(HLA-G)correlates with poor prognosis in gastriccarcinoma.Ann Surg Oncol 14,2721-9.
Yie,S.M.,Yang,H.,Ye,S.R.,Li,K.,Dong,D.D.&Lin,X.M.(2007c).Expressionof human leucocyte antigen G(HLA-G)is associated with prognosis in non-smallcell lung cancer.Lung Cancer 58,267-74.
Yie,S.M.,Yang,H.,Ye,S.R.,Li,K.,Dong,D.D.&Lin,X.M.(2007d).Expressionof HLA-G is associated with prognosis in esophageal squamous cellcarcinoma.Am J Clin Pathol 128,1002-9.
Yu,Z.,C.H.Lee,C.Chinpaisal和L.N.Wei(1998)."A constitutive nuclearlocalization signal from the second zinc-finger of orphan nuclear receptorTR2."J Endocrinol 159(1):53-60.
Zetsche等人,(2015).“Cpf1Is a Single RNA-Guided Endonuclease of aClass 2CRISPR-Cas System”.Cell.25.pii:S0092-8674(15)01200-3[http://dx.doi.org/10.1016/j.cell.2015.09.038].
Zhen,Z.J.,Ling,J.Y.,Cai,Y.,Luo,W.B.&He,Y.J.(2013).Impact of HLA-Egene polymorphism on HLA-E expression in tumor cells and prognosis inpatients with stage III colorectal cancer.Med Oncol 30,482.
Zhou,H.,S.Wu,J.Y.Joo,S.Zhu,D.W.Han,T.Lin,S.Trauger,G.Bien,S.Yao,Y.Zhu,G.Siuzdak,H.R.Scholer,L.Duan和S.Ding(2009)."Generation of inducedpluripotent stem cells using recombinant proteins."Cell Stem Cell 4(5):381-384.

Claims (39)

1.一种用于将多肽负荷从细胞外空间递送至靶哺乳动物细胞的胞质溶胶和/或细胞核的体外方法,所述方法包括在穿梭剂存在下使所述靶哺乳动物细胞与所述多肽负荷接触,与不存在所述穿梭剂相比,所述穿梭剂的浓度足以使所述多肽负荷的转导效率提高,其中所述穿梭剂是:
(1)具有20个氨基酸的最小长度和100个氨基酸的最大长度的可溶于水溶液的肽,其包含:
(2)两亲性α-螺旋基序,其具有:
(3)带正电荷的亲水外表面,基于具有连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,所述亲水外表面包含:(a)在螺旋轮投影时的至少两个相邻的带正电荷的K和/或R残基;和(b)在螺旋轮投影时的包含3至5个K和/或R残基的6个相邻残基的区段;
(4)疏水外表面,基于每圈有3.6个残基的α-螺旋的开口圆柱形表示,所述疏水外表面包含由空间上相邻的L、I、F、V、W和/或M氨基酸组成的高疏水性核心,所述氨基酸代表所述肽的12%至50%的氨基酸,其中基于具有连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,所述疏水性外表面包含:(a)在螺旋轮投影时的至少两个相邻的L残基;和/或(b)在螺旋轮投影时的包含选自:L、I、F、V、W和M的至少五个疏水残基的十个相邻残基的区段;
其中,涉及以下参数(5)至(15)中的至少六个:
(5)所述肽的疏水力矩(μ)为3.5至11;
(6)所述肽在生理pH下的预测静电荷为至少+4;
(7)所述肽的等电点(pI)为8至13;
(8)所述肽由35%至65%的氨基酸A、C、G、I、L、M、F、P、W、Y和V的任何组合组成;
(9)所述肽由0%至30%的氨基酸N、Q、S和T的任何组合组成;
(10)所述肽由35%至85%的氨基酸A、L、K或R的任何组合组成;
(11)所述肽由15%至45%的氨基酸A和L的任何组合组成,条件是肽中存在至少5%的L;
(12)所述肽由20%至45%的氨基酸K和R的任何组合组成;
(13)所述肽由0%至10%的氨基酸D和E的任何组合组成;
(14)所述肽中A和L残基的百分比(%A+L)与所述肽中K和R残基的百分比(%K+R)之间的差异小于或等于10%;且
(15)所述肽由10%至45%的氨基酸Q、Y、W、P、I、S、G、V、F、E、D、C、M、N、T和H的任何组合组成,
其中与不存在所述穿梭剂相比,所述穿梭剂的浓度为至少2.5μM并且足以增加独立的多肽负荷向所述靶哺乳动物细胞的胞质溶胶和/或细胞核的转导效率,并且
其中所述穿梭剂不与所述多肽负荷共价结合。
2.根据权利要求1所述的方法,其中,所述穿梭剂涉及参数(5)至(15)中的至少七个、至少八个、至少九个、至少十个,或涉及所有参数(5)至(15)。
3.根据权利要求1或2所述的方法,其中:
(i)所述穿梭剂是肽,其最小长度为21、22、23、24、25、26、27、28、29或30个氨基酸,并且最大长度为40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、60、65、70、80、或90个氨基酸;
(ii)所述两亲性α-螺旋基序的疏水力矩(μ)在3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0的下限和9.5、9.6、9.7、9.8、9.9、10.0、10.1、10.2、10.3、10.4、10.5、10.6、10.7、10.8、10.9或11.0的上限之间;
(iii)所述两亲性α-螺旋基序包括带正电荷的亲水外表面,所述亲水外表面包括:(a)在螺旋轮投影时的至少三个或四个相邻的带正电荷的K和/或R残基;
(iv)所述两亲性α-螺旋基序包括疏水外表面,基于连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,所述疏水外表面包括:(a)在螺旋轮投影时的至少两个相邻L残基;和(b)在螺旋轮投影时的包含选自:L、I、F、V、W和M的至少五个疏水残基的十个相邻残基的区段;
(v)所述疏水性外表面包含由空间上相邻的L,I,F,V,W和/或M氨基酸组成的高疏水性核心,所述氨基酸代表所述肽的12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%或20%至25%、30%、35%、40%或45%的氨基酸;
(vi)所述肽的疏水力矩(μ)在4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0的下限和9.5、9.6、9.7、9.8、9.9、10.0、10.1、10.2、10.3、10.4、10.5的上限之间;
(vii)所述肽的预测净电荷在+4、+5、+6、+7、+8、+9、+10、+11、+12、+13、+14或+15之间;
(viii)所述肽的预测pI为10-13;或
(ix)(i)至(viii)的任何组合。
4.根据1或2所述的方法,其中,所述穿梭剂涉及以下参数中的至少一个、至少两个、至少三个、至少四个、至少五个、至少六个或全部:
(8)所述肽由36%至64%,37%至63%,38%至62%,39%至61%或40%至60%的氨基酸A、C、G、I、L、M、F、P、W、Y和V的任何组合组成;
(9)所述肽由1%至29%、2%至28%、3%至27%、4%至26%、5%至25%、6%至24%、7%至23%、8%至22%、9%至21%或10%至20%的氨基酸N、Q、S和T的任何组合组成;
(10)所述肽由36%至80%、37%至75%、38%至70%、39%至65%或40%至60%的氨基酸A、L、K或R的任何组合组成;
(11)所述肽由15%至40%、20%至40%、20%至35%或20%至30%的氨基酸A和L的任何组合组成;
(12)所述肽由20%至40%、20%至35%或20%至30%的氨基酸K和R的任何组合组成;
(13)所述肽由5%至10%的氨基酸D和E的任何组合组成;
(14)所述肽中A和L残基的百分比(%A+L)与所述肽中K和R残基的百分比(K+R)之间的差异小于或等于9%、8%、7%、6%或5%;和
(15)所述肽由15%至40%、20%至35%或20%至30%的氨基酸Q、Y、W、P、I、S、G、V、F、E、D、C、M、N、T和H的任何组合组成。
5.根据权利要求1或2所述的方法,其中,所述肽包含富含组氨酸的结构域。
6.根据权利要求5所述的方法,其中,所述富含组氨酸的结构域是:
(i)朝向肽的N末端和/或朝向肽的C末端定位;
(ii)是至少3个、至少4个、至少5个或至少6个氨基酸的链段,其包含至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%或至少90%的组氨酸残基;和/或包含至少2个、至少3个、至少4个、至少5个、至少6个、至少7个、至少8个或至少9个连续的组氨酸残基;或
(iii)(i)和(ii)两者。
7.根据权利要求1或2所述的方法,其中,所述肽包含富含丝氨酸和/或甘氨酸残基的柔性接头结构域。
8.根据权利要求1或2所述的方法,其中,所述肽包含以下氨基酸序列或由其组成:
(a)[X1]-[X2]-[接头]-[X3]-[X4] (式1);
(b)[X1]-[X2]-[接头]-[X4]-[X3] (式2);
(c)[X2]-[X1]-[接头]-[X3]-[X4] (式3);
(d)[X2]-[X1]-[接头]-[X4]-[X3] (式4);
(e)[X3]-[X4]-[接头]-[X1]-[X2] (式5);
(f)[X3]-[X4]-[接头]-[X2]-[X1] (式6);
(g)[X4]-[X3]-[接头]-[X1]-[X2] (式7);或
(h)[X4]-[X3]-[接头]-[X2]-[X1] (式8),
其中:
[X1]选自:2[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;2[Φ]-1[+]-2[Φ]-2[+]-;1[+]-1[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;和1[+]-1[Φ]-1[+]-2[Φ]-2[+]-;
[X2]选自:-2[Φ]-1[+]-2[Φ]-2[ζ]-;-2[Φ]-1[+]-2[Φ]-2[+]-;-2[Φ]-1[+]-2[Φ]-1[+]-1[ζ]-;-2[Φ]-1[+]-2[Φ]-1[ζ]-1[+]-;-2[Φ]-2[+]-1[Φ]-2[+]-;-2[Φ]-2[+]-1[Φ]-2[ζ]-;-2[Φ]-2[+]-1[Φ]-1[+]-1[ζ]-;和-2[Φ]-2[+]-1[Φ]-1[ζ]-1[+]-;
[X3]选自:-4[+]-A-;-3[+]-G-A-;-3[+]-A-A-;-2[+]-1[Φ]-1[+]-A-;-2[+]-1[Φ]-G-A-;-2[+]-1[Φ]-A-A-;或-2[+]-A-1[+]-A;-2[+]-A-G-A;-2[+]-A-A-A-;-1[Φ]-3[+]-A-;-1[Φ]-2[+]-G-A-;-1[Φ]-2[+]-A-A-;-1[Φ]-1[+]-1[Φ]-1[+]-A;-1[Φ]-1[+]-1[Φ]-G-A;-1[Φ]-1[+]-1[Φ]-A-A;-1[Φ]-1[+]-A-1[+]-A;-1[Φ]-1[+]-A-G-A;-1[Φ]-1[+]-A-A-A;-A-1[+]-A-1[+]-A;-A-1[+]-A-G-A;和-A-1[+]-A-A-A;
[X4]选自:-1[ζ]-2A-1[+]-A;-1[ζ]-2A-2[+];-1[+]-2A-1[+]-A;-1[ζ]-2A-1[+]-1[ζ]-A-1[+];-1[ζ]-A-1[ζ]-A-1[+];-2[+]-A-2[+];-2[+]-A-1[+]-A;-2[+]-A-1[+]-1[ζ]-A-1[+];-2[+]-1[ζ]-A-1[+];-1[+]-1[ζ]-A-1[+]-A;-1[+]-1[ζ]-A-2[+];-1[+]-1[ζ]-A-1[+]-1[ζ]-A-1[+];-1[+]-2[ζ]-A-1[+];-1[+]-2[ζ]-2[+];-1[+]-2[ζ]-1[+]-A;-1[+]-2[ζ]-1[+]-1[ζ]-A-1[+];-1[+]-2[ζ]-1[ζ]-A-1[+];-3[ζ]-2[+];-3[ζ]-1[+]-A;-3[ζ]-1[+]-1[ζ]-A-1[+];-1[ζ]-2A-1[+]-A;-1[ζ]-2A-2[+];-1[ζ]-2A-1[+]-1[ζ]-A-1[+];-2[+]-A-1[+]-A;-2[+]-1[ζ]-1[+]-A;-1[+]-1[ζ]-A-1[+]-A;-1[+]-2A-1[+]-1[ζ]-A-1[+];和-1[ζ]-A-1[ζ]-A-1[+];并且
[接头]选自:-Gn-;-Sn-;-(GnSn)n-;-(GnSn)nGn-;-(GnSn)nSn-;-(GnSn)nGn(GnSn)n-;和(GnSn)nSn(GnSn)n-;
其中:
[Φ]是氨基酸,其为:Leu、Phe、Trp、Ile、Met、Tyr或Val;
[+]是氨基酸,其为:Lys或Arg;
[ζ]是氨基酸,其为:Gln、Asn、Thr或Ser;
A是氨基酸Ala;
G是氨基酸Gly;
S是氨基酸Ser;并且
n是1至20、1至19、1至18、1至17、1至16、1至14、1至13、1至12、1至11、1至10、1至9、1至8、1至7、1至6、1至5、1至1至4或1至3的整数。
9.根据权利要求1或2所述的方法,其中:
(i)所述穿梭剂可被所述靶哺乳动物细胞完全代谢;和/或
(ii)与不存在所述穿梭剂相比,在所述浓度的穿梭剂存在下使所述靶哺乳动物细胞与所述多肽负荷接触导致所述多肽负荷的转导效率增加至少10倍、20倍、30倍、40倍、50倍或100倍。
10.一种合成肽穿梭剂,其是根据权利要求1至9中任一项所定义的穿梭剂。
11.一种组合物,其包含根据权利要求10所定义的合成肽穿梭剂,或至少2种、至少3种、至少4种或至少5种不同类型的根据权利要求10所定义的合成肽穿梭剂的混合物,和待从细胞外空间递送至靶哺乳动物细胞的胞质溶胶和/或细胞核的多肽负荷。
12.根据权利要求10所定义的合成肽穿梭剂或根据权利要求11中定义的组合物在制备用于在体外或体内将多肽负荷从细胞外空间递送至靶哺乳动物细胞的胞质溶胶和/或细胞核的药物中的用途,其中与不存在所述穿梭剂或合成肽相比,所述合成肽穿梭剂以至少2.5μM的浓度使用并且足以提高所述多肽负荷向所述靶哺乳动物细胞的胞质溶胶和/或细胞核的转导效率。
13.一种用于将多肽负荷从细胞外空间递送至靶哺乳动物细胞的胞质溶胶和/或细胞核的试剂盒,所述试剂盒包含根据权利要求10所定义的穿梭剂和合适的容器。
14.根据权利要求1或2所述的方法、权利要求10所述的合成肽穿梭剂、权利要求11所述的组合物、权利要求12所述的用途、或权利要求13所述的试剂盒,其中,所述多肽负荷缺乏细胞穿透结构域。
15.根据权利要求1或2所述的方法、权利要求10所述的合成肽穿梭剂、权利要求11所述的组合物、权利要求12所述的用途、或权利要求13所述的试剂盒,其中,所述多肽负荷包含细胞穿透结构域。
16.根据权利要求1或2所述的方法、权利要求10所述的合成肽穿梭剂、权利要求11所述的组合物、权利要求12所述的用途、或权利要求13所述的试剂盒,其中,所述多肽负荷包含亚细胞靶向结构域。
17.根据权利要求16所述的方法、合成肽穿梭剂、组合物、用途或试剂盒,其中,所述亚细胞靶向结构域是:
(a)核定位信号(NLS);
(b)核仁信号序列;
(c)线粒体信号序列;或
(d)过氧化物酶体信号序列。
18.根据权利要求17所述的方法、合成肽穿梭剂、组合物、用途或试剂盒,其中:
(a)所述NLS来自:E1a、T-Ag、c-myc、T-Ag、op-T-NLS、Vp3、核质蛋白、组蛋白2B、非洲爪蟾N1、PARP、PDX-1、QKI-5、HCDA、H2B、v-Rel、Amida、RanBP3、Pho4p、LEF-1、TCF-1、BDV-P、TR2、SOX9或Max;
(b)所述核仁信号序列来自BIRC5或RECQL4;
(c)所述线粒体信号序列来自Tim9或酵母细胞色素c氧化酶亚基IV;或
(d)所述过氧化物酶体信号序列来自PTS1。
19.根据权利要求1或2所述的方法、权利要求10所述的合成肽穿梭剂、权利要求11所述的组合物、权利要求12所述的用途、或权利要求13所述的试剂盒,其中,所述多肽负荷与DNA和/或RNA分子复合。
20.根据权利要求1或2所述的方法、权利要求10所述的合成肽穿梭剂、权利要求11所述的组合物、权利要求12所述的用途、或权利要求13所述的试剂盒,其中,所述多肽负荷是转录因子、核酸酶、细胞因子、激素、生长因子、抗体、肽负荷、酶、酶抑制剂或其任何组合。
21.根据权利要求20所述的方法、合成肽穿梭剂、组合物、用途或试剂盒,其中:
(a)所述转录因子是:HOXB4、NUP98-HOXA9、Oct3/4、Sox2、Sox9、Klf4、c-Myc、MyoD、Pdx1、Ngn3、MafA、Blimp-1、Eomes、T-bet、FOXO3A、NF-YA、SALL4、ISL1、FoxA1、Nanog、Esrrb、Lin28、HIF1-α、Hlf、Runx1t1、Pbx1、Lmo2、Zfp37、Prdm5、Bcl-6或其任何组合;
(b)所述核酸酶是催化活性或催化死亡的:RNA引导的核酸内切酶、CRISPR核酸内切酶、I型CRISPR核酸内切酶、II型CRISPR核酸内切酶、III型CRISPR核酸内切酶、IV型CRISPR核酸内切酶、V型CRISPR核酸内切酶、VI型CRISPR核酸内切酶、CRISPR相关蛋白9(Cas9)、Cpf1、CasY、CasX、锌指核酸酶(ZFN)、转录激活因子样效应核酸酶(TALEN)、归巢核酸内切酶、大范围核酸酶、DNA引导核酸酶、格氏嗜盐碱杆菌Arg(NgAgo)或其任何组合;
(c)所述抗体识别细胞内抗原;和/或
(d)所述肽负荷识别细胞内分子。
22.根据权利要求1或2所述的方法、权利要求10所述的合成肽穿梭剂、权利要求11所述的组合物、权利要求12所述的用途、或权利要求13所述的试剂盒,其用于细胞疗法、基因组编辑、过继细胞转移和/或再生医学。
23.根据权利要求1或2所述的方法、权利要求10所述的合成肽穿梭剂、权利要求11所述的组合物、权利要求12所述的用途、或权利要求13所述的试剂盒,其中,所述靶哺乳动物细胞是人细胞、干细胞、原代细胞、免疫细胞、T细胞、NK细胞或树突细胞。
24.一种哺乳动物细胞,其包含根据权利要求10所定义的合成肽穿梭剂或权利要求11中所定义的组合物。
25.根据权利要求24所述的哺乳动物细胞,其是人细胞、干细胞、原代细胞、免疫细胞、T细胞、NK细胞或树突细胞。
26.一种用于生产合成肽穿梭剂的方法,所述合成肽穿梭剂将多肽负荷从细胞外空间递送至靶哺乳动物细胞的胞质溶胶和/或细胞核,所述方法包括合成以下肽:
(1)具有20个氨基酸的最小长度和100个氨基酸的最大长度的可溶于水溶液的肽,其包含:
(2)两亲性α-螺旋基序,其具有
(3)带正电荷的亲水外表面,基于具有连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,所述亲水外表面包含:(a)在螺旋轮投影时的至少两个相邻的带正电荷的K和/或R残基;和/或(b)在螺旋轮投影时的包含3至5个K和/或R残基的6个相邻残基的区段;
(4)疏水外表面,基于每圈有3.6个残基的α-螺旋的开口圆柱形表示,所述疏水外表面包含由空间上相邻的L、I、F、V、W和/或M氨基酸组成的高疏水性核心,所述氨基酸代表所述肽的12%至50%的氨基酸,其中基于具有连续氨基酸之间的旋转角为100度的α-螺旋和/或每圈有3.6个残基的α-螺旋,所述疏水性外表面包含:(a)在螺旋轮投影时的至少两个相邻的L残基;和/或(b)在螺旋轮投影时的包含选自:L、I、F、V、W和M的至少五个疏水残基的十个相邻残基的区段;其中,涉及以下参数(5)至(15)中的至少6个:
(5)所述肽的疏水力矩(μ)为3.5至11;
(6)所述肽在生理pH下的预测静电荷为至少+4;
(7)所述肽的等电点(pI)为8至13;
(8)所述肽由35%至65%的氨基酸A、C、G、I、L、M、F、P、W、Y和V的任何组合组成;
(9)所述肽由0%至30%的氨基酸N、Q、S和T的任何组合组成;
(10)所述肽由35%至85%的氨基酸A、L、K或R的任何组合组成;
(11)所述肽由15%至45%的氨基酸A和L的任何组合组成,条件是肽中存在至少5%的L;
(12)所述肽由20%至45%的氨基酸K和R的任何组合组成;
(13)所述肽由0%至10%的氨基酸D和E的任何组合组成;
(14)所述肽中A和L残基的百分比(%A+L)与所述肽中K和R残基的百分比(%K+R)之间的差异小于或等于10%;和
(15)所述肽由10%至45%的氨基酸Q、Y、W、P、I、S、G、V、F、E、D、C、M、N、T和H的任何组合组成
其中与不存在所述穿梭剂相比,所述穿梭剂的浓度为至少2.5μM并且足以增加独立的多肽负荷向所述靶哺乳动物细胞的胞质溶胶和/或细胞核的转导效率,并且
其中所述穿梭剂不与所述多肽负荷共价结合。
27.根据权利要求26所述的方法,其中,所述肽是根据权利要求2或3所定义的穿梭剂。
28.一种用于鉴定穿梭剂的方法,所述穿梭剂将多肽负荷从细胞外空间递送至靶哺乳动物细胞的胞质溶胶和/或细胞核,所述方法包括:
(a)合成肽,其是根据权利要求10所定义的合成肽穿梭剂;
(b)在所述肽存在下使所述靶哺乳动物细胞与所述多肽负荷接触;
(c)测量所述靶哺乳动物细胞中所述多肽负荷的转导效率;和
(d)当观察到所述靶哺乳动物细胞中所述多肽负荷的转导效率增加时,将所述肽鉴定为转导所述多肽负荷的穿梭剂。
29.根据权利要求28所述的方法,其中,所述多肽负荷根据权利要求14或15所定义。
30.一种用于富集用目标多肽负荷转导的哺乳动物细胞的方法,所述方法包括:
(a)利用根据权利要求1-9中任一项所定义的穿梭剂,用目标多肽负荷和标记蛋白共转导靶哺乳动物细胞群;和
(b)分离或浓缩用标记蛋白转导的哺乳动物细胞,从而富集用所述目标多肽负荷转导的哺乳动物细胞。
31.根据权利要求30所述的方法,其中:
(i)所述标记蛋白不与所述目标多肽负荷共价结合,所述标记蛋白与所述目标多肽负荷共价结合,所述标记蛋白与所述目标多肽负荷非共价结合,或所述标记蛋白通过可切割的接头与所述目标多肽负荷共价结合;和/或
(ii)所述标记蛋白包含可检测标记,或所述标记蛋白是荧光蛋白、荧光标记的蛋白质、生物发光蛋白质、同位素标记的蛋白质或磁性标记的蛋白质。
32.根据权利要求30或31所述的方法,其中,转导的标记蛋白的细胞内浓度与转导的目标多肽负荷的细胞内浓度正相关。
33.根据权利要求30或31所述的方法,其中,使用流式细胞术、荧光激活细胞分选术(FACS)或磁性激活细胞分选术(MACS)分离或浓缩所述用标记蛋白转导的哺乳动物细胞。
34.根据权利要求30或31所述的方法,其中,从缺乏所述标记蛋白的细胞中分离或分选所述用标记蛋白转导的哺乳动物细胞,从而产生标记蛋白阳性细胞群和/或标记蛋白阴性细胞群。
35.根据权利要求34所述的方法,其还包括在所述标记蛋白阴性细胞群上、在所述标记蛋白阳性细胞群上、或在所述标记蛋白阴性和标记蛋白阳性细胞群两者上重复步骤(a)和(b)一次或多次。
36.根据权利要求30或31所述的方法,其中,基于其标记蛋白的细胞内浓度分离或分选所述用标记蛋白转导的哺乳动物细胞。
37.根据权利要求30或31所述的方法,其中,所述标记蛋白是刺激细胞增殖的蛋白质、刺激细胞分化的蛋白质、促进细胞存活的蛋白质、抗凋亡蛋白质或具有另一种蛋白质生物活性的蛋白质。
38.根据权利要求30或31所述的方法,其中,通过在肽转导剂存在下使所述靶哺乳动物细胞与所述多肽负荷和所述标记蛋白接触以共转导所述目标多肽负荷和所述标记蛋白,其中,与不存在所述肽转导剂相比,所述肽转导剂的存在浓度足以提高所述多肽负荷和所述标记蛋白的转导效率。
39.根据权利要求38所述的方法,其中:
(a)所述肽转导剂是内体溶解肽;
(b)所述靶哺乳动物细胞包括人细胞、干细胞、原代细胞、免疫细胞、T细胞、NK细胞或树突细胞;
(c)所述目标多肽负荷是:(i)根据权利要求15至22中任一项所定义的多肽负荷;和/或(ii)单独的一种或多种CRISPR相关核酸内切酶或与根据权利要求28至33中任一项所定义的一种或多种相应的指导RNA和/或线性DNA模板一起;或
(d)(a)至(c)的任何组合。
CN201780076076.4A 2016-10-12 2017-10-11 用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的合理设计的合成肽穿梭剂,其用途、与其相关的方法和试剂盒 Active CN110291100B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662407232P 2016-10-12 2016-10-12
US62/407,232 2016-10-12
US201762535015P 2017-07-20 2017-07-20
US62/535,015 2017-07-20
US15/666,139 US9982267B2 (en) 2016-10-12 2017-08-01 Rationally-designed synthetic peptide shuttle agents for delivering polypeptide cargos from an extracellular space to the cytosol and/or nucleus of a target eukaryotic cell, uses thereof, methods and kits relating to same
US15/666,139 2017-08-01
PCT/CA2017/051205 WO2018068135A1 (en) 2016-10-12 2017-10-11 Rationally-designed synthetic peptide shuttle agents for delivering polypeptide cargos from an extracellular space to the cytosol and/or nucleus of a target eukaryotic cell, uses thereof, methods and kits relating to same

Publications (2)

Publication Number Publication Date
CN110291100A CN110291100A (zh) 2019-09-27
CN110291100B true CN110291100B (zh) 2024-06-11

Family

ID=61905066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780076076.4A Active CN110291100B (zh) 2016-10-12 2017-10-11 用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的合理设计的合成肽穿梭剂,其用途、与其相关的方法和试剂盒

Country Status (8)

Country Link
EP (1) EP3526235A4 (zh)
JP (2) JP7177047B2 (zh)
KR (1) KR102626671B1 (zh)
CN (1) CN110291100B (zh)
AU (2) AU2017341736B2 (zh)
CA (1) CA3038839A1 (zh)
IL (1) IL265920B2 (zh)
WO (1) WO2018068135A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11629170B2 (en) 2016-10-12 2023-04-18 Feldan Bio Inc. Rationally-designed synthetic peptide shuttle agents for delivering polypeptide cargos from an extracellular space to the cytosol and/or nucleus of a target eukaryotic cell, uses thereof, methods and kits relating to same
AU2018283405A1 (en) 2017-06-15 2020-01-16 The Regents Of The University Of California Targeted non-viral DNA insertions
AU2018355587B2 (en) 2017-10-27 2023-02-02 The Regents Of The University Of California Targeted replacement of endogenous T cell receptors
US11028425B2 (en) 2018-06-08 2021-06-08 Glympse Bio, Inc. Diagnosis and monitoring of liver disease
US11732009B2 (en) 2018-06-08 2023-08-22 Glympse Bio, Inc. Activity sensor with tunable analyte
CN109232717B (zh) * 2018-08-31 2021-08-20 东北农业大学 一种针对革兰氏阴性菌靶向抗菌肽及制作方法与应用
CN109232719B (zh) * 2018-09-21 2021-06-29 中国科学院理化技术研究所 一种pH响应的抗菌肽及其制备方法和应用
EP3864028A1 (en) * 2018-10-08 2021-08-18 Adolphe Merkle Institute, University of Fribourg Oligonucleotide-based tuning of pore-forming peptides for increasing pore size, membrane affinity, stability, and antimicrobial activity
SG11202105609RA (en) * 2018-11-28 2021-06-29 Univ Texas Multiplex genome editing of immune cells to enhance functionality and resistance to suppressive environment
CN114026123A (zh) * 2019-03-22 2022-02-08 光点治疗公司 靶向活性基因编辑剂及使用方法
CA3040645A1 (en) * 2019-04-18 2020-10-18 Feldan Bio Inc. Peptide-based non-proteinaceous cargo delivery
CA3153700A1 (en) * 2019-09-09 2021-03-18 Scribe Therapeutics Inc. Compositions and methods for use in immunotherapy
US20230116223A1 (en) * 2020-01-29 2023-04-13 Jenthera Therapeutics Inc. Nuclease-scaffold composition delivery platform
CN111518168B (zh) * 2020-03-30 2022-02-08 东北农业大学 一种衍生自肉食杆菌素的抗菌肽及其制备方法和应用
CA3196066A1 (en) * 2020-10-22 2022-04-28 David Guay Shuttle agent peptides of minimal length and variants thereof adapted for transduction of cas9-rnp and other nucleoprotein cargos
WO2022120423A1 (en) * 2020-12-08 2022-06-16 James Cook University Peptides and uses thereof
AU2022251159A1 (en) * 2021-03-29 2023-10-05 Feldan Bio Inc. Synthetic peptide shuttle agent bioconjugates for intracellular cargo delivery
CN113214355B (zh) * 2021-04-09 2022-02-25 东北农业大学 一种专杀真菌的抗菌肽gl4w及其制备方法和应用
CN114177306B (zh) * 2021-07-16 2024-01-30 吉林医药学院 一种iNGR/R9双重修饰的阿霉素靶向脂质体及抗肿瘤活性评价
CN114716569B (zh) * 2022-04-13 2023-11-10 浙江大学 一种携带目标蛋白自主进入真核细胞的重组蛋白、重组表达载体和重组菌及应用
CN116375805B (zh) * 2023-03-27 2023-09-08 中山大学附属口腔医院 一种兼具抗菌和成骨活性的多肽、其制剂及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086795A1 (en) * 2013-12-13 2015-06-18 Cellectis Cas9 nuclease platform for microalgae genome engineering

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104622A1 (en) * 1999-09-01 2003-06-05 Robbins Paul D. Identification of peptides that facilitate uptake and cytoplasmic and/or nuclear transport of proteins, DNA and viruses
CN101616928B (zh) * 2007-01-29 2015-04-15 株式会社普罗赛尔制药 新型大分子转导域及其识别方法和用途
EP3043811B1 (en) * 2013-09-10 2020-03-25 The Texas A&M University System Compositions and methods for the delivery of molecules into live cells
JP2016539922A (ja) * 2013-10-17 2016-12-22 ソウル ナショナル ユニバーシティ アールアンドディービー ファウンデーション 細胞透過性αヘリックスペプチド多量体、これの製造方法およびその用途
CA3149413A1 (en) * 2015-04-10 2016-10-13 Feldan Bio Inc. Polypeptide-based shuttle agents for improving the transduction efficiency of polypeptide cargos to the cytosol of target eukaryotic cells, uses thereof, methods and kits relating to same
WO2017175072A1 (en) * 2016-04-08 2017-10-12 Feldan Bio Inc. Peptide shuttle based gene disruption
JP2019533440A (ja) 2016-09-23 2019-11-21 ユニヴェルシテ ラヴァル ジストロフィン遺伝子を改変しジストロフィン発現を回復させる方法およびその使用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086795A1 (en) * 2013-12-13 2015-06-18 Cellectis Cas9 nuclease platform for microalgae genome engineering

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Andrea‐Anneliese Keller et al..Transduction of Proteins into Leishmania Tarentolae by Formation of Non‐Covalent Complexes With Cell‐Penetrating Peptides.《Journal of Cellular Biochemistry》.2013,第115卷第243-252页. *
Cellular uptake and in vivo distribution of polyhistidine peptides;Takashi Iwasaki et al.;《J Control Release》;20150728;第210卷;摘要,第3.2节 *
Transduction of Proteins into Leishmania Tarentolae by Formation of Non‐Covalent Complexes With Cell‐Penetrating Peptides;Andrea‐Anneliese Keller et al.;《Journal of Cellular Biochemistry》;20130822;第115卷;第243-245、247页,表1-2 *

Also Published As

Publication number Publication date
EP3526235A4 (en) 2021-03-10
JP2023010788A (ja) 2023-01-20
IL265920A (en) 2019-06-30
WO2018068135A1 (en) 2018-04-19
CA3038839A1 (en) 2018-04-19
IL265920B2 (en) 2024-05-01
AU2022283748A1 (en) 2023-02-09
JP7177047B2 (ja) 2022-11-22
KR102626671B1 (ko) 2024-01-18
JP2019531316A (ja) 2019-10-31
IL265920B1 (en) 2024-01-01
AU2017341736B2 (en) 2022-09-08
AU2017341736A1 (en) 2019-04-18
CN110291100A (zh) 2019-09-27
KR20190072559A (ko) 2019-06-25
EP3526235A1 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
CN110291100B (zh) 用于将多肽负荷从细胞外空间递送至靶真核细胞的胞质溶胶和/或细胞核的合理设计的合成肽穿梭剂,其用途、与其相关的方法和试剂盒
US20230348537A1 (en) Rationally-designed synthetic peptide shuttle agents for delivering polypeptide cargos from an extracellular space to the cytosol and/or nucleus of a target eukaryotic cell, uses thereof, methods and kits relating to same
CN107636017B (zh) 用于改进多肽负荷向靶真核细胞的细胞质转导的效率的基于多肽的穿梭剂,其用途、及与其相关的方法和试剂盒
Rádis-Baptista et al. Cell-penetrating peptides (CPPs): From delivery of nucleic acids and antigens to transduction of engineered nucleases for application in transgenesis
Lindgren et al. Cell-penetrating peptides
JP4838722B2 (ja) ポリヌクレオチドを送達する方法、及び送達用組成物
US11629170B2 (en) Rationally-designed synthetic peptide shuttle agents for delivering polypeptide cargos from an extracellular space to the cytosol and/or nucleus of a target eukaryotic cell, uses thereof, methods and kits relating to same
WO2017175072A1 (en) Peptide shuttle based gene disruption
Gao et al. An unusual cell penetrating peptide identified using a plasmid display-based functional selection platform
Chang et al. Cellular delivery of noncovalently-associated macromolecules by cell-penetrating peptides
CN114008210A (zh) 基于肽的非蛋白质负荷递送
JP2021520819A (ja) 標的指向性親和性ドメインに基づく膜タンパク質を含む細胞外小胞
JP2023511501A (ja) 新規の細胞内送達方法
US10508265B2 (en) Cell-permeable reprogramming factor (iCP-RF) recombinant protein and use thereof
Lin et al. The J‐Domain of Heat Shock Protein 40 Can Enhance the Transduction Efficiency of Arginine‐Rich Cell‐Penetrating Peptides

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant