CN110277541B - 磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器 - Google Patents

磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器 Download PDF

Info

Publication number
CN110277541B
CN110277541B CN201810212138.6A CN201810212138A CN110277541B CN 110277541 B CN110277541 B CN 110277541B CN 201810212138 A CN201810212138 A CN 201810212138A CN 110277541 B CN110277541 B CN 110277541B
Authority
CN
China
Prior art keywords
iron phosphate
lithium iron
lithium
positive electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810212138.6A
Other languages
English (en)
Other versions
CN110277541A (zh
Inventor
官亦标
徐斌
沈进冉
韦旭芳
周淑琴
胡龙丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QINGDAO POWER SUPPLY Co OF STATE GRID SHANDONG ELECTRIC POWER Co
Beijing University of Chemical Technology
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
QINGDAO POWER SUPPLY Co OF STATE GRID SHANDONG ELECTRIC POWER Co
Beijing University of Chemical Technology
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QINGDAO POWER SUPPLY Co OF STATE GRID SHANDONG ELECTRIC POWER Co, Beijing University of Chemical Technology, State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI filed Critical QINGDAO POWER SUPPLY Co OF STATE GRID SHANDONG ELECTRIC POWER Co
Priority to CN201810212138.6A priority Critical patent/CN110277541B/zh
Publication of CN110277541A publication Critical patent/CN110277541A/zh
Application granted granted Critical
Publication of CN110277541B publication Critical patent/CN110277541B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种磷酸铁锂复合正极材料及制备方法,该正极材料为表面包覆富氮炭的纳米磷酸铁锂粒子且均匀生长在三维富氮石墨烯的网络结构中。本发明提供的磷酸铁锂复合正极材料,具有多级导电网络结构,有利于电子的快速传输和电解液的扩散,兼有电池高比容量和电容器高比功率的特点,可做动力锂离子电池、锂离子电容器和电容型锂离子电池的电极材料,具有优异的循环及倍率性能。

Description

磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器
技术领域
本发明涉及锂离子电池正极材料技术领域,具体涉及一种具有多级导电网络结构的磷酸铁锂复合正极材料及其制备方法。
背景技术
橄榄石型的磷酸铁锂作为锂离子电池正极材料,由于其具备较高的比容量,较好的循环稳定性和安全性,制备成本相对较低,且对环境无污染等特点,已经被应用于锂离子电池和电容器等储能器件的工业化生产,是一种良好的储能正极材料。然而随着人们生活质量的提高,各种大功率用电器设备的出现,现有的磷酸铁锂正极材料由于其本体导电性差和锂离子的传导速率慢导致的倍率性能低的缺点,越来越不能满足人们对便携式电池器件的需求。
作为一种储能器件的超级电容器,由于其能快速充放电而具有的超高功率密度和循环寿命(可达数万次以上)等优点,常被应用于电动汽车的瞬时放电。超级电容器常用的电极材料制备简单、比表面积大、导电性能好,而且孔径可调控以及成本低廉的碳材料。超级电容器大多是通过表面的双电层离子吸附来储存能量,其容量密度与材料的比表面积及孔径分布直接相关,导致其容量密度不能极大提升,与电池的容量密度相差甚远。
因此需提供一种具有电池的高能量密度且具备超级电容器的大功率、长循环寿命的电极材料来满足对便携式储能器件及长续航电动汽车动力电池的需求。
发明内容
本发明的目的在于提供一种具有多级导电网络结构的磷酸铁锂复合正极材料及其制备方法。
为了达到上述目的,本发明采用了下述技术方案:
一种磷酸铁锂复合正极材料,所述正极材料为表面包覆富氮炭的纳米磷酸铁锂粒子且均匀生长在三维富氮石墨烯的网络结构中。
优选的,所述磷酸铁锂粒径为30~200nm。
优选的,所述富氮炭厚度为2-5nm
优选的,所述正极材料中氮的质量份数为1~8%。
优选的,所述富氮炭、石墨烯与磷酸铁锂的质量比为(1-5):(10-30):(89-165)。
一种磷酸铁锂复合正极材料的制备方法,所述制备方法包括如下步骤:
(1)制备磷酸铁锂悬浊液;
(2)用上述磷酸铁锂悬浊液制备磷酸铁锂混合凝胶;
(3)用上述磷酸铁锂凝胶制备磷酸铁锂气凝胶;
(4)制备所述复合正极材料。
优选的,所述步骤(1)包括如下步骤:
A、于0.1~1mol/L的氢氧化锂溶液中加入明胶,40~100℃水浴中搅拌溶解后加入氧化石墨烯超声分散得混合液体;
B、于所述混合液体中加入磷酸和硫酸亚铁制备所述磷酸铁锂悬浊液。
优选的,所述明胶、氧化石墨烯和氢氧化锂的量的比为(4-15):(20-50):(76-135)。
优选的,所述水浴温度为50~80℃。
优选的,所述步骤(2)包括如下步骤:在上述磷酸铁锂悬浊液中加入乙二醇,加热搅拌至溶胶态后,在惰性气氛下的120~230℃水热釜中水热反应4~15小时,得所述磷酸铁锂凝胶。
优选的,所述步骤2中乙二醇与磷酸铁锂悬浊液体积比为(0.1~2):1。
优选的,所述步骤(2)中,在160~190℃水热下反应5~10h。
优选的,所述步骤(3)包括如下步骤:用去离子水和乙醇清洗步骤(2)所述磷酸铁锂凝胶后真空干燥,得所述气凝胶。
优选的,所述步骤(3)中于50~200℃下真空干燥。
优选的,所述步骤(4)包括如下步骤:研磨所述气凝胶后,在惰性气氛下350~850℃烧结2~15h后,冷却得所述磷酸铁锂复合正极材料。
优选的,所述惰性气氛为从氮气气氛、氩气气氛、氦气气氛和氖气气氛中选出的一种或几种气氛。
本发明的另一目的在于,提供一种锂离子电池和锂离子电容器。
一种锂离子电池,所述电池的正极材料为上述任一项所述磷酸铁锂复合正极材料。
一种锂离子电容器,所述电容器正极涂层为上述任一项所述磷酸铁锂复合正极材料。
本发明首先利用明胶表面的各种官能团(-OH/-COOH/-NH2)在加热的状态下能够与磷酸铁锂前驱体(硫酸亚铁、磷酸和氢氧化锂及其相互作用的产物等)之间交互作用形成溶胶,从而代替其他如柠檬酸或草酸等络合剂的作用,然后加入氧化石墨烯,在高温高压水热条件下形成以石墨烯凝胶为基体的三维结构,而磷酸铁锂被明胶水热炭包覆后与石墨烯键合原位生长在石墨烯片层表面,从而形成复合凝胶。这种复合凝胶再经过高温热处理,明胶被进一步碳化形成具有高导电性能的富氮炭层,并包裹在磷酸铁锂粒子表面。石墨烯则被进一步还原、氮掺杂(明胶热解过程中对石墨烯氮化)并与磷酸铁锂粒子表面的炭层结合形成一体化三维导电网络,得到一种具有多级导电网络结构的磷酸铁锂复合正极材料,这种特殊的一体化多级导电网络结构可有效提高磷酸铁锂的导电性能,并有利于电解液离子的快速传输;同时,石墨烯高的比表面积可提供可观的双电层电容,氮掺杂还可产生赝电容效应。因此,这种磷酸铁锂复合正极材料的兼有高的比容量和特别突出的倍率性能。
制备多级导电网络结构的磷酸铁锂复合正极材料过程中加入乙二醇既可调节溶液的粘度,又可在高温水热的过程中作为还原剂促进氧化石墨烯还原为石墨烯,防止在随后的高温煅烧过程中将亚铁离子氧化。
与最接近的现有技术比,本发明提供的技术方案具有以下有益效果:
1、本发明提供的一种磷酸铁锂复合正极材料,具有多级电网络结构,有利于电子的快速传输和电解液的扩散,兼有电池高比容量和电容器高比功率的特点,可用做动力锂离子电池、锂离子电容器和电容型锂离子电池的电极材料,具有优异的循环及倍率性能。
2、本发明提供的磷酸铁锂复合正极材料的制备方法,用明胶作为碳源和氮源,实现了对纳米磷酸铁锂的原位表面富氮炭包覆、以及对石墨烯的原位氮掺杂,从而得到得到表面包覆富氮炭的纳米磷酸铁锂粒子均匀生长在富氮石墨烯的三维网络结构这一结构独特的磷酸铁锂复合正极材料。
3、本发明提供的磷酸铁锂复合正极材料的制备方法,明胶不仅具有氮源、碳源的作用,还可以代替其他络合剂进行溶胶凝胶法将离子均匀分散在氧化石墨烯片层表面形成溶胶,防止磷酸铁锂前驱体发生团聚而分散不均匀的现象,然后将溶胶进行水热使得磷酸铁锂被明胶包裹均匀地生长在石墨烯三维凝胶结构中。
4、本发明提供的锂离子电池有优异的循环性能和使用寿命。
5、本发明提供的锂离子电容器有优异的循环性能和使用寿命。
附图说明
图1为本发明实施例1制备的磷酸铁锂复合正极材料的XRD衍射谱图;
图2为本发明实施例1制备的磷酸铁锂复合正极材料的扫描电镜照片;
图3为本发明实施例1制备的磷酸铁锂复合正极材料的倍率充放电曲线;
具体实施方式
下面结合附图和具体实施例作进一步详细说明,对本发明的技术方案进行清楚、完整地描述。
实施例1
(1)制备磷酸铁锂悬浊液:
A、于60ml去离子水中加入0.06mol一水合氢氧化锂和0.59g明胶,80℃水浴搅拌溶解后加入1.26g氧化石墨烯,超声分散2h得混合液体;
B、将0.02mol磷酸和0.02mol七水合硫酸亚铁加入上述混合液体中,搅拌得所述磷酸铁锂悬浊液
(2)用上述磷酸铁锂悬浊液制备磷酸铁锂凝胶:
在上述悬浊液中加入30ml乙二醇,80℃下水浴加热搅拌至溶胶态后,在氩气气氛下的铁氟龙衬里的水热釜,180℃水热反应5小时,得所述磷酸铁锂凝胶。
(3)用上述磷酸铁锂凝胶制备磷酸铁锂气凝胶:
将上述凝胶用去离子水和乙醇溶液清洗后120℃真空干燥,得所述磷酸铁锂气凝胶。
(4)制备所述复合正极材料:
研磨所述磷酸铁锂气凝胶后,在氩气气氛下700℃烧结6h,冷却得所述磷酸铁锂复合正极材料。
实施例2
(1)制备磷酸铁锂悬浊液:
A、于60ml去离子水中加入0.03mol一水合氢氧化锂和0.59g明胶,40℃水浴搅拌溶解后加入1.06g氧化石墨烯,超声分散2h得混合液体;
B、将0.01mol磷酸和0.01mol七水合硫酸亚铁加入上述混合液体中,搅拌得所述磷酸铁锂悬浊液。
(2)用上述磷酸铁锂悬浊液制备磷酸铁锂凝胶:
在上述磷酸铁锂悬浊液中加入60ml乙二醇,40℃下水浴加热搅拌至溶胶态后,在氮气气氛下的铁氟龙衬里的水热釜,160℃水热反应8小时,得所述磷酸铁锂凝胶。
(3)用上述磷酸铁锂凝胶制备磷酸铁锂气凝胶:
将上述磷酸铁锂凝胶用去离子水和乙醇清洗后50℃真空干燥,得所述磷酸铁锂凝胶。
(4)制备所述复合正极材料:
研磨所述磷酸铁锂气凝胶后,在氮气气氛下350℃烧结2h,冷却得所述磷酸铁锂复合正极材料。
实施例3
(1)制备磷酸铁锂悬浊液:
A、于60ml去离子水中加入0.006mol一水合氢氧化锂和0.29g明胶,50℃水浴搅拌溶解后加入1.52g氧化石墨烯,超声分散2h得混合液体;
B、将0.02mol磷酸和0.02mol七水合硫酸亚铁加入上述混合液体中,搅拌得所述磷酸铁锂悬浊液。
(2)用上述磷酸铁锂悬浊液制备磷酸铁锂凝胶:
在上述磷酸铁锂悬浊液中加入40ml乙二醇,80℃下水浴加热搅拌至溶胶态后,在氩气气氛下的铁氟龙衬里的水热釜,190℃水热反应10小时,得所述磷酸铁锂凝胶。
(3)用上述磷酸铁锂凝胶制备磷酸铁锂气凝胶:
将上述磷酸铁锂凝胶用去离子水和乙醇清洗后200℃真空干燥,得所述磷酸铁锂气凝胶。
(4)制备所述复合正极材料:
研磨所述磷酸铁锂气凝胶后,在氩气气氛下850℃烧结15h,冷却得所述磷酸铁锂复合正极材料。
实施例4
(1)制备磷酸铁锂悬浊液:
A、于60ml去离子水中加入0.02mol一水合氢氧化锂和0.29g明胶,100℃水浴搅拌溶解后加入1.52g氧化石墨烯,超声分散2h得混合液体;
B、将0.01mol磷酸和0.01mol七水合硫酸亚铁加入上述混合液体中,搅拌得所述磷酸铁锂悬浊液。
(2)用上述磷酸铁锂悬浊液制备磷酸铁锂凝胶:
在上述磷酸铁锂悬浊液中加入40ml乙二醇,80℃下水浴加热搅拌至溶胶态后,在氩气气氛下的铁氟龙衬里的水热釜,190℃水热反应10小时,得所述磷酸铁锂凝胶。
(3)用上述磷酸铁锂凝胶制备磷酸铁锂气凝胶:
将上述磷酸铁锂凝胶用去离子水和乙醇清洗后200℃真空干燥,得所述磷酸铁锂气凝胶。
(4)制备所述复合正极材料:
研磨所述磷酸铁锂气凝胶后,在氩气气氛下850℃烧结15h,冷却得所述磷酸铁锂复合正极材料。
二、性能测试
1、图1为本发明实施例1制备的磷酸铁锂复合正极材料的XRD衍射谱图,由图可见,本发明实施例1制备的磷酸铁锂复合正极材料磷酸铁锂结晶度好,杂质峰含量少,有利于其充放电行为的充分发挥。
2、图2为实施例1制备的磷酸铁锂复合正极材料的扫描电镜照片。由图可见,水热反应生成的磷酸铁锂颗粒尺寸在50~200nm之间,且均匀生长在还原氧化石墨烯片层表面,可以给磷酸铁锂颗粒提供很好的导电性,由于还原氧化石墨烯的大比表面,可给所制备的材料提供一定的双电层电容性能。
3、将实施例1制备的材料、乙炔黑和PVDF以80:10:10的比例涂覆在铝箔后进行电化学测试,得图3所示的倍率充放电曲线。由图可见,30C电流密度下容量可达到97mAh/g,即2分钟内可充满电,50C电流密度下容量保持83mAh/g,即1分钟之内可充满电,这与超级电容器的充放电速率极为接近,展现出电容型电池材料的突出特性。
以上实施例仅用以说明本发明的技术方案而非对其进行限制,所属领域的普通技术人员应当理解,参照上述实施例可以对本发明的具体实施方式进行修改或者等同替换,这些未脱离本发明精神和范围的任何修改或者等同替换均在申请待批的权利要求保护范围之内。

Claims (7)

1.一种磷酸铁锂复合正极材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)制备磷酸铁锂悬浊液;
(2)用上述磷酸铁锂悬浊液制备磷酸铁锂凝胶;
(3)用上述磷酸铁锂凝胶制备磷酸铁锂气凝胶;
(4)制备所述复合正极材料;
所述步骤(1)包括如下步骤:
A、于0.1~1mol/L的氢氧化锂溶液中加入明胶,40~100℃水浴中搅拌溶解后加入氧化石墨烯,超声分散得混合液体;
B、于所述混合液体中加入磷酸和硫酸亚铁制备所述磷酸铁锂悬浊液;
所述明胶、氧化石墨烯和氢氧化锂的摩尔比为(4-15):(20-50):(76-135);
所述步骤(3)包括如下步骤:用去离子水和乙醇清洗步骤(2)中所述磷酸铁锂凝胶后真空干燥,得所述磷酸铁锂气凝胶;
所述步骤(3)中于50~200℃下真空干燥;
所述步骤(4)包括如下步骤:研磨所述磷酸铁锂气凝胶后,在惰性气氛下350~850℃烧结2~15h后冷却得所述磷酸铁锂复合正极材料;
所述惰性气氛为从氮气气氛、氩气气氛、氦气气氛和氖气气氛中选出的一种或几种气氛。
2.根据权利要求1所述的制备方法,其特征在于,所述水浴温度为50~80℃。
3.根据权利要求1所述的制备方法,其特征在于,所述步骤(2)包括如下步骤:在上述磷酸铁锂悬浊液中加入乙二醇,加热搅拌至溶胶态后,在惰性气氛下的120~230℃水热釜中反应4~15小时,得所述磷酸铁锂凝胶。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤(2)中乙二醇与磷酸铁锂悬浊液体积比为(0.1~2):1。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤(2)中,在160~190℃下水热反应5~10h。
6.一种锂离子电池,其特征在于,所述锂离子电池的正极材料为权利要求1~5任一项所述制备方法得到的磷酸铁锂复合正极材料。
7.一种锂离子电容器,其特征在于,所述电容器正极涂层为权利要求1~5任一项所述制备方法得到的磷酸铁锂复合正极材料。
CN201810212138.6A 2018-03-15 2018-03-15 磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器 Active CN110277541B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810212138.6A CN110277541B (zh) 2018-03-15 2018-03-15 磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810212138.6A CN110277541B (zh) 2018-03-15 2018-03-15 磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器

Publications (2)

Publication Number Publication Date
CN110277541A CN110277541A (zh) 2019-09-24
CN110277541B true CN110277541B (zh) 2022-04-29

Family

ID=67958525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810212138.6A Active CN110277541B (zh) 2018-03-15 2018-03-15 磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器

Country Status (1)

Country Link
CN (1) CN110277541B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2624277A (en) * 2022-06-24 2024-05-15 Guangdong Brunp Recycling Technology Co Ltd Method for recycling spent lithium iron phosphate batteries
CN115020855B (zh) * 2022-06-24 2023-10-17 广东邦普循环科技有限公司 一种磷酸铁锂废旧电池的回收利用方法
CN115881912A (zh) * 2022-12-06 2023-03-31 银贮(宁波)科技有限公司 一种碳包覆纳米磷酸铁锂/多孔碳复合材料及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577326B (zh) * 2009-06-01 2011-05-18 王淑芹 锂离子电池正极材料磷酸亚铁锂溶胶包覆制备方法
CN104134801B (zh) * 2014-07-28 2016-06-01 北京万源工业有限公司 氮化碳-石墨烯包覆磷酸铁锂复合正极材料及其制备方法
CN107275604A (zh) * 2017-06-12 2017-10-20 四川大学 一种氮掺杂多孔碳负载铁基氟化物三维纳米锂离子电池正极材料及其制备方法

Also Published As

Publication number Publication date
CN110277541A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
Qiu et al. Kinetics enhanced nitrogen‐doped hierarchical porous hollow carbon spheres boosting advanced potassium‐ion hybrid capacitors
US10889497B2 (en) Sheet-shaped nitrogen-phosphorus co-doped porous carbon material and method for preparation thereof and use thereof
Wang et al. Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Zn‐Ion Storage Capability
Qu et al. Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries
Yin et al. The synthesis of Co3O4/C composite with aloe juice as the carbon aerogel substrate for asymmetric supercapacitors
Feng et al. Cross‐linked hollow graphitic carbon as low‐cost and high‐performance anode for potassium ion batteries
Zhang et al. Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries
Hu et al. Controllable synthesis of nitrogen-doped graphene oxide by tablet-sintering for efficient lithium/sodium-ion storage
CN110277541B (zh) 磷酸铁锂复合正极材料及制备方法、锂离子电池、电容器
KR101832663B1 (ko) 고밀도 및 고용량 특성을 갖는 3차원 그래핀 구조체, 이의 제조방법 및 이를 포함하는 전극 소재
Shi et al. A self-template approach to synthesize multicore–shell Bi@ N-doped carbon nanosheets with interior void space for high-rate and ultrastable potassium storage
Zhao et al. Nest-like V 3 O 7 self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with N-doped carbon
CN108899530B (zh) 硅碳复合材料及其制备方法和应用
Sun et al. Coaxial cable-like dual conductive channel strategy in polypyrrole coated perovskite lanthanum manganite for high-performance asymmetric supercapacitors
CN111689523B (zh) 金属铬掺杂δ-MnO2纳米片的制备方法
Gao et al. Hydrothermal synthesis and electrochemical capacitance of RuO2· xH2O loaded on benzenesulfonic functionalized MWCNTs
Zhou et al. Mn3O4 nanoparticles on activated carbonitride by soft chemical method for symmetric coin cell supercapacitors
Zheng et al. Nitrogen-doped activated porous carbon for 4.5 V lithium-ion capacitor with high energy and power density
Liu et al. Engineering of yolk-shelled FeSe2@ nitrogen-doped carbon as advanced cathode for potassium-ion batteries
CN113871209A (zh) 一种碳包覆石墨烯-氧化铁复合电极材料及其制备方法与应用
Wu et al. Ti3C2/fluorine-doped carbon as anode material for high performance potassium-ion batteries
CN114613613B (zh) 聚多巴胺/石墨烯复合材料锂离子混合电容器及制备方法
Yang et al. Nitrogen-doped carbon nanotubes by multistep pyrolysis process as a promising anode material for lithium ion hybrid capacitors
CN102891017B (zh) 碳纳米管复合的混合型超级电容器正极极片及其制作方法
CN111564317B (zh) 一种复合电极材料及其制备方法、超级电容器的电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant