CN110268075A - 降低软磁fe-co合金中的有序生长 - Google Patents

降低软磁fe-co合金中的有序生长 Download PDF

Info

Publication number
CN110268075A
CN110268075A CN201780079776.9A CN201780079776A CN110268075A CN 110268075 A CN110268075 A CN 110268075A CN 201780079776 A CN201780079776 A CN 201780079776A CN 110268075 A CN110268075 A CN 110268075A
Authority
CN
China
Prior art keywords
alloy
manufacture
temperature
annealing
elongate article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780079776.9A
Other languages
English (en)
Inventor
E.M.费特林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRS Holdings LLC
Original Assignee
CRS Holdings LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60480367&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN110268075(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by CRS Holdings LLC filed Critical CRS Holdings LLC
Publication of CN110268075A publication Critical patent/CN110268075A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • B32B2038/0048Annealing, relaxing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

公开了用于由软磁Fe‑Co合金的伸长带材制备制造品的方法。该方法包括制造前退火步骤,其中在伸长带材被制造成部件之前对其进行退火。在大于合金的有序化温度的温度下进行制造前退火步骤。该方法进一步包括以一定的速率将合金从退火温度冷却的步骤,选择所述速率以引起软磁Fe‑Co合金的无序相基本转变成其有序相。还公开了通过使用该方法制备的制造品。

Description

降低软磁FE-CO合金中的有序生长
发明背景:
发明领域:
本发明涉及用于由等原子比软磁Fe-Co合金制备制造品的方法,以及涉及由此制备的有用制品。
相关技术描述:
等原子比软磁Fe-Co合金(包括Fe-Co-2V合金)是已知的,并且已主要用来制备用于电动机和发电机的定子和转子的叠层组件。已知的Fe-Co合金提供软磁性质连同良好的强度、延展性和加工性能的组合。通常对由这些合金制造的部件进行退火,以降低合金材料中的应力,并获得磁性质和机械性质的所需组合。合金在热处理时经历从无序状态到有序状态的转变。无序相的特征为Fe和Co原子在合金的体心立方(bcc)晶格结构的晶胞中无规分布。在有序相中,Fe和Co原子占据遍布晶格结构的晶胞中的特定位置。
在制造后退火热处理之前,合金处于无序状态。但是,在将合金从退火温度冷却时,该合金随着其冷却通过有序化温度(T有序)而转变成有序状态。本发明所应用的软磁Fe-Co合金的T有序为约730°C(约1345°F)。合金的无序相具有比有序相大的热膨胀系数(CTE)。因此,在制造后热处理期间,由该合金制备的部件由于该两相的不同的CTE而经历尺寸的净增加。换言之,合金在加热期间的生长超过其在冷却期间的收缩。该现象导致由合金制备的部件在制造后热处理之后发生尺寸的净增加。
难以解释净尺寸增加,因为本发明人已确定,轧制方向上的净尺寸增加显著大于横向于轧制方向的方向上的净尺寸增加。由Fe-Co软磁合金制备的叠层部件的制造商很少在技术上解释经退火的成品部件的不对称净尺寸变化。难以评价净尺寸变化的程度,因为其受到诸如以下之类的因素的影响:可能制造的复杂形状、热处理期间引起的热应力以及与所使用的制造技术(例如冲压)相关联的机械应力。因此,净尺寸变化并不总是均匀的或一致的。
对于以下方面存在着日益增加的需求:由Fe-Co软磁合金制备的更严格公差的叠层件和部件,以满足针对电动机和发电机的越来越具挑战性的工程设计标准。为了满足该需求,已对以下方面提出需要:能够限制或控制由等原子比软磁Fe-Co合金制造的部件的净尺寸变化,以便更好地满足更严格公差要求。
发明概述:
通过按照本发明的方法很大程度上解决了与由已知的等原子比Fe-Co合金制造部件相关联的尺寸相关问题。根据本发明的第一方面,提供了用于由软磁Fe-Co合金制备制造品的方法。该方法包括提供基本扁平的伸长长度的软磁Fe-Co合金的步骤,其中Fe-Co合金具有特征为基本上由无序相构成的结构。该方法还包括制造前(prefabrication)或中间退火步骤,其中在将伸长长度的软磁合金钢制造成部件之前对其进行退火。在大于该合金的有序化温度的温度下进行该制造前退火步骤。该方法进一步包括以一定的速率将合金从退火温度冷却的步骤,所述速率选择为引起软磁Fe-Co合金的无序相基本转变为其有序相,由此软磁Fe-Co合金经历尺寸变化。在制造前退火步骤之后,将伸长长度的合金制造成制造品。然后对制品进行制造后退火热处理,在选择用以获得制造品中磁性质和机械性质的所需组合的气氛、温度和时间的条件下进行该制造后退火热处理。
按照本发明的另一方面,提供了由软磁Fe-Co合金制备的伸长的软磁制品。该制品的特征为以下合金:其具有显著量的所述合金的有序相。该制品进一步的特征为在制造后退火之后展现在纵向(轧制方向)和横向上大小基本对称的净尺寸变化。
以下定义应用于此处和遍及本说明书。术语“Fe-Co合金”表示具有大于90原子%的Fe+Co总含量,且其中Fe:Co比率为约0.33至约3的合金。该合金可包括少量的经添加以特别有益于所需性质的额外的元素,且将通常包括在意欲用于相同或相似操作的其它合金中发现的常见杂质。除非另有指明,否则术语“百分比”或符号“%”表示重量百分比。术语“无序”表示具有铁和钴原子无规排列于其中的晶胞的晶格结构。术语“有序”表示具有晶胞的晶格结构,其中铁和钴原子在遍及合金的晶格晶胞中占据特定位置。
附图简述:
当结合附图阅读时,将更好地理解以下详述以及前面的发明概述,其中:
图1是根据本发明的方法的实施方案的方框图;
图2是通过已知方法制备的软磁Fe-Co合金制品的示意性图示;以及
图3是通过根据本发明的方法制备的软磁Fe-Co合金制品的示意性图示。
详述:
现参考图1,显示了根据本发明的方法的实施方案。根据本发明的方法的初始步骤100-300提供基本扁平的、伸长长度的软磁合金钢。如步骤100中所指明的,通过熔炼Fe-Co合金来制备该伸长长度的合金。该合金可含有少量的如本领域技术人员已知的特别有益于所需性质的其它元素。例如,在一个实施方案中,该合金可含有约2%钒。在另一实施方案中,该合金可含有约0.3%铌。在又一实施方案中,该合金可含有约0.3%钽和约1.15%钒。在再一实施方案中,该合金可含有约0.3%的钽和钒中的每一种。该合金可含有约0.010%碳,且在一些实施方案中,可含有不超过约0.001%碳。本发明的方法特别适用于US 5,501,747、US 3,634,072和EP 1 145 259中描述的Fe-Co合金,通过引用将这些专利整体并入本文。更具体地,本发明的方法广泛适用于以下软磁合金:其含有45-55%钴、0.5-2.5%钒、任选0.02-0.5%铌和/或钽、0.003-0.50%碳或0.07-0.3%锆,且其余为铁和杂质。
可通过任何常规的熔炼技术来熔炼合金,但是优选通过真空感应熔炼(VIM)来熔炼合金。将熔融的合金铸造成一块或更多块锭,并且允许其固化并冷却到室温。在步骤200中,优选对合金锭进行热加工,例如通过压制、开坯或轧制成坯料或条材(bar)形式,然后进行热轧,以提供中间伸长制品,例如厚带材、棒材或条材。如步骤300中那样将中间伸长制品冷轧至基于待由该材料制造的部件的最终形式所选择的横截面积和厚度。优选地,将经冷轧的中间制品实现为带材材料,其具有选择用于制备电动机和发电机中所使用的定子和转子用的叠层部件的厚度和宽度。可以一次或更多次轧制(reduction)来实施冷轧步骤。
在制造叠层部件之前,用来制备经冷轧的伸长中间制品的合金具有如上所述的基本上由无序相构成的晶格结构。在步骤400中,在制造部件叠层件之前将经冷轧的伸长中间制品退火,以便使将以其它方式在此类部件的制造后退火期间出现的叠层件以及从中组装的部件的净尺寸变化最小化。在促进合金向有序相转变的温度、时间和气氛的条件下进行制造前退火步骤。仅仅必需的是,显著部分的合金转变成有序相,以获得制造前退火步骤的益处。当实现大于40体积%且优选大于50体积%的有序度时,认为显著部分的合金转变为有序相。更具体地,制造前退火步骤包括在大于Fe-Co合金的有序化温度的温度下加热经冷轧的中间伸长制品。然后如步骤500中所指明的,以随着合金从退火温度冷却通过有序化温度而足以引起合金转变为有序状态的速率将经冷轧的中间伸长制品冷却。
可通过在高于有序相变得亚稳定的温度(例如约600°C),但不高于奥氏体相变得热力学稳定的温度(例如约871°C)的温度下加热合金的伸长的中间体形式来进行制造前退火步骤。优选地,通过在高于有序相变得稳定的温度(例如约700°C),但不高于奥氏体相变得热力学稳定的温度的温度下加热合金的伸长的中间体形式来进行制造前退火步骤。优选用足以在退火温度下加热合金至少约1分钟的进料通过速率(feed-through rate),在非氧化气氛中对伸长的中间体形式进行分股退火。优选在空气中,将伸长的中间体形式从退火温度冷却。非氧化气氛优选为干燥氢气,即,具有-40°F(-40°C)或更低露点的氢气。
在将中间伸长制品冷却到室温之后,可使其成形为叠层件,其具有基于待由该叠层件制备的部件的设计所选择的形状。如步骤600中所指明的,可通过冲压经冷轧的伸长制品来制造叠层件。可通过本领域技术人员已知的其它切割技术来形成叠层件,所述切割技术包括,但不限于激光切割、电火花加工(EDM)、光刻和水喷射切割。如在步骤700中的那样,在保护气氛中,在经选择以提供足以承受在操作中将遭遇的高物理应力的机械性质和磁性质的组合的温度和时间的条件下将叠层件分批退火。例如,可通过在干燥氢气中,在1300至1600°F(704至871°C)的温度下加热2-4小时来将叠层部件退火。然后以每小时250-400°F(139-222°C)的速率将经加热的部件从退火温度冷却到约600°F(316°C),之后可以任何速率将部件冷却到室温。保护气氛优选为干燥氢气。然后如步骤800中所指明的,将成形的叠层件堆叠并粘合在一起,以形成磁性组件。
相比于由等原子比Fe-Co合金制备叠层软磁制品的已知方法,根据本发明的方法提供显著的优势。中间的制造前退火步骤提供了伸长的合金制品,其具有特征为合金的无序相基本转变成有序相的结构。对成形的叠层件进行后续退火时,在制造后退火热处理之后叠层件的尺寸净增加显著小于不实施制造前退火步骤时的情形。发明人已观察到,中间退火步骤的使用导致轧制方向上的尺寸变化减少约63%,并且横向上的尺寸变化减少约55%。此外,发明人已确定,横向上的净尺寸变化与轧制方向上的净尺寸变化显著更对称。
由根据本发明的方法提供的优势例示于图2和图3中。图2显示了通过已知方法制备的一段带材材料或冲压叠层件。该带材段或叠层件10在如上所述的冷轧条件下具有第一剖面12。将该带材段或叠层件退火之后,其具有如更大的第二剖面14所例示的净尺寸变化。如图2中可见,轧制方向上的净尺寸变化大于横向上的净尺寸变化。图3显示了通过本发明的方法制备的一段带材材料或叠层件10'。在该带材段或叠层件10'被冷轧并然后使用根据本发明的中间退火热处理进行热处理之后具有第一剖面12'。将该带材段或叠层件在制造后进行退火之后,其经历如由第二剖面14'所例示的净尺寸变化。如图3中所见,该带材段或叠层件的净尺寸变化通常小于使用已知工艺的情况。另外,净尺寸变化在轧制方向和横向两者上均更对称。
工作实施例
为了证明根据本发明的方法的有效性,对HIPERCO®50铁-钴-钒合金样品实施比较测试。HIPERCO 50合金具有以下标称重量百分比组成:0.01%碳、0.05%锰、0.05%硅、48.75%钴、0.05%铌和1.90%钒。该合金的其余部分是铁和常见的杂质。由两块锭制备测试样品,所述锭在真空感应熔炼之后经铸造且然后在固化之后经真空电弧重熔(VAR)。将VAR锭锻造成坯料形式,并然后热轧成具有第一中间厚度的带材形式。将来自每块锭的带材退火,冷轧至第二中间厚度,冷轧至最终厚度,并然后切割成预选的最终宽度。
按照如以上第3页中所描述的根据本发明的方法,将由一块锭生产的带材退火,并然后冷却到室温。不对由另一块锭生产的带材进行退火。通过冲压经退火的带材材料来制造两套成形的叠层件。第一套成形的叠层件具有2.680英寸的内径和5.4761英寸的外径,且第二套成形的叠层件具有5.51925英寸的内径和7.1045英寸的外径。由未经退火的带材材料冲压额外两套成形的叠层件。第一套额外的成形的叠层件具有2.680英寸的内径和5.4761英寸的外径,且第二套额外的成形的叠层件具有5.51925英寸的内径和7.1045英寸的外径。按照针对HIPERCO 50合金的通常实践以及如以上第4页所一般性描述的,将四套成形的叠层件分批退火,并然后冷却到室温。
在制造之后测量且在制造后退火之后再次测量十一(11)个预先退火的外径为5.4761英寸的成形的叠层件和十二(12)个预先退火的外径为7.1045英寸的成形的叠层件的内径和外径。在制造之后测量且在制造后退火之后再次测量九(9)个未经退火的成形的叠层件的内径和外径。针对每一个部件确定制造后退火之后实现的生长的量。测量的直径(内径和外径)(按英寸计)呈现在下表1A和1B中。
表1A
表1B
通过由呈现在表1A和1B中的测量值计算各套部件的测量的内径和外径的差异来确定部件的尺寸生长的大小(Δ),并呈现在下表2中。所有的值都按英寸计。
表2
从表2中的数据清楚的是,根据本发明加工的环形叠层件的尺寸生长的大小显著小于标准加工产生的环形叠层件的尺寸生长的大小。为了强调相比于标准加工由使用本发明的方法所实现的差别,下表3呈现了按标准加工部件的平均生长的百分比计的根据本发明加工的部件的平均生长。
表3
从表3明显的是,用根据本发明的方法加工的叠层件在最终的退火热处理之后具有比用标准方法制备的部件显著更小的生长。
本说明书中采用的术语和表述用作描述而非限制的术语。在此类术语和表述的使用中无意排除任何所显示并描述的特征或其部分的等价物。应认识到,在本文所描述并要求保护的发明范围内,各种修改是可能的。

Claims (24)

1.一种用于由软磁Fe-Co合金制备制造品的方法,其包括以下步骤:
提供软磁Fe-Co合金所形成的基本扁平的伸长制品,所述Fe-Co合金具有基本上由无序相构成的晶格结构;
在大于所述Fe-Co合金的有序化温度的温度下将所述Fe-Co合金的伸长制品退火;
以足以引起显著量的所述无序相转变为其有序相的速率将所述Fe-Co合金从退火温度冷却;
由所述Fe-Co合金的经退火的伸长制品制造制造品;并且然后
将所述制造品退火,其中在选择用以获得所述制造品中的磁性质和机械性质的所需组合的温度、时间和气氛的条件下进行将所述制造品退火的所述步骤。
2.如权利要求1中所要求保护的方法,其中按重量百分比计,所述Fe-Co合金包含约45-55%钴、约0.5-2.5%钒、约0.02-0.5%铌加钽、任选约0.003-0.50%碳或0.07-0.3%锆,且其余为铁和杂质。
3.如权利要求1中所要求保护的方法,其中提供所述扁平的伸长制品的步骤包括以下步骤:熔炼并铸造所述Fe-Co合金以提供锭,热加工所述锭以形成中间伸长带材,且然后将所述中间伸长带材冷轧至最终厚度。
4.如权利要求3中所要求保护的方法,其中熔炼步骤包括以下步骤:真空感应熔炼所述Fe-Co合金,将所述合金铸造成锭,且然后真空电弧重熔所述锭。
5.如权利要求1中所要求保护的方法,其中将所述伸长制品退火的步骤包括在约600ºC至约870ºC的温度下加热所述伸长制品。
6.如权利要求5中所要求保护的方法,其中退火温度为至少约700ºC。
7.如权利要求1中所要求保护的方法,其中制造所述制造品的步骤包括由所述Fe-Co合金的经退火的伸长制品形成叠层件。
8.如权利要求1中所要求保护的方法,其中在非氧化气氛中实施将所述伸长制品退火的步骤。
9.如权利要求8中所要求保护的方法,其中以足以在退火温度下加热所述合金至少约1分钟的进料通过速率将所述伸长制品分股退火。
10.如权利要求8中所要求保护的方法,其中所述非氧化气氛是干燥氢气。
11. 一种用于由软磁Fe-Co合金制备制造品的改进方法,其具有以下步骤:提供软磁Fe-Co合金所形成的基本扁平的伸长长度,所述Fe-Co合金具有基本上由无序相构成的晶格结构;由伸长长度的所述Fe-Co合金制造制造品;和在选择用以获得所述制造品中的磁性质和机械性质的所需组合的温度、时间和气氛的条件下将所述制造品退火,其中所述改进包括以下步骤:
在制造步骤之前,在大于所述Fe-Co合金的有序化温度的温度下将伸长长度的所述Fe-Co合金退火;以及然后
以足以引起显著量的所述合金的所述无序相转变为有序相的速率将所述Fe-Co合金从退火温度冷却;
其中在制造所述制造品之前实施所述退火和冷却步骤。
12.如权利要求11中所要求保护的方法,其中按重量百分比计,所述Fe-Co合金包含约45-55%钴、约0.5-2.5%钒、约0.02-0.5%铌加钽、任选约0.003-0.50%碳或0.07-0.3%锆,且其余为铁和杂质。
13.如权利要求11中所要求保护的方法,其中提供扁平的伸长制品的步骤包括以下步骤:熔炼并铸造所述Fe-Co合金以提供锭,热加工所述锭以形成中间伸长带材,且然后将所述中间伸长带材冷轧至最终厚度。
14.如权利要求13中所要求保护的方法,其中熔炼步骤包括以下步骤:真空感应熔炼所述Fe-Co合金,将所述合金铸造成锭,且然后真空电弧重熔所述锭。
15.如权利要求11中所要求保护的方法,其中将伸长制品退火的步骤包括在约600ºC至约870ºC的温度下加热所述伸长制品。
16.如权利要求15中所要求保护的方法,其中退火温度为至少约700ºC。
17.如权利要求11中所要求保护的方法,其中制造所述制造品的步骤包括由所述Fe-Co合金的经退火的伸长制品形成叠层件。
18.如权利要求11中所要求保护的方法,其中在非氧化气氛中实施将伸长制品退火的步骤。
19.如权利要求18中所要求保护的方法,其中以足以在退火温度下加热所述合金至少约1分钟的进料通过速率将所述伸长制品分股退火。
20.如权利要求18中所要求保护的方法,其中所述非氧化气氛是干燥氢气。
21.在一种用于由软磁Fe-Co合金制备制造品的方法中,以下步骤:
提供基本扁平的伸长长度的软磁Fe-Co合金,其中所述Fe-Co合金具有基本上由无序相构成的结构;
将伸长长度的所述Fe-Co合金在大于所述Fe-Co合金的有序化温度的温度下退火;并且然后
以足以引起显著量的所述Fe-Co合金的所述无序相转变为有序相的速率将所述Fe-Co合金从退火温度冷却;
其中在制造所述制造品之前实施所述退火和冷却步骤。
22.如权利要求21中所要求保护的方法,其中所述制造品由所述Fe-Co合金的叠层件形成。
23.一种制造品,其包含由软磁Fe-Co合金的伸长带材制造的多个堆叠的叠层件,其中所述制造品的特征在于基本上由所述Fe-Co合金的有序相构成的晶胞结构以及在退火之后,具有 大小基本相同的轧制方向上的净尺寸变化和横向上的净尺寸变化。
24.一种制造品,其包含由软磁Fe-Co合金的伸长带材制造的多个堆叠的叠层件,在制造所述叠层件之前,通过以下方式将所述软磁Fe-Co合金的伸长带材退火:将所述Fe-Co合金的伸长带材在大于所述Fe-Co合金的有序化温度的温度下退火,以及然后以足以引起显著量的所述Fe-Co合金的无序相转变为有序相的速率将所述Fe-Co合金从退火温度冷却;其中所述制造品的特征在于基本上由所述Fe-Co合金的有序相构成的晶胞结构,以及具有大小基本相同的轧制方向上的净尺寸变化和横向上的净尺寸变化。
CN201780079776.9A 2016-10-21 2017-10-20 降低软磁fe-co合金中的有序生长 Pending CN110268075A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662410926P 2016-10-21 2016-10-21
US62/410926 2016-10-21
PCT/US2017/057576 WO2018075882A1 (en) 2016-10-21 2017-10-20 Reducing ordered growth in soft-magnetic fe-co alloys

Publications (1)

Publication Number Publication Date
CN110268075A true CN110268075A (zh) 2019-09-20

Family

ID=60480367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780079776.9A Pending CN110268075A (zh) 2016-10-21 2017-10-20 降低软磁fe-co合金中的有序生长

Country Status (11)

Country Link
US (2) US20180112287A1 (zh)
EP (1) EP3529386B1 (zh)
JP (1) JP2019537664A (zh)
KR (1) KR102318304B1 (zh)
CN (1) CN110268075A (zh)
BR (1) BR112019008105B1 (zh)
CA (1) CA3040715C (zh)
ES (1) ES2880382T3 (zh)
IL (1) IL266024A (zh)
MX (1) MX2019004479A (zh)
WO (1) WO2018075882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107618A (zh) * 2020-08-31 2022-03-01 通用电气公司 用于混合涡轮电气部件的铁钴层压材料的加工

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268075A (zh) 2016-10-21 2019-09-20 Crs 控股公司 降低软磁fe-co合金中的有序生长
DE102016222805A1 (de) * 2016-11-18 2018-05-24 Vacuumschmelze Gmbh & Co. Kg Halbzeug und Verfahren zum Herstellen einer CoFe-Legierung
US11028468B2 (en) * 2018-09-28 2021-06-08 Apple Inc. Soft magnetic alloy optimized for metal injection molding
DE102019107422A1 (de) 2019-03-22 2020-09-24 Vacuumschmelze Gmbh & Co. Kg Band aus einer Kobalt-Eisen-Legierung, Blechpaket und Verfahren zum Herstellen eines Bands aus einer Kobalt-Eisen-Legierung
DE102019110872A1 (de) * 2019-04-26 2020-11-12 Vacuumschmelze Gmbh & Co. Kg Blechpaket und Verfahren zum Herstellen einer hochpermeablen weichmagnetischen Legierung
EP3957757B1 (en) * 2020-08-18 2023-03-01 Vacuumschmelze GmbH & Co. KG Method of producing a cofe alloy strip and a cofe alloy lamination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597286A (en) * 1968-02-23 1971-08-03 Westinghouse Electric Corp Method of treating a high strength high ductility iron-cobalt alloy
US5501747A (en) * 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article
US20080042505A1 (en) * 2005-07-20 2008-02-21 Vacuumschmelze Gmbh & Co. Kg Method for Production of a Soft-Magnetic Core or Generators and Generator Comprising Such a Core

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US286A (en) * 1837-07-19 Mode of
US747A (en) * 1838-05-25 Improvement in fire-arms
US92A (en) * 1836-11-28 Machine for nicking or cutting notci-ies in heads of wood-screws
US3634072A (en) 1970-05-21 1972-01-11 Carpenter Technology Corp Magnetic alloy
BE795762A (fr) 1972-02-22 1973-08-22 Westinghouse Electric Corp Alliages fer-cobalt ameliores
US3793092A (en) * 1972-11-10 1974-02-19 Gen Electric Fine-grained, completely decrystallized, annealed cobalt-iron-vanadium articles and method
US5741374A (en) 1997-05-14 1998-04-21 Crs Holdings, Inc. High strength, ductile, Co-Fe-C soft magnetic alloy
GB2339798B (en) 1998-07-24 2002-12-11 Telcon Ltd High Strength soft magnetic alloys
US6685882B2 (en) 2001-01-11 2004-02-03 Chrysalis Technologies Incorporated Iron-cobalt-vanadium alloy
GB2480958B (en) 2009-03-26 2014-06-25 Vacuumschmelze Gmbh & Co Kg Laminated core with soft-magnetic material and method for joining core laminations by adhesive force to form a soft-magnetic laminated core
US20140283953A1 (en) 2011-12-16 2014-09-25 Aperam Method for producing a soft magnetic alloy strip and resultant strip
CN110268075A (zh) 2016-10-21 2019-09-20 Crs 控股公司 降低软磁fe-co合金中的有序生长

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3597286A (en) * 1968-02-23 1971-08-03 Westinghouse Electric Corp Method of treating a high strength high ductility iron-cobalt alloy
US5501747A (en) * 1995-05-12 1996-03-26 Crs Holdings, Inc. High strength iron-cobalt-vanadium alloy article
US20080042505A1 (en) * 2005-07-20 2008-02-21 Vacuumschmelze Gmbh & Co. Kg Method for Production of a Soft-Magnetic Core or Generators and Generator Comprising Such a Core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107618A (zh) * 2020-08-31 2022-03-01 通用电气公司 用于混合涡轮电气部件的铁钴层压材料的加工

Also Published As

Publication number Publication date
ES2880382T3 (es) 2021-11-24
JP2019537664A (ja) 2019-12-26
IL266024A (en) 2019-06-30
KR102318304B1 (ko) 2021-10-29
WO2018075882A1 (en) 2018-04-26
US20180112287A1 (en) 2018-04-26
EP3529386A1 (en) 2019-08-28
EP3529386B1 (en) 2021-04-14
BR112019008105B1 (pt) 2022-10-18
BR112019008105A2 (zh) 2019-07-23
CA3040715A1 (en) 2018-04-26
MX2019004479A (es) 2019-10-09
KR20190074294A (ko) 2019-06-27
CA3040715C (en) 2021-07-06
US20210207239A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
CN110268075A (zh) 降低软磁fe-co合金中的有序生长
KR101004051B1 (ko) 형상 기억성 및 초탄성을 가지는 철계 합금 및 그 제조방법
US6849231B2 (en) α-β type titanium alloy
US11114226B2 (en) Ultra-low cobalt iron-cobalt magnetic alloys
JP5005834B2 (ja) Fe基形状記憶合金及びその製造方法
JP5185613B2 (ja) 新規Fe−Al合金、及びその製造方法
US20200340088A1 (en) Laminated core and method for the production of a high permeability soft magnetic alloy
KR101765729B1 (ko) 금속 호일의 제조 방법
CN106460098A (zh) Cu‑Al‑Mn系合金材料及其制造方法、以及使用了该合金材料的棒材或板材
CN105473751B (zh) 非晶粒取向的电工钢带或电工钢板、由其制成的部件及用于制造非晶粒取向的电工钢带或电工钢板的方法
JP6874246B2 (ja) Fe基形状記憶合金材及びその製造方法
JP5594244B2 (ja) 75GPa未満の低ヤング率を有するα+β型チタン合金およびその製造方法
CN103114234A (zh) 一种室温软磁性能与力学性能优良的合金及其制备方法
JP2004511658A (ja) Co−Mn−Fe軟磁性合金
US20190360065A1 (en) METHOD FOR PRODUCING A STRIP FROM A CoFe ALLOY AND A SEMI-FINISHED PRODUCT CONTAINING THIS STRIP
CN100451159C (zh) 制造锆合金扁平产品的方法,由此获得的产品,和由所述扁平产品制造的用于核电站反应堆的燃料组装元件
JP5787499B2 (ja) 非晶質磁性合金、関連物品及び方法
JP7448873B2 (ja) 無方向性電磁鋼板及びモータコア
JPH04337050A (ja) 磁気特性の優れた高抗張力磁性材料およびその製造方法
CN115812107A (zh) 软磁性部件及其中间体、所述部件和所述中间体各自的制造方法以及软磁性部件用合金
JP2007169760A (ja) Fe−Co系合金の製造方法
JPH04362158A (ja) 高強度非磁性低熱膨張合金およびその製造方法
JPS5839889B2 (ja) センダスト系合金の熱処理法
JP2005023426A (ja) 高強度非磁性低熱膨張合金

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Delaware

Applicant after: CRS holdings LLC

Address before: Delaware

Applicant before: CRS HOLDINGS, Inc.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190920