CN110262242A - 一种微陀螺仪自适应分数阶滑模控制方法 - Google Patents

一种微陀螺仪自适应分数阶滑模控制方法 Download PDF

Info

Publication number
CN110262242A
CN110262242A CN201910583528.9A CN201910583528A CN110262242A CN 110262242 A CN110262242 A CN 110262242A CN 201910583528 A CN201910583528 A CN 201910583528A CN 110262242 A CN110262242 A CN 110262242A
Authority
CN
China
Prior art keywords
gyroscope
control
sliding
adaptive
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910583528.9A
Other languages
English (en)
Other versions
CN110262242B (zh
Inventor
陈放
费峻涛
陈云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Campus of Hohai University
Original Assignee
Changzhou Campus of Hohai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Campus of Hohai University filed Critical Changzhou Campus of Hohai University
Priority to CN201910583528.9A priority Critical patent/CN110262242B/zh
Publication of CN110262242A publication Critical patent/CN110262242A/zh
Application granted granted Critical
Publication of CN110262242B publication Critical patent/CN110262242B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5776Signal processing not specific to any of the devices covered by groups G01C19/5607 - G01C19/5719
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了微陀螺仪控制技术领域的一种微陀螺仪自适应分数阶滑模控制方法,旨在解决现有技术中微陀螺仪因加工精度要求高,导致灵敏度和精度等与预期性能指标有所出入的技术问题。所述方法包括如下步骤:建立微陀螺仪的动力学模型,设计分数阶滑模面模型;基于动力学模型和分数阶滑模面模型设计分数阶滑模控制律,作为控制输入对微陀螺仪进行滑摸控制,所述控制律包括等效控制律和切换控制律;基于Lyapunov稳定性设计自适应控制算法,对控制律的系统未知参数进行实时更新,促使系统运动点的轨迹稳定跟踪动力学模型的轨迹。

Description

一种微陀螺仪自适应分数阶滑模控制方法
技术领域
本发明涉及一种微陀螺仪自适应分数阶滑模控制方法,属于微陀螺仪控制技术领域。
背景技术
陀螺仪是一种具备传感、维持方向稳定和角运动检测功能的装置,其运行主要是基于角动量守恒定律,在角动量作用下,能够抗拒方向改变趋势,常被用作角速度计,作为惯性导航系统的基本测量元件,应用于军事、航空、航天等领域。与传统陀螺仪相比,微陀螺仪具备体积小、重量轻等诸多优势,在对尺寸和重量等要求严格的技术领域得到了更为广泛的应用。以硅微陀螺仪为例,由于其运用微机械加工工艺制成,结构尺寸通常为微米级,集成封装后,尺寸也仅在毫米量级,因而对加工精度要求极高,由于加工工艺等现实问题,导致硅微陀螺仪的灵敏度、精度等与预期性能指标有所出入,进而导致微陀螺仪技术发展缓慢。
发明内容
本发明的目的在于克服现有技术中的不足,提供了一种微陀螺仪自适应分数阶滑模控制方法,包括如下步骤:
建立微陀螺仪的动力学模型,设计分数阶滑模面模型;
基于动力学模型和分数阶滑模面模型设计分数阶滑模控制律,作为控制输入对微陀螺仪进行滑摸控制,所述控制律包括等效控制律和切换控制律;
基于Lyapunov稳定性设计自适应控制算法,对控制律的系统未知参数进行实时更新,促使系统运动点的轨迹稳定跟踪动力学模型的轨迹。
进一步地,建立微陀螺仪的动力学模型,包括:
建立动力学模型的转动坐标系,所述转动坐标系包括对微陀螺仪驱动振动的方向、检测振动的方向、输入角速度的方向分别进行设定;
基于转动坐标系建立微陀螺仪驱动模态和检测模态的基本动力学模型;
对基本动力学模型进行结构误差修正;
对进行结构误差修正后的动力学模型进行无量纲化处理;
将进行无量纲化处理后的动力学模型改写为其向量形式;
在改写为向量形式的动力学模型中引入若干变量,所述变量包括外界干扰、系统参数不确定性。
进一步地,基于动力学模型和分数阶滑模面模型设计分数阶滑模控制律,包括:
利用动力学模型中外界干扰和系统参数不确定性表征系统运动点趋近切换面的速率,获取切换控制律;
对分数阶滑模面模型进行求导,将滑摸控制到达条件引入进行求导后的分数阶滑模面模型,获取等效控制律。
进一步地,基于Lyapunov稳定性设计自适应控制算法,包括:
利用自适应控制算法获取系统未知参数的估计值;
将系统未知参数的估计值代入滑模控制律,获取估计的滑模控制律;
设定系统未知参数估计值与真实值的差值,作为系统未知参数的估计误差;
将估计误差和估计的滑模控制律代入引入若干变量的向量形式的动力学模型,获取估计的向量形式的动力学模型;
将估计的向量形式的动力学模型化简后,代入预设Lyapunov函数关于时间的一阶导数,根据Lyapunov稳定性的原理设计系统未知参数的自适应控制算法。
进一步地,对控制律的系统未知参数进行实时更新,促使系统运动点的轨迹稳定跟踪动力学模型的轨迹,包括:
利用自适应控制算法获取系统未知参数的估计值;
将系统未知参数的估计值代入滑模控制律,获取估计的滑模控制律;
以估计的滑模控制律作为控制输入对微陀螺仪进行滑摸控制。
进一步地,设定X轴为微陀螺仪驱动振动的方向、Y轴为微陀螺仪检测振动的方向、Z轴为输入角速度的方向,微陀螺仪驱动模态和检测模态的基本动力学模型,包括如下公式:
式中,m为微陀螺仪质量块的质量,x为质量块在驱动方向的位置向量,y为质量块在检测方向的位置向量,是x的一阶导数,是x的二阶导数,是y的一阶导数,是y的二阶导数,dx为驱动方向的阻尼系数,dy为检测方向的阻尼系数,kx为驱动方向的刚度系数,ky为检测方向的刚度系数,ux为驱动方向的控制输入,uy为检测方向的控制输入,Ωz为输入方向的角速度,是Ωz的一阶导数。
进一步地,引入若干变量的向量形式的动力学模型,包括如下公式:
其中,
式中,q是微陀螺仪系统的输出轨迹,是q的一阶导数,是q的二阶导数,D、Ω、K均为系统未知参数,其中D为由修正后的驱动方向的阻尼系数dxx、修正后的检测方向的阻尼系数dyy和耦合阻尼系数dxy组成的矩阵,K为由修正后的驱动方向的刚度系数kxx的无量纲化形式ωx、修正后的检测方向的刚度系数kyy的无量纲形式ωy和耦合刚度系数kxy的无量纲形式ωxy组成的矩阵,Ω为由输入方向的角速度Ωz和输入方向的角速度的相反数-Ωz组成的矩阵,ΔD为D+2Ω的不确定性,u为分数阶滑模控制律,ΔK为K的不确定性,d为外界干扰。
进一步地,分数阶滑模面模型,包括如下公式:
其中,
e=q-qr=[x-qr1,y-qr2]T
0<α<1,
式中,s为非奇异滑模面,c、λ为正常数,e为跟踪误差,是e的一阶导数,α为分数阶阶数,T表示向量的转置,qr是微陀螺仪系统的期望轨迹,是qr的一阶导数,qr1为微陀螺仪系统x轴期望轨迹,qr2为微陀螺仪系统y轴期望轨迹,是qr1的一阶导数,是qr2的一阶导数。
进一步地,预设Lyapunov函数,包括如下公式:
其中,
M=MT>0,N=NT>0,P=PT>0,
式中,V为Lyapunov函数,tr{·}表示矩阵的求迹运算,M为正定对称矩阵1,N为正定对称矩阵2,P为正定对称矩阵3,为D的估计误差,为K的估计误差,为Ω的估计误差。
进一步地,自适应控制算法,包括如下公式:
式中,的一阶导数,的一阶导数,的一阶导数,为未知参数D的估计值,为未知参数K的估计值,为未知参数Ω的估计值。
与现有技术相比,本发明所达到的有益效果:分数阶滑模面增加了可以调节分数阶的阶数项,控制性能和控制精度得到提高;自适应控制算法可处理系统的不确定性,实现控制系统参数的在线自动整定。
附图说明
图1是本发明微陀螺仪系统的结构框图;
图2是本发明实例中微陀螺仪dxx、dxy、dyy自适应辨识曲线;
图3是本发明实例中微陀螺仪ωxy自适应辨识曲线;
图4是本发明实例中微陀螺仪Ωz自适应辨识曲线。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
一种微陀螺仪自适应分数阶滑模控制方法,包括如下步骤:
步骤一,建立微陀螺仪的动力学模型。
把微陀螺仪的驱动模态和检测模态,看作是一个“弹簧-质量-阻尼”的二阶系统。首先,建立动力学模型的转动坐标系;然后,基于转动坐标系建立微陀螺仪驱动模态和检测模态的基本动力学模型。
本实施例中,X轴为微陀螺仪驱动振动的方向,Y轴为微陀螺仪检测振动的方向,Z轴为输入角速度的方向,微陀螺仪的基本动力学模型如式(1)、式(2)所示:
式中,m为质量块的质量,x和y为质量块在驱动方向和检测方向的位置向量,是x的一阶导数,是x的二阶导数,是y的一阶导数,是y的二阶导数,dx为驱动方向的阻尼系数,dy为检测方向的阻尼系数,kx为驱动方向的刚度系数,ky为检测方向的刚度系数,ux为驱动方向的控制输入,uy为检测方向的控制输入,Ωz为z轴上的角速度,即输入方向的角速度,是Ωz的一阶导数。
考虑到微陀螺仪的结构误差带来的影响,为提高控制精度,将式(1)、式(2)修正为:
式中,dxx为修正后的驱动方向的阻尼系数,dyy为修正后的检测方向的阻尼系数,dxy为耦合阻尼系数,kxx为修正后的驱动方向的刚度系数,kyy为修正后的检测方向的刚度系数,kxy为耦合刚度系数。
为减小控制器设计的复杂度,对动力学模型进行无量纲化处理,将式(3)、式(4)的两边除以微陀螺仪质量块质量m,并参考长度q0和自然共振频率ω0,得到微陀螺仪无量纲化后的动力学模型,如式(5)、式(6)所示:
各个无量纲量的表达式为:
式中,ωx为kxx无量纲化后的形式,ωy为kyy无量纲化后的形式,ωxy为kxy无量纲化后的形式。
将式(5)、式(6)改写为向量形式,如式(7)所示:
式中,q为微陀螺仪系统的输出轨迹,是q的一阶导数,是q的二阶导数,D为由修正后的驱动方向的阻尼系数、修正后的检测方向的阻尼系数和耦合阻尼系数组成的矩阵,K为由修正后的驱动方向的刚度系数的无量纲化形式、修正后的检测方向的刚度系数的无量纲形式和耦合刚度系数的无量纲形式组成的矩阵,Ω为由输入方向的角速度和输入方向的角速度的相反数组成的矩阵,u为分数阶滑模控制律。
考虑到系统中参数的不确定性和外界干扰,将微陀螺仪系统动力学模型的向量形式式(7)改写为:
式中,ΔD为未知参数D+2Ω的不确定性,ΔK为未知参数K的不确定性,d为外界干扰。
定义f为微陀螺系统的集总参数不确定性和外界干扰,代入微陀螺仪系统的向量形式中,可得:
假设f满足||f||≤ρ(t),ρ(t)为未知的正常数,||f||表示f的范数。
步骤二,设计微陀螺仪自适应分数阶滑模控制系统。
如图1所示,是本发明微陀螺仪系统的结构框图;
首先,设计滑模控制的分数阶滑模面为:
式中,s为非奇异滑模面,c、λ为正常数,α为分数阶阶数,0<α<1,e为跟踪误差,是e的一阶导数,其中:
e=q-qr=[x-qr1,y-qr2]T (11)
式中,为微陀螺仪系统的输出轨迹,为微陀螺仪系统的期望轨迹,是qr1的一阶导数,是qr2的一阶导数,qr1为微陀螺仪系统x轴期望轨迹,qr2为微陀螺仪系统y轴期望轨迹。T表示向量的转置。
然后,设计分数阶滑模控制的控制律u,具体如下:
对式(10)分数阶滑模面进行求导,得:
式中,是s的一阶导数,是e的二阶导数,是qr的二阶导数;
由滑模控制到达条件得:
由到达条件可得分数阶滑模等效控制律ueq为:
利用外界干扰和系统参数不确定性表征系统运动点趋近切换面的速率,获取切换控制律,本实施例中,设计切换控制律usw为:
式中,||s||表示s的范数。
采用等效滑模控制与切换控制相结合的方法,基于式(15)和式(16)设计分数阶滑模控制的控制律u为:
步骤三,在线辨识微陀螺仪系统中的未知参数。
本实施例中,设计微陀螺仪系统的未知参数为D、K和Ω;
依据自适应控制的一般思想,利用自适应控制算法获取系统未知参数的估计值利用代替D的未知真实值,利用代替K的未知真实值,利用代替Ω的未知真实值,达到实时更新系统估计值的目的,以确保系统的稳定性,具体如下:
代替D、K和Ω,并代入式(17),得到估计的控制律u′:
定义参数D、K和Ω的估计误差分别为即:
将式(18)、式(19)代入微陀螺仪动力学模型的向量形式式(8),得:
将式(13)代入式(20)得:
代入微陀螺系统的集总参数不确定性和外界干扰对式(21)化简,得:
为设计的自适应律,选取Lyapunov函数V为:
式中,M=MT>0,N=NT>0,P=PT>0,M、N和P均为正定对称矩阵,M为正定对称矩阵1,N为正定对称矩阵2,P为正定对称矩阵3;tr{·}表示矩阵的求迹运算。
对Lyapunov函数求关于时间的一阶导数为:
式中,的一阶导数,的一阶导数,的一阶导数;
将式(22)代入式(24),得:
因为D、K和Ω为对称矩阵,则有D=DT,K=KT,Ω=-ΩT,且对于矩阵D有标量即:
同理,对于矩阵K和Ω有:
将式(26)和式(27)代入式(25)得:
又存在对式(28)进行化简得:
式中,的一阶导数,的一阶导数,的一阶导数;
为保证因此的自适应律可设计为:
对系统进行稳定性分析:
的自适应律式(30)代入式(28)中,得:
将||f||≤ρ(t)代入式(31),得:
由式(32)可得,是半负定的,系统具有稳定性,即在有限时间内,系统轨迹可到达设计的分数阶滑模面。
为验证本发明的可行性和有效性,利用MATLAB/Simulink进行仿真。
微陀螺仪中的各个参数分别选择为:
m=1.8×10-7kg,dxx=1.8×10-6N·s/m,dxy=3.6×10-7N·s/m,dyy=1.8×10-6N·s/m,kxx=63.955N/m,kxy=12.779N/m,kyy=95.92N/m,Ωz=100rad/s,q0=1μm,ω0=1kHz。
由以上数据可得,微陀螺的无量纲化参数为:dxx=0.01,dxy=0.002,dyy=0.01,ωxy=70.99,Ωz=0.1。
仿真实验中,将系统的初始条件设为:q1(0)=0,q2(0)=0,微陀螺两轴期望运行轨迹设为:qr1=sin(4.17t),qr2=1.2sin(5.11t),分数阶滑模面参数设为:c=25,λ=7,α=0.99,自适应固定增益设为:M=diag(150,150),N=diag(915,915),P=diag(120,120),三个参数矩阵的估计初值设为: 系统不确定性和外界干扰的上界值取为ρ(t)=25,集总不确定性为随机信号取d=[0.5*randn(1,1);0.5*randn(1,1)]。将仿真时间设置为60s,仿真结果详见图2至图4。
更具体地,如图2所示,是本发明实例中微陀螺仪dxx,dxy,dyy自适应辨识曲线,利用自适应分数阶滑模控制,参数dxx,dxy,dyy可以在有限时间内快速收敛为零,收敛速度较快;如图3所示,是本发明实例中微陀螺仪ωxy,自适应辨识曲线,利用自适应分数阶滑模控制,参数ωxy,可以在有限时间内快速收敛为零,收敛速度较快;如图4所示,是本发明实例中微陀螺仪Ωz自适应辨识曲线,利用自适应分数阶滑模控制,参数Ωz可以在有限时间内快速收敛为零,收敛速度较快。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (10)

1.一种微陀螺仪自适应分数阶滑模控制方法,其特征是,包括如下步骤:
建立微陀螺仪的动力学模型,设计分数阶滑模面模型;
基于动力学模型和分数阶滑模面模型设计分数阶滑模控制律,作为控制输入对微陀螺仪进行滑摸控制,所述控制律包括等效控制律和切换控制律;
基于Lyapunov稳定性设计自适应控制算法,对控制律的系统未知参数进行实时更新,促使系统运动点的轨迹稳定跟踪动力学模型的轨迹。
2.根据权利要求1所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,建立微陀螺仪的动力学模型,包括:
建立动力学模型的转动坐标系,所述转动坐标系包括对微陀螺仪驱动振动的方向、检测振动的方向、输入角速度的方向分别进行设定;
基于转动坐标系建立微陀螺仪驱动模态和检测模态的基本动力学模型;
对基本动力学模型进行结构误差修正;
对进行结构误差修正后的动力学模型进行无量纲化处理;
将进行无量纲化处理后的动力学模型改写为其向量形式;
在改写为向量形式的动力学模型中引入若干变量,所述变量包括外界干扰、系统参数不确定性。
3.根据权利要求2所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,基于动力学模型和分数阶滑模面模型设计分数阶滑模控制律,包括:
利用动力学模型中外界干扰和系统参数不确定性表征系统运动点趋近切换面的速率,获取切换控制律;
对分数阶滑模面模型进行求导,将滑摸控制到达条件引入进行求导后的分数阶滑模面模型,获取等效控制律。
4.根据权利要求2所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,基于Lyapunov稳定性设计自适应控制算法,包括:
利用自适应控制算法获取系统未知参数的估计值;
将系统未知参数的估计值代入滑模控制律,获取估计的滑模控制律;
设定系统未知参数估计值与真实值的差值,作为系统未知参数的估计误差;
将估计误差和估计的滑模控制律代入引入若干变量的向量形式的动力学模型,获取估计的向量形式的动力学模型;
将估计的向量形式的动力学模型化简后,代入预设Lyapunov函数关于时间的一阶导数,根据Lyapunov稳定性的原理设计系统未知参数的自适应控制算法。
5.根据权利要求1至4中任一项所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,对控制律的系统未知参数进行实时更新,促使系统运动点的轨迹稳定跟踪动力学模型的轨迹,包括:
利用自适应控制算法获取系统未知参数的估计值;
将系统未知参数的估计值代入滑模控制律,获取估计的滑模控制律;
以估计的滑模控制律作为控制输入对微陀螺仪进行滑摸控制。
6.根据权利要求4所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,设定X轴为微陀螺仪驱动振动的方向、Y轴为微陀螺仪检测振动的方向、Z轴为输入角速度的方向,微陀螺仪驱动模态和检测模态的基本动力学模型,包括如下公式:
式中,m为微陀螺仪质量块的质量,x为质量块在驱动方向的位置向量,y为质量块在检测方向的位置向量,是x的一阶导数,是x的二阶导数,是y的一阶导数,是y的二阶导数,dx为驱动方向的阻尼系数,dy为检测方向的阻尼系数,kx为驱动方向的刚度系数,ky为检测方向的刚度系数,ux为驱动方向的控制输入,uy为检测方向的控制输入,Ωz为输入方向的角速度,是Ωz的一阶导数。
7.根据权利要求6所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,引入若干变量的向量形式的动力学模型,包括如下公式:
其中,
式中,q是微陀螺仪系统的输出轨迹,是q的一阶导数,是q的二阶导数,D、Ω、K均为系统未知参数,其中D为由修正后的驱动方向的阻尼系数dxx、修正后的检测方向的阻尼系数dyy和耦合阻尼系数dxy组成的矩阵,K为由修正后的驱动方向的刚度系数kxx的无量纲化形式ωx、修正后的检测方向的刚度系数kyy的无量纲形式ωy和耦合刚度系数kxy的无量纲形式ωxy组成的矩阵,Ω为由输入方向的角速度Ωz和输入方向的角速度的相反数-Ωz组成的矩阵,ΔD为D+2Ω的不确定性,u为分数阶滑模控制律,ΔK为K的不确定性,d为外界干扰。
8.根据权利要求7所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,分数阶滑模面模型,包括如下公式:
其中,
e=q-qr=[x-qr1,y-qr2]T
0<α<1,
式中,s为非奇异滑模面,c、λ为正常数,e为跟踪误差,是e的一阶导数,α为分数阶阶数,T表示向量的转置,qr是微陀螺仪系统的期望轨迹,是qr的一阶导数,qr1为微陀螺仪系统x轴期望轨迹,qr2为微陀螺仪系统y轴期望轨迹,是qr1的一阶导数,是qr2的一阶导数。
9.根据权利要求8所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,预设Lyapunov函数,包括如下公式:
其中,
M=MT>0,N=NT>0,P=PT>0,
式中,V为Lyapunov函数,tr{·}表示矩阵的求迹运算,M为正定对称矩阵1,N为正定对称矩阵2,P为正定对称矩阵3,为D的估计误差,为K的估计误差,为Ω的估计误差。
10.根据权利要求9所述的微陀螺仪自适应分数阶滑模控制方法,其特征是,自适应控制算法,包括如下公式:
式中,的一阶导数,的一阶导数,的一阶导数,为未知参数D的估计值,为未知参数K的估计值,为未知参数Ω的估计值。
CN201910583528.9A 2019-07-01 2019-07-01 一种微陀螺仪自适应分数阶滑模控制方法 Active CN110262242B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910583528.9A CN110262242B (zh) 2019-07-01 2019-07-01 一种微陀螺仪自适应分数阶滑模控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910583528.9A CN110262242B (zh) 2019-07-01 2019-07-01 一种微陀螺仪自适应分数阶滑模控制方法

Publications (2)

Publication Number Publication Date
CN110262242A true CN110262242A (zh) 2019-09-20
CN110262242B CN110262242B (zh) 2022-03-15

Family

ID=67923516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910583528.9A Active CN110262242B (zh) 2019-07-01 2019-07-01 一种微陀螺仪自适应分数阶滑模控制方法

Country Status (1)

Country Link
CN (1) CN110262242B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240210A (zh) * 2020-03-19 2020-06-05 河海大学常州校区 微陀螺双反馈模糊神经网络动态分数阶滑模控制方法
CN118034068A (zh) * 2024-04-12 2024-05-14 南京信息工程大学 一种四旋翼无人机分数阶抗饱和滑模控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831655A (zh) * 2017-10-23 2018-03-23 河海大学常州校区 微陀螺仪的分数阶自适应反演模糊滑模控制方法
CN107831660A (zh) * 2017-11-07 2018-03-23 河海大学常州校区 微陀螺仪自适应高阶超扭曲滑模控制方法
CN108227504A (zh) * 2018-01-25 2018-06-29 河海大学常州校区 微陀螺分数阶自适应模糊神经反演终端滑模控制方法
CN108710296A (zh) * 2018-04-26 2018-10-26 河海大学常州校区 微陀螺仪的分数阶自适应快速终端滑模控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831655A (zh) * 2017-10-23 2018-03-23 河海大学常州校区 微陀螺仪的分数阶自适应反演模糊滑模控制方法
CN107831660A (zh) * 2017-11-07 2018-03-23 河海大学常州校区 微陀螺仪自适应高阶超扭曲滑模控制方法
CN108227504A (zh) * 2018-01-25 2018-06-29 河海大学常州校区 微陀螺分数阶自适应模糊神经反演终端滑模控制方法
CN108710296A (zh) * 2018-04-26 2018-10-26 河海大学常州校区 微陀螺仪的分数阶自适应快速终端滑模控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHILIN FENG 等: "Super-Twisting Sliding Mode Control for Micro Gyroscope Based on RBF Neural Network", 《IEEE ACCESS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240210A (zh) * 2020-03-19 2020-06-05 河海大学常州校区 微陀螺双反馈模糊神经网络动态分数阶滑模控制方法
CN111240210B (zh) * 2020-03-19 2022-04-26 河海大学常州校区 微陀螺双反馈模糊神经网络动态分数阶滑模控制方法
CN118034068A (zh) * 2024-04-12 2024-05-14 南京信息工程大学 一种四旋翼无人机分数阶抗饱和滑模控制方法及装置

Also Published As

Publication number Publication date
CN110262242B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN105045097A (zh) 一种基于神经网络的微陀螺仪反演全局滑模模糊控制方法
CN107831660A (zh) 微陀螺仪自适应高阶超扭曲滑模控制方法
CN107807527A (zh) 微陀螺仪增益可调的自适应超扭曲滑模控制方法
CN109062046A (zh) 基于rbf神经网络的微陀螺仪系统超扭曲滑模控制方法
CN108710296B (zh) 微陀螺仪的分数阶自适应快速终端滑模控制方法
CN110703610B (zh) 微陀螺仪的递归模糊神经网络非奇异终端滑模控制方法
CN112181002B (zh) 微陀螺仪双递归扰动模糊神经网络分数阶滑模控制方法
CN103529701A (zh) 微陀螺仪的神经网络全局滑模控制方法
CN107703757A (zh) 微陀螺仪系统的超扭曲滑模控制方法
CN109240083A (zh) 微陀螺仪系统的自适应模糊超扭曲滑模控制方法
CN105929694A (zh) 一种微陀螺自适应神经网络非奇异终端滑模控制方法
CN110262242A (zh) 一种微陀螺仪自适应分数阶滑模控制方法
CN104155874B (zh) 微陀螺仪的反演自适应模糊动态滑模控制方法
CN105278331A (zh) 一种微陀螺的鲁棒自适应神经网络h无穷控制方法
CN104267604B (zh) 微陀螺仪自适应神经网络全局滑模控制方法
CN104238365A (zh) 基于自适应神经网络控制的悬臂梁振动控制方法
CN104503246A (zh) 微陀螺仪系统的间接自适应神经网络滑模控制方法
CN111240210B (zh) 微陀螺双反馈模糊神经网络动态分数阶滑模控制方法
CN110262237A (zh) 基于双反馈模糊神经网络的微陀螺仪超扭曲滑模控制方法
CN108489485A (zh) 一种无误差的捷联惯导数值更新方法
CN114877915A (zh) 一种激光陀螺惯性测量组件g敏感性误差标定装置及方法
CN110647036B (zh) 微陀螺仪自适应双反馈模糊神经网络分数阶滑模控制方法
CN104656442A (zh) 微陀螺仪神经网络动态pid全局滑模控制方法
CN109917645B (zh) 微陀螺双反馈模糊神经网络超扭曲滑模控制系统设计方法
CN103472725A (zh) 一种基于名义控制器的神经网络全调节的控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant