CN110240491A - 一种高韧性的氧化锆瓷块 - Google Patents

一种高韧性的氧化锆瓷块 Download PDF

Info

Publication number
CN110240491A
CN110240491A CN201910613955.7A CN201910613955A CN110240491A CN 110240491 A CN110240491 A CN 110240491A CN 201910613955 A CN201910613955 A CN 201910613955A CN 110240491 A CN110240491 A CN 110240491A
Authority
CN
China
Prior art keywords
zirconium oxide
porcelain block
oxide porcelain
preparation
block according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910613955.7A
Other languages
English (en)
Other versions
CN110240491B (zh
Inventor
罗友明
鄢新章
刘谋山
马勤
冯崇敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Besmile Biotechnology Co Ltd
Original Assignee
Chengdu Besmile Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Besmile Biotechnology Co Ltd filed Critical Chengdu Besmile Biotechnology Co Ltd
Priority to CN201910613955.7A priority Critical patent/CN110240491B/zh
Publication of CN110240491A publication Critical patent/CN110240491A/zh
Application granted granted Critical
Publication of CN110240491B publication Critical patent/CN110240491B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • C04B35/803
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5062Borides, Nitrides or Silicides
    • C04B41/5068Titanium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Preparations (AREA)

Abstract

本发明属于生物材料领域,具体涉及一种高韧性氧化锆瓷块及其制备方法。具体技术方案为:一种氧化锆瓷块,按质量分数,包括0~3%的氧化镧、1.5~12%的氧化钇、0~2.5%的碳化硅纳米晶须,及余量的氧化锆。所述氧化锆瓷块表面还原位沉积有氮化钛薄膜。使用本发明提供的配方和方法获得的氧化锆瓷块,断裂韧性高,且半透性优异,是理想的口腔用生物陶瓷材料。

Description

一种高韧性的氧化锆瓷块
技术领域
本发明属于生物材料领域,具体涉及一种高韧性的氧化锆瓷块。
背景技术
氧化锆瓷块是一种生物陶瓷材料,属于绿色经济的范畴。按照医疗器械注册办法分类,全瓷义齿用氧化锆瓷块属于二类医疗器械,因具有良好的生物相容性、优良的机械性能和逼真的类牙体光学效果等优点,被誉为21世纪理想的义齿修复材料。随着人们生活水平的提高,健康意识的增强,口腔义齿修复去金属化已成为发展趋势,全瓷修复得到越来越多医生和患者的推崇。
目前市面上使用最广泛、性能最好的氧化锆义齿产品的断裂韧性为4.6MPa·m1/2~5.2MPa·m1/2(ST产品),ST产品具有性能好、强度高、润泽性接近天然牙等优点。经过市场反馈,发现市场上现有的全瓷义齿用ST产品存在一个共同缺陷:义齿加工厂对义齿进行制备的过程中,容易出现长桥断裂、薄牙崩边等现象而导致返工。
虽然现有技术中已经有一些提高氧化锆瓷块韧性的方法,如增加稳定剂等,但这些方法要不就提升效果不理想,要不就是以牺牲氧化锆瓷块的半透性为代价,无法满足消费者对义齿的美学需求。
综上,提供一种兼具优异的断裂韧性和优良的半透性的氧化锆瓷块,具有重要的现实意义。
发明内容
本发明的目的是提供一种高韧性氧化锆瓷块及其制备方法。
为实现上述发明目的,本发明所采用的技术方案是:一种氧化锆瓷块,按质量分数,包括0~3%的氧化镧、1.5~12%的氧化钇、0~2.5%的碳化硅纳米晶须,及余量的氧化锆。
优选的,所述氧化钇和碳化硅纳米晶须的质量比为1:1。
优选的,所述氧化锆瓷块表面设有氮化钛薄膜。
优选的,所述氮化钛薄膜的厚度为100~200nm。
相应的,一种氧化锆瓷块的制备方法,包括如下步骤:
(1)按质量分数,称取0~3%的氧化镧、1.5~12%的氧化钇,0~2.5%的碳化硅纳米晶须,及余量的氧化锆,充分混匀,获得混合粉体;
(2)将混合粉体预压制成型、等静压成型、预烧结、高温烧结,即获得所述氧化锆瓷块。
优选的,所述氧化钇和碳化硅纳米晶须的质量比为1:1。
优选的,所述步骤(2)中,完成预烧结后,取出氧化锆瓷块,进行如下步骤:
(3)冷却、清洗、干燥;
(4)对所述氧化锆瓷块进行Ti镀膜;
(5)随后将Ti镀膜后的氧化锆瓷块在N2氛围中进行高温烧结。
优选的,所述步骤(3)后,先使用低能离子束对干燥后的氧化锆瓷块进行溅射,随后再进行Ti镀膜。
优选的,所述低能离子束为:200~350eV、30~50mA的低能离子束。
本发明具有以下有益效果:
1、义齿一方面要求高韧性、避免崩边,另一方面要求良好的半透性以满足美学要求。但氧化锆瓷块的结晶过程某种程度上让高韧性和良好的半透性成为一对几乎不可兼得的性能。氧化锆瓷块在烧结过程中,结晶体从四方相逐渐向立方相转变,随着四方相含量的降低,氧化锆瓷块的断裂韧性也逐渐降低,同时半透性逐渐增加。现有技术中一般添加碱土和稀土金属氧化物作为稳定剂(例如氧化钇、氧化镁、氧化钙等)与氧化锆一起进行烧结,一定程度上阻碍四方相向立方相乃至单斜相转变。但增加氧化钇对提高韧性的效果非常有限,超过某一范围后,继续增加氧化钇,韧性不升反降;另一方面,氧化钇的含量与氧化锆的半透性呈正相关关系。因此,只简单地添加氧化钇,提高韧性帮助有限,也无法同时提高氧化锆瓷块的半透性和韧性。
添加碳化硅纳米晶须也可以一定程度上抑制四方相向立方相的转变,从而帮助提高氧化锆瓷块的韧性;碳化硅纳米晶须的晶须本身也可以起到一定的增韧作用,双重作用下共同提升氧化锆瓷块的韧性。另外,碳化硅纳米晶须可以帮助氧化锆瓷块内部形成氧化锆细晶粒,降低氧化锆晶体的晶粒直径。现有研究表明,晶粒直径与氧化锆瓷块的半透性有关,晶粒大小与可见光波长相近时,散射作用最明显,半透性最低,因此需要控制晶粒大小在可见光波长范围以外(0.38~0.77μm),但具体晶粒大小为多少时半透性最优并无定论。发明人研究发现,配合使用特定含量的氧化钇(低含量)和碳化硅纳米晶须,可以同时赋予氧化锆瓷块优异的韧性,及添加高含量氧化钇时才能获得的高半透性。
2、本发明还在制备时为氧化锆瓷块增镀了一层氮化钛保护薄膜。氮化钛具有良好的生物活性和优异的综合力学性能,可以进一步提高氧化锆瓷块的整体韧性。通过控制氮化钛的含量,还可一定程度上调控义齿的颜色。如果直接将氮化钛粉末添加到氧化锆瓷块原始粉体中,整体一起压制、烧结成型,虽然也可以最终提高氧化锆瓷块的韧性,但氮化钛粉末的引入会改变氧化钇和碳化硅纳米晶须对氧化锆瓷块结晶的影响效果,韧性提成效果反而还不如不增加氮化钛粉末时的效果。而如果在氧化锆瓷块整体完全烧结结束后再镀上氮化钛薄膜,一方面存在结合紧密性的问题,另一方面,直接进行氮化钛镀膜,厚度不易控制,还会一定程度上改变氧化锆瓷块的原定尺寸,后续使用时还需二次加工打磨,而打磨的过程又会损失一部分氮化钛薄膜,失去了镀膜意义。更重要的是,氧化锆瓷块的崩边主要发生于机械加工和高温烧结的过程中。增加适量氧化钇和碳化硅晶须的氧化锆瓷块,韧性已经显著提升,足以避免机械加工的崩边情况。而在氧化锆高温烧结过程中同时进行韧性加固,则可进一步避免高温烧结中出现的崩边情况。如果将镀膜步骤放在氧化锆瓷块整体完成烧结后再进行,则失去了对高温烧结中保护的意义。因此,本发明中,以氧化锆瓷块为反应基底、采用原位沉积法为氧化锆瓷块进行镀膜。
具体实施方式
一、本发明涉及的氧化锆瓷块配方
按质量分数,本发明提供的氧化锆瓷块配方包括:0~3%的氧化镧、1.5~12%的氧化钇、0~2.5%的碳化硅纳米晶须,及余量的氧化锆。所述氧化锆瓷块表面设置100~200nm的氮化钛薄膜。所述氧化锆、氧化镧和氧化钇均为纳米级。
二、本发明涉及的氧化锆瓷块的制备方法
在不增镀氮化钛保护薄膜的情况下,所述氧化锆瓷块的制备方法为:称取除氮化钛以外的各组分,混匀,预压制成型后,再等静压成型,随后进行预烧结、高温烧结,即完成制备。
如果需要增镀氮化钛保护薄膜,则具体制备方法如下:
(1)完成预烧结后,取出氧化锆瓷块,机械加工至所需形状和大小,随后将氧化锆瓷块依次经丙酮和酒精的超声清洗、干燥。
(2)使用低能离子束对清洗后的氧化锆瓷块进行溅射。
(3)在真空环境中,Ar氛围下,使用纯度为99.99%的Ti颗粒对氧化锆瓷块进行Ti镀膜,镀膜厚度为100~150nm。
(4)将完成Ti镀膜的氧化锆瓷块在N2氛围中进行高温烧结。烧结完成后,取出、冷却,再依次经丙酮和酒精的超声清洗、干燥,即完成。
下面结合具体实施例,对本发明进行进一步阐释。
实施例一:未进行氮化钛镀膜的氧化锆瓷块性能展示
1、按上述配方和方法制备39组氧化锆瓷块,每组设20个重复。各组氧化锆瓷块的具体配方如表1所示,表中数值均为质量分数,余量均为氧化锆粉末。以购自长沙彭登生物瓷块有限公司的ST氧化锆瓷块为对照组。需要说明的是,申请人并非只进行了表1的试验,而是因为篇幅限制,只选取了最具代表性的几组数据进行展示。
各组氧化锆瓷块的具体制备方法为:称取各组分,充分混匀后,在150MPa下保压10min,进行等静压成型;再在1050℃下保温2h,进行预烧结;从各组中分别取出10个重复,进行机械加工至为义齿的形状和尺寸;每组的另10个重复不进行机械加工处理。随后将各组各重复在1530℃下保温2h,高温烧结,完成制备(各组各重复的氧化锆瓷块,无论在机械加工过程中崩边与否,均继续进行高温烧结)。
表1各组氧化锆瓷块的配方
2、使用压痕法测定上述各组各重复的崩边率;其中,机械加工中已发生的崩边不计入高温烧结中,高温烧结中的崩边率只计算在高温烧结过程中再次发生崩边的氧化锆瓷块的数量及在整组中所占百分比。同时计算各组的断裂韧性和透光率;其中,透光率取每组20个重复的平均值,终产物的断裂韧性取每组未经机械加工的氧化锆瓷块的平均值。结果如表2所示。
表2各组氧化锆瓷块的性能展示
实施例二:增镀氮化钛的氧化锆瓷块性能展示
1、选择实施例一的组19的配方制备20组氧化锆瓷块:按实施例一的方法进行预烧结后,取出10组氧化锆瓷块,机械加工至义齿所需形状和尺寸,另外10组不进行机械加工。随后将各组氧化锆瓷块依次浸入丙酮和无水酒精中,进行超声清洗、干燥。
2、使用低能离子束对清洗后的各组氧化锆瓷块进行溅射清洗。具体溅射清洗条件为:使用300eV、50mA的低能离子束对氧化锆瓷块进行5min的溅射。
3、使用电子束蒸发镀膜机对溅射后的氧化锆瓷块进行Ti镀膜。控制真空度为6×10-4Pa,7kV,电子束流100mA;在Ar氛围下,使用纯度为99.99%的Ti颗粒对氧化锆瓷块进行Ti镀膜,使用FCM-Ⅱ型膜厚控制仪监控镀膜厚度,镀膜厚度为100nm。
4、将完成Ti镀膜的氧化锆瓷块在N2氛围中进行高温烧结,控制烧结温度1530℃、保温2h。烧结完成后,取出完成TiN镀膜的氧化锆瓷块,冷却,再依次经丙酮和酒精的超声清洗、干燥,即得各组实验组的氧化锆瓷块。
同时省略步骤2(溅射),制备对照组。制备完成后,使用刀尖用力重复刻划对照组和实验组的氧化锆瓷块表面。对照组的表层薄膜出现划痕,针对同一位置划拉5次左右,薄膜出现翘边和剥落的情况。实验组(随机从经机械加工和未经机械加工的组别中各抽取1块氧化锆瓷块进行)的薄膜粘结紧密,对同一位置划拉20次以上,未出现划痕、翘边和剥落情况。
使用实施例一的相同方法对各组氧化锆瓷块进行性能测试。机械加工过程中,未出现崩边断裂情况;将机械加工和未进行机械加工的各组氧化锆瓷块进行高温烧结,也未出现崩边断裂等情况。分别测定机械加工后和未进行机械加工的氧化锆瓷块的平均断裂韧性;并测定所有实验组的半透性,取平均值。经机械加工后,平均断裂韧性为19.83MPa·m1 /2,未经机械加工的,平均断裂韧性为20.11MPa·m1/2。平均半透性为48.53%。与市购产品及实施例一相比,断裂韧性显著提升,且半透性保持良好。

Claims (9)

1.一种氧化锆瓷块,其特征在于:按质量分数,包括0~3%的氧化镧、1.5~12%的氧化钇、0~2.5%的碳化硅纳米晶须,及余量的氧化锆。
2.根据权利要求1所述的氧化锆瓷块,其特征在于:所述氧化钇和碳化硅纳米晶须的质量比为1:1。
3.根据权利要求1所述的氧化锆瓷块,其特征在于:所述氧化锆瓷块表面设有氮化钛薄膜。
4.根据权利要求3所述的氧化锆瓷块,其特征在于:所述氮化钛薄膜的厚度为100~200nm。
5.一种氧化锆瓷块的制备方法,其特征在于,包括如下步骤:
(1)按质量分数,称取0~3%的氧化镧、1.5~12%的氧化钇,0~2.5%的碳化硅纳米晶须,及余量的氧化锆,充分混匀,获得混合粉体;
(2)将混合粉体预压制成型、等静压成型、预烧结、高温烧结,即获得所述氧化锆瓷块。
6.根据权利要求5所述的氧化锆瓷块的制备方法,其特征在于:所述氧化钇和碳化硅纳米晶须的质量比为1:1。
7.根据权利要求5所述的氧化锆瓷块的制备方法,其特征在于:所述步骤(2)中,完成预烧结后,取出氧化锆瓷块,进行如下步骤:
(3)冷却、清洗、干燥;
(4)对所述氧化锆瓷块进行Ti镀膜;
(5)随后将Ti镀膜后的氧化锆瓷块在N2氛围中进行高温烧结。
8.根据权利要求7所述的氧化锆瓷块的制备方法,其特征在于:所述步骤(3)后,先使用低能离子束对干燥后的氧化锆瓷块进行溅射,随后再进行Ti镀膜。
9.根据权利要求8所述的氧化锆瓷块的制备方法,其特征在于:所述低能离子束为:200~350eV、30~50mA的低能离子束。
CN201910613955.7A 2019-07-09 2019-07-09 一种高韧性的氧化锆瓷块 Active CN110240491B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910613955.7A CN110240491B (zh) 2019-07-09 2019-07-09 一种高韧性的氧化锆瓷块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910613955.7A CN110240491B (zh) 2019-07-09 2019-07-09 一种高韧性的氧化锆瓷块

Publications (2)

Publication Number Publication Date
CN110240491A true CN110240491A (zh) 2019-09-17
CN110240491B CN110240491B (zh) 2021-11-23

Family

ID=67891525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910613955.7A Active CN110240491B (zh) 2019-07-09 2019-07-09 一种高韧性的氧化锆瓷块

Country Status (1)

Country Link
CN (1) CN110240491B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051651A1 (zh) * 2022-09-05 2024-03-14 北京大学口腔医学院 一种高强度高韧性纳米氧化锆陶瓷材料及其制备方法与应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102486A (zh) * 1985-04-11 1986-10-15 康宁玻璃厂 高韧性合金陶瓷
US4935387A (en) * 1988-10-24 1990-06-19 Corning Incorporated Fiber-reinforced composite comprising mica matrix or interlayer
US4946807A (en) * 1986-08-18 1990-08-07 Ngk Spark Plug Co., Ltd. Composite ceramic material reinforced with silicon carbide whiskers
US5026601A (en) * 1984-12-28 1991-06-25 Ngk Spark Plug Co., Ltd. Zirconia-base sintered bodies having coating films
WO1994017003A1 (en) * 1990-09-21 1994-08-04 Allied-Signal Inc. Ceramic fiber reinforced silicon carboxide composite with adjustable dielectric properties
US5621035A (en) * 1995-02-08 1997-04-15 M.E.D. Usa Ceramic fused fiber enhanced dental materials
WO2005060549A2 (en) * 2003-12-18 2005-07-07 The Regents Of The University Of California Silicon carbide whisker-reinforced ceramics with low rate of grain size increase upon densification
CN101857455A (zh) * 2010-06-25 2010-10-13 中南大学 一种高强韧3y-tzp复合陶瓷及其制备方法
CN102028624A (zh) * 2010-12-24 2011-04-27 辽宁爱尔创生物材料有限公司 牙科用高透氧化锆材料及制备工艺
CN102228408A (zh) * 2011-07-04 2011-11-02 辽宁爱尔创生物材料有限公司 牙科用透光性渐变氧化锆材料及制备工艺
US8785008B2 (en) * 2006-07-25 2014-07-22 Tosoh Corporation Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for producing the same
CN105829264A (zh) * 2013-12-24 2016-08-03 东曹株式会社 透光性氧化锆烧结体和氧化锆粉末、及其用途
CN106083203A (zh) * 2016-06-03 2016-11-09 哈尔滨东安发动机(集团)有限公司 一种三元层状陶瓷的表面氮化方法
CN107108374A (zh) * 2015-01-15 2017-08-29 东曹株式会社 透光性氧化锆烧结体和其制造方法以及其用途
CN109608233A (zh) * 2019-01-30 2019-04-12 成都贝施美医疗科技股份有限公司 一种改善牙科用二氧化锆陶瓷通透性的技术
CN109627031A (zh) * 2019-01-29 2019-04-16 西北工业大学 一种SiCw定向高强韧陶瓷基复合材料及其制备方法
CN109771064A (zh) * 2019-02-27 2019-05-21 深圳市翔通光电技术有限公司 一种强度、透性及颜色逐层变化的义齿及其制备方法

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5026601A (en) * 1984-12-28 1991-06-25 Ngk Spark Plug Co., Ltd. Zirconia-base sintered bodies having coating films
CN86102486A (zh) * 1985-04-11 1986-10-15 康宁玻璃厂 高韧性合金陶瓷
US4946807A (en) * 1986-08-18 1990-08-07 Ngk Spark Plug Co., Ltd. Composite ceramic material reinforced with silicon carbide whiskers
US4935387A (en) * 1988-10-24 1990-06-19 Corning Incorporated Fiber-reinforced composite comprising mica matrix or interlayer
WO1994017003A1 (en) * 1990-09-21 1994-08-04 Allied-Signal Inc. Ceramic fiber reinforced silicon carboxide composite with adjustable dielectric properties
US5621035A (en) * 1995-02-08 1997-04-15 M.E.D. Usa Ceramic fused fiber enhanced dental materials
WO2005060549A2 (en) * 2003-12-18 2005-07-07 The Regents Of The University Of California Silicon carbide whisker-reinforced ceramics with low rate of grain size increase upon densification
US8785008B2 (en) * 2006-07-25 2014-07-22 Tosoh Corporation Zirconia sintered bodies with high total light transmission and high strength, uses of the same, and process for producing the same
CN101857455A (zh) * 2010-06-25 2010-10-13 中南大学 一种高强韧3y-tzp复合陶瓷及其制备方法
CN102028624A (zh) * 2010-12-24 2011-04-27 辽宁爱尔创生物材料有限公司 牙科用高透氧化锆材料及制备工艺
CN102228408A (zh) * 2011-07-04 2011-11-02 辽宁爱尔创生物材料有限公司 牙科用透光性渐变氧化锆材料及制备工艺
CN105829264A (zh) * 2013-12-24 2016-08-03 东曹株式会社 透光性氧化锆烧结体和氧化锆粉末、及其用途
CN107108374A (zh) * 2015-01-15 2017-08-29 东曹株式会社 透光性氧化锆烧结体和其制造方法以及其用途
CN106083203A (zh) * 2016-06-03 2016-11-09 哈尔滨东安发动机(集团)有限公司 一种三元层状陶瓷的表面氮化方法
CN109627031A (zh) * 2019-01-29 2019-04-16 西北工业大学 一种SiCw定向高强韧陶瓷基复合材料及其制备方法
CN109608233A (zh) * 2019-01-30 2019-04-12 成都贝施美医疗科技股份有限公司 一种改善牙科用二氧化锆陶瓷通透性的技术
CN109771064A (zh) * 2019-02-27 2019-05-21 深圳市翔通光电技术有限公司 一种强度、透性及颜色逐层变化的义齿及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
F.YE 等: "Mechanical properties and interfacial microstructure of SiC whisker-reinforced ZrO2-Y2O3 composites", 《CERAMICS INTERNATIONAL》 *
VAN HOVE, RUUD P.等: "Titanium-Nitride Coating of Orthopaedic Implants: A Review of the Literature", 《BIOMED RESEARCH INTERNATIONAL》 *
叶枫 等: "SiC晶须增强ZrO2(Y2O3)陶瓷复合材料的性能及界面显微结构的研究", 《全国结构陶瓷、功能陶瓷、金属/陶瓷封接学术会议论文集》 *
孙传尧主编: "《选矿工程师手册 第2册 上 选矿通论》", 31 March 2015, 冶金工业出版社 *
戴达煌等编著: "《功能薄膜及其沉积制备技术》", 31 January 2013, 冶金工业出版社 *
杨学明等: "Y2O3加入量对SiCw/ZrO2(Y2O3)复合材料力学性能的影响", 《机械工程材料》 *
王双喜等: "碳化硅晶须对氧化锆陶瓷材料结构的影响", 《现代技术陶瓷》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051651A1 (zh) * 2022-09-05 2024-03-14 北京大学口腔医学院 一种高强度高韧性纳米氧化锆陶瓷材料及其制备方法与应用

Also Published As

Publication number Publication date
CN110240491B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
McLaren et al. New high-translucent cubic-phase–containing zirconia: Clinical and laboratory considerations and the effect of air abrasion on strength
Thompson et al. Ceramics for restorative dentistry: critical aspects for fracture and fatigue resistance
EP1458304B1 (en) Polycrystalline translucent alumina-based ceramic material
EP1460958B1 (en) Orthodontic appliance
CN100398489C (zh) 可切削着色氧化锆陶瓷及其用途
JP2003535027A (ja) セラミックデンタルミルブランク
US9943467B2 (en) Coated dental articles and related methods of manufacture
Yin et al. Effect of finishing condition on fracture strength of monolithic zirconia crowns
CN111533541A (zh) 一种基于纳米氧化锆和氧化铝复合陶瓷的口腔修复材料
JP2020033338A (ja) 歯科切削加工用ジルコニア被切削体及びその製造方法
CN110240491A (zh) 一种高韧性的氧化锆瓷块
Bittar et al. Effect of extrinsic pigmentation and surface treatments on biaxial flexure strength after cyclic loading of a translucent ZrO2 ceramic
EP3974396A1 (en) Machinable dental bulk block and method of manufacturing same
WO2021003655A1 (zh) 一种均匀过渡的多层氧化锆瓷块及其制备方法
Monaco et al. In vitro 2D and 3D roughness and spectrophotometric and gloss analyses of ceramic materials after polishing with different prophylactic pastes
Sanohkan All-ceramic systems in Esthetic Dentistry: A review
WO2020210958A1 (zh) 一种用于牙科修复体的预烧结瓷块、其制备方法及其应用
Wang et al. Densification and biocompatibility of sintering 3.0 mol% yttria-tetragonal ZrO2 polycrystal ceramics with x wt% Fe2O3 and 5.0 wt% mica powders additive
WO2014034736A1 (ja) 歯冠材料及びその製造方法
Hammoudeh et al. Effect of different surface and heat treatments on the surface roughness, crystallography, and phase composition of high translucency zirconia for monolithic restorations
KR20160018904A (ko) 상이한 결정상을 포함하는 지르코니아-이트리아-실리카 소결체
CN106631087B (zh) 硼酸盐粘结瓷及其制备方法
EP4360588A1 (en) Bulk block for manufacturing dental prosthesis
US20240130934A1 (en) Bulk block for manufacturing dental prosthesis
EP3974397A1 (en) Machinable dental bulk block and method of manufacturing same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A high toughness zirconia ceramic block

Effective date of registration: 20231220

Granted publication date: 20211123

Pledgee: Chengdu Branch of China CITIC Bank Co.,Ltd.

Pledgor: CHENGDU BESMILE BIOTECHNOLOGY Co.,Ltd.

Registration number: Y2023980072829