CN110234647A - 用于调节免疫应答的氧杂双环庚烷 - Google Patents

用于调节免疫应答的氧杂双环庚烷 Download PDF

Info

Publication number
CN110234647A
CN110234647A CN201780084881.1A CN201780084881A CN110234647A CN 110234647 A CN110234647 A CN 110234647A CN 201780084881 A CN201780084881 A CN 201780084881A CN 110234647 A CN110234647 A CN 110234647A
Authority
CN
China
Prior art keywords
cell
cancer
inhibitor
pp2a
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780084881.1A
Other languages
English (en)
Other versions
CN110234647B (zh
Inventor
J·S·科瓦奇
庄正平
S·C·W·胡
王和瑞
陆荣泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Is Represented By Ministry Of Health
Lixte Biotechnology Inc
Original Assignee
United States Is Represented By Ministry Of Health
Lixte Biotechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Is Represented By Ministry Of Health, Lixte Biotechnology Inc filed Critical United States Is Represented By Ministry Of Health
Priority to CN202310498623.5A priority Critical patent/CN116585480A/zh
Publication of CN110234647A publication Critical patent/CN110234647A/zh
Application granted granted Critical
Publication of CN110234647B publication Critical patent/CN110234647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4525Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2818Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against CD28 or CD152
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/21Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Steroid Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂。

Description

用于调节免疫应答的氧杂双环庚烷
相关申请的交叉引用
本申请要求于2016年12月8日提交的美国临时专利申请序列号62/497,949、于2017年2月28日提交的美国临时专利申请序列号62/465,001以及于2017年8月14日提交的美国临时专利申请序列号62/545,373的权益,所述美国临时专利申请的全部内容通过引用并入本文中。
背景技术
蛋白磷酸酶2A(PP2A)是普遍存在的丝氨酸/苏氨酸磷酸酶,其使ATM/ATR依赖性和非依赖性应答途径的许多蛋白质去磷酸化(马姆比M.(Mumby M.),2007)。先前已经示出,PP2A的药理学抑制通过各种信号传导蛋白(如p53、γH2AX、PLK1和Akt)的组成型磷酸化使癌细胞对辐射介导的DNA损伤敏感,从而导致细胞周期失调、DNA修复抑制和细胞凋亡(魏,D.(Wei,D.)等人,2013)。
斑蝥提取物(Mylabris)的主要活性成分斑蝥素是衍生自传统中药的化合物,已经示出所述化合物是PP2A的有效抑制剂(厄佛斯,T.(Efferth,T.)等人,2005)。虽然斑蝥素先前已经用于治疗肝细胞瘤并且已经示出针对多重耐药性白血病细胞系的功效(厄佛斯,T.等人,2002),但其严重的毒性限制了其临床有用性。LB-100是具有显著较小毒性的斑蝥素的小分子衍生物。先前的临床前研究已经示出,LB-100可以增强替莫唑胺、多柔比星和放射疗法针对胶质细胞瘤(GBM)、转移性嗜铬细胞瘤和胰腺癌的细胞毒性作用(魏,D.等人,2013;陆,J.(Lu,J.)等人,2009;张,C.(Zhang,C.)等人,2010;马提尼瓦,L.(Martiniova,L.)等人,2011)。LB-100还正在经历与多西他赛组合治疗实体瘤的1期研究(钟,V.(Chung,V.),2013)。
发明内容
本发明提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,其中当所述量一起服用时对治疗所述受试者有效。
本发明还提供了一种治疗患有癌症的受试者和接受检查点抑制剂的方法,所述方法包括向所述受试者施用相对于单独的所述检查点抑制剂有效增强治疗的一定量的PP2A抑制剂。
本发明还提供了一种治疗受试者的肿瘤或癌症的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,其中当所述量一起服用时对治疗所述肿瘤或癌症有效。
本发明还提供了一种增加针对患有癌症的受试者的癌细胞的T细胞应答的方法,所述方法包括向所述受试者施用一定量的PP2A抑制剂与有效增加针对所述癌细胞的所述T细胞应答的有效量的检查点抑制剂的组合。
本发明还提供了一种增加患有癌症的受试者的T细胞活化的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,由此增加所述T细胞活化。
本发明还提供了一种抑制T细胞中CTLA-4的功能的方法,所述方法包括向所述T细胞施用PP2A抑制剂,由此抑制CTLA-4的所述功能。
本发明还提供了一种抑制T细胞中PD-1:PD-L1相互作用的方法,所述方法包括向所述T细胞施用PP2A抑制剂,由此抑制PD-1:PD-L1相互作用。
附图说明
图1.进入时患有可测量疾病的患者的指标病变的大小的最大变化。
图2.按进入研究的升序排列的每名患者的稳定性持续时间或疾病(周期数)的部分应答(红色圆圈)。
图3A.PP2A抑制显著增强CD4T细胞中IFN-γ的产生。在存在或不存在LB-100的情况下,在40nM下,从用CD3/CD28珠粒活化CD4T细胞5天产生IFNγ。在第3天添加或替换LB-100。
图3B.PP2A抑制显著增强CD4T细胞中IFN-γ的产生。在存在或不存在LB-100的情况下,在不同浓度下,用CD3/CD28珠粒活化CD4T细胞5天产生IFNγ。在第3天添加或替换LB-100。
图4A.PP2A抑制显著增强CD4T细胞增殖。在存在或不存在LB-100的情况下,在1000nM下,用CD3/CD28珠粒增殖CD4T细胞5天的百分比。在第3天添加或替换LB-100。
图4B.PP2A抑制显著增强CD4T细胞增殖。在存在或不存在LB-100的情况下,在不同浓度下,用CD3/CD28珠粒增殖CD4T细胞5天的百分比。在第3天添加或替换LB-100。
图5A.PP2A抑制显著增强CD4T细胞增殖。在不存在LB-100的情况下,用CD3/CD28珠粒增殖CD4T细胞5天的代表性流程图。在第3天添加或替换LB-100。
图5B.PP2A抑制显著增强CD4T细胞增殖。在存在LB-100的情况下,在1000nM下,用CD3/CD28珠粒增殖CD4T细胞5天的代表性流程图。在第3天添加或替换LB-100。
图6A.PP2A抑制显著增强T细胞上的共刺激分子OX40表达。在存在或不存在LB-100的情况下,在1000nM下,OX40表达具有CD3/CD28珠粒的CD4T细胞5天的百分比。在第3天添加或替换LB-100。
图6B.PP2A抑制显著增强T细胞上的共刺激分子OX40表达。在存在或不存在LB-100情况下,在不同浓度下,OX40表达具有CD3/CD28珠粒的CD4T细胞5天的百分比。在第3天添加或替换LB-100。
图7A.PP2A抑制增强Tbet(一种转录因子)以驱使CD4T细胞中IFNγ产生。在存在或不存在LB-100的情况下,在1000nM下,Tbet表达具有CD3/Cd28珠粒的CD4T细胞5天的百分比。在第3天添加或替换LB-100。
图7B.PP2A抑制增强Tbet(一种转录因子)以驱使CD4T细胞中IFNγ产生。在存在或不存在LB-100的情况下,在具有或不具有抗PD1抗体的不同的浓度下,增殖的CD4T细胞与单核细胞衍生的树突细胞共培养5天的百分比。在第3天添加或替换LB-100。
图8A.使用组合治疗增强的CD4T细胞的增殖。在存在或不存在LB-100的情况下,在具有或不具有抗PD1抗体的8nM下,增殖的CD4T细胞与单核细胞衍生的树突细胞共培养5天的百分比。在第3天添加或替换LB-100。
图8B.使用组合治疗增强的CD4T细胞的增殖。在存在或不存在LB-100的情况下,在具有或不具有抗PD1抗体的不同浓度下,增殖的CD4T细胞与单核细胞衍生的树突细胞共培养5天的百分比。在第3天添加或替换LB-100。
图9A.对照中CD4T细胞增殖的代表性流式细胞术图。
图9B.LB-100中CD4T细胞增殖的代表性流式细胞术图。
图9C.抗PD-1中CD4T细胞增殖的代表性流式细胞术图。
图9D.LB-100+抗PD-1中CD4T细胞增殖的代表性流式细胞术图。
图10A.使用组合治疗增强的CD4T细胞中的OX40表达。在存在或不存在LB-100的情况下,在具有或不具有在0.05nM下的抗PD1抗体的8nM下,OX40表达与单核细胞衍生的树突细胞共培养5天的CD4T细胞的百分比。在第3天添加或替换LB-100。
图10B.使用组合治疗增强的CD4T细胞中的OX40表达。在存在或不存在LB-100的情况下,在具有或不具有抗PD1抗体的不同浓度下,OX40表达与单核细胞衍生的树突细胞共培养5天的CD4T细胞的百分比。在第3天添加或替换LB-100。
图11A.使用组合治疗增强的CD4T细胞中的Tbet表达。在存在或不存在LB-100的情况下,在具有或不具有抗PD1抗体的200nM下,Tbet表达与单核细胞衍生的树突细胞共培养5天的CD4T细胞的百分比。在第3天添加或替换LB-100。
图11B.使用组合治疗增强的CD4T细胞中的Tbet表达。在存在或不存在LB-100的情况下,在具有或不具有抗PD1抗体的不同浓度下,与单核细胞衍生的树突细胞共培养5天的CD4T细胞中Tbet表达的百分比。在第3天添加或替换LB-100。
图12.在每两天8剂量治疗的小鼠中,PP2A抑制剂显著降低小鼠B16黑色素瘤生长。在肿瘤植入的同一天开始治疗。对照-PBS、低剂量-0.16mg/kg、中等剂量-0.32mg/kg。
图13A.PP2A抑制剂增加未处理小鼠中的CD4/8效应细胞。体内低剂量的LB治疗在淋巴结中诱导更多CD8(左)和CD4(右)效应T细胞。每组5只小鼠。对照-PBS、低剂量-0.16mg/kg、中等剂量-0.32mg/kg。
图13B.PP2A抑制剂增加未处理小鼠中的CD4/8效应细胞。图13A中CD44+CD62L-CD8(左)和CD4(右)的代表性流式细胞术图。对照-PBS、低剂量-0.16mg/kg、中等剂量-0.32mg/kg。
图14A.PP2A抑制剂降低了血液和脾脏中CD8T细胞上的PD-1表达。体内低剂量的LB治疗降低血液中表达CD8+T细胞的PD-1。
图14B.PP2A抑制剂降低了血液和脾脏中CD8T细胞上的PD-1表达。体内中等剂量的LB治疗降低脾脏中表达CD8+T细胞的PD-1。
图15.PP2A抑制剂增强来自人T细胞的IFN-g产生。在存在LB-100、或抗PD-1或组合(LB-100和抗PD-1)的情况下,在来自与单核细胞衍生的DC共培养的CD4T细胞的上清液中产生IFNγ。
图16A.PP2A抑制剂降低人CD4T细胞上的PD-1表达。在存在同种型对照的情况下,PD-1表达与单核细胞衍生的DC共培养的CD4T细胞的百分比。
图16B.PP2A抑制剂降低人CD4T细胞上的PD-1表达。在存在LB-100的情况下,PD-1表达与单核细胞衍生的DC共培养的CD4T细胞的百分比。
图16C.PP2A抑制剂降低人CD4T细胞上的PD-1表达。在存在抗PD-1的情况下,PD-1表达与单核细胞衍生的DC共培养的CD4T细胞的百分比。
图16D.PP2A抑制剂降低人CD4T细胞上的PD-1表达。在存在组合(LB-100和抗PD-1)的情况下,PD-1表达与单核细胞衍生的DC共培养的CD4T细胞的百分比。
图17A.用PP2A抑制剂LB-100治疗增加CD8+CD44+效应T细胞。来自用LB-100或PBS治疗的荷B16肿瘤的小鼠的肿瘤引流淋巴结中CD8+CD44+T效应细胞群的百分比。每组5只小鼠。
图17B.用PP2A抑制剂LB-100治疗增加CD8+CD44+效应T细胞。图17A中示出代表性流式细胞术数据图。
图18A.来自荷B16肿瘤的小鼠的淋巴结中CD44+CD62L-CD4效应T细胞增加。来自用LB-100或PBS治疗的荷B16肿瘤的小鼠的淋巴结中CD44+CD62L-CD4效应细胞群的百分比。每组5只小鼠。
图18B.来自荷B16肿瘤的小鼠的淋巴结中CD44+CD62L-CD4效应T细胞增加。图18A中示出代表性流式细胞术数据图。
图19A.来自荷B16肿瘤的小鼠的淋巴结中CD44+CD62L-CD8效应T细胞增加。来自用LB-100或PBS治疗的荷B16肿瘤的小鼠的淋巴结中CD44+CD62L-CD8效应细胞群的百分比。每组5只小鼠。
图19B.来自荷B16肿瘤的小鼠的淋巴结中CD44+CD62L-CD8效应T细胞增加。图19A中示出代表性流式细胞术数据图。
图20A.向BALB/c小鼠的右胸侧皮下植入CT26细胞。13天后,对肿瘤大小达到30-100mm3的小鼠进行随机分组并用PBS对照、抗PD-L1、LB-100或组合(LB-100和抗PD-1)治疗28天。个体肿瘤体积随时间变化。
图20B.向BALB/c小鼠的右胸侧皮下植入CT26细胞。13天后,对肿瘤大小达到30-100mm3的小鼠进行随机分组并用PBS对照、抗PD-L1、LB-100或组合(LB-100和抗PD-1)治疗28天。中值肿瘤体积随时间变化。
图20C.向BALB/c小鼠的右胸侧皮下植入CT26细胞。13天后,对肿瘤大小达到30-100mm3的小鼠进行随机分组并用PBS对照、抗PD-L1、LB-100或组合(LB-100和抗PD-1)治疗28天。小鼠存活率随时间变化。
图21A.在初次接种后约60天,向治愈的小鼠和CT26未处理对照小鼠的左侧翼(再)接种CT26细胞。个体肿瘤体积随时间变化。
图21B.在初次接种后约60天,向治愈的小鼠和CT26未处理对照小鼠的左侧翼(再)接种CT26细胞。中值肿瘤体积随时间变化。
图22A.向BALB/c小鼠的右胸侧皮下植入CT26细胞。11天后,将肿瘤大小达到30-100mm3的小鼠随机分成四组。对照、CD8消耗、CD8消耗+组合(LB-100和抗PD-1)或仅组合(LB-100和抗PD-1)。然后,向消耗组中的小鼠给予CD8消耗抗体。然后,两天后,开始对小鼠进行相应的治疗。个体肿瘤体积随时间变化。
图22B.向BALB/c小鼠的右胸侧皮下植入CT26细胞。11天后,将肿瘤大小达到30-100mm3的小鼠随机分成四组。对照、CD8消耗、CD8消耗+组合(LB-100和抗PD-1)或仅组合(LB-100和抗PD-1)。然后,向消耗组中的小鼠给予CD8消耗抗体。然后,两天后,开始对小鼠进行相应的治疗。中值肿瘤体积随时间变化。
图22C.向BALB/c小鼠的右胸侧皮下植入CT26细胞。11天后,将肿瘤大小达到30-100mm3的小鼠随机分成四组。对照、CD8消耗、CD8消耗+组合(LB-100和抗PD-1)或仅组合(LB-100和抗PD-1)。然后,向消耗组中的小鼠给予CD8消耗抗体。然后,两天后,开始对小鼠进行相应的治疗。小鼠存活率随时间变化。
图23A.如在图22A-C中所描述的,向BALB/c小鼠的右胸侧皮下接种CT26肿瘤细胞,并用对照(PBS)、LB-100、抗PD-1或组合(LB-100和抗PD-1)进行治疗。在治疗开始后12天,通过流式细胞术分析肿瘤浸润性T细胞。在组合组中,在PMA刺激4小时后产生IFNg+的CD8+肿瘤浸润性T细胞的百分比增加(*p=0.05)。
图23B.如在图22A-C中所描述的,向BALB/C小鼠的右胸侧皮下接种CT26肿瘤细胞,并用对照(PBS)、LB-100、抗PD-1或组合(LB-100和抗PD-1)进行治疗。在治疗开始后12天,通过流式细胞术分析肿瘤浸润性T细胞。在LB-100治疗组中,肿瘤中CD45+细胞的CD4+FoxP3+T-调节性细胞的百分比降低(**p<0.01)。
图24A.向BALB/c小鼠的右胸侧皮下接种0.5×106个CT26细胞。当肿瘤达到50到100mm3之间时,将小鼠随机分成四个治疗组,并且每2天进行治疗,持续4周。
图24B.左边个体肿瘤生长曲线:对照、LB-100、a-PD-1以及组合。中间平均肿瘤大小随时间变化。右边累积存活期随时间变化。
图24C.PP2A抑制与PD-1阻断的功效依赖于CD8+T细胞。如24A中那样接种BALB/c小鼠。当肿瘤达到30到100mm3之间时,小鼠暂时消耗CD8+T细胞并用组合治疗。
图24D.左边个体肿瘤生长曲线:对照、组合、只消耗CD-8、以及具有CD8消耗的组合。中间平均肿瘤大小随时间变化。右边累积存活期随时间变化。数据表示2个独立实验。*P<0.05、**P<0.01,并且****P<0.0001(对数秩(Mantel-Cox)检验)。
图25A.向BALB/c小鼠皮下接种0.5×106个CT26细胞并进行治疗。在初次植入后约60天,用0.5×106个CT26细胞在左胸侧再激发CR或未处理对照小鼠,或组合1.25×105个4T1乳腺癌细胞在乳房脂肪垫中再激发所述CR或未处理对照小鼠。使用单独的CT26(再)激发小鼠没有表现出CT 26肿瘤的生长。
图25B.左边个体肿瘤生长曲线:未处理CR。右边平均肿瘤大小随时间变化。
图25C.接种后18天CT26肿瘤体积的定量。(P<0.001,双尾学生t检验)。
图25D.使用CT26和4T1肿瘤细胞对CR和未处理小鼠进行(再)激发。未处理-CT26、CR-CT26、未处理-4T1、CR-4T1。左边个体肿瘤生长曲线。右边平均肿瘤大小随时间变化。
图25E.接种后18天CT26和4T1肿瘤体积的定量。(P<0.0001,单向ANOVA与Tukey的多重比较检验)。
图25F.接种CT26和4T1肿瘤后代表性未处理和CR小鼠的图片。
图26A.脾脏中的CD8+T细胞中的CD44和CD62L的代表性FACS图。
图26B.脾脏(n=4-5)中(CD8+T细胞的)CD62-CD44+的定量。
图26C.肿瘤引流淋巴结(n=4-5)中(CD8+T细胞的)CD62-CD44+的定量。
图26D.以CD45+细胞的百分比表示的CD8+CD3+T细胞的代表性FACS图。
图26E.以CD45+细胞(n=5)的百分比表示的CD3+的免疫浸润分析。误差条描述SEM。数据表示用五个独立分析的小鼠/组进行的两个实验中的一个实验。
图26F.以CD45+细胞(n=5)的百分比表示的CD8+的免疫浸润分析。误差条描述SEM。数据表示用五个独立分析的小鼠/组进行的两个实验中的一个实验。
图26G.以CD45+细胞(n=5)的百分比表示的CD4+的免疫浸润分析。误差条描述SEM。数据表示用五个独立分析的小鼠/组进行的两个实验中的一个实验。
图26H.肿瘤中CD8+细胞与CD4+细胞的比率。误差条描述SEM。数据表示用五个独立分析的小鼠/组进行的两个实验中的一个实验。
图26I.以肿瘤中CD45+细胞的百分比表示的CD8+和CD44+。误差条描述SEM。数据表示用五个独立分析的小鼠/组进行的两个实验中的一个实验。
图26J.以肿瘤中CD45+细胞表示的CD8+和Ki67+。误差条描述SEM。数据表示用五个独立分析的小鼠/组进行的两个实验中的一个实验。
图26K.PD1+在肿瘤中CD8+细胞中的表达。*P<0.05,(单向ANOVA与Tukey的多重比较检验)。
图26L.肿瘤中CD4+细胞的表达。*P<0.05,(单向ANOVA与Tukey的多重比较检验)。
图27A.肿瘤中FoxP3+和CD4+T细胞的代表性FACS图。图27B.总CD3+细胞的CD4+FoxP3+T细胞的百分比。
图27C.肿瘤中CD8+与CD4+FoxP3+Treg细胞的比率(n=5)。
图27D.CD45+细胞的CD8+IFNγ+T细胞的代表性FACS图。
图27E.CD45+细胞的CD8+IFNγ+T细胞的百分比。
图27F.CD45+细胞的CD8+TNFα+T细胞的百分比。
图27G.CD45+细胞的CD8+双阳性IFNγ+TNFα+T细胞的百分比。
图27H.CD45+细胞的CD8+颗粒酶B+T细胞的百分比。
图27I.CD4+T细胞的CD4+IFNγ+的百分比。
图27J.如通过FACS确定的,CD45+免疫细胞亚群和CD45-细胞的总结。亚群被描述为所有获得的活跃事件(右)和CD3+细胞(左)的百分比;右边的图表:非CD45-、CD3+、非CD3+、CD45白细胞;左边的图表:CD8、CD4-Treg、CD4-conv。*P<0.05,(单向ANOVA与Tukey的多重比较检验)。误差条描述SEM。数据表示用五个独立分析的小鼠/组进行的两个实验中的一个实验。
图28A.接受LB-100和/或aPD-1治疗的小鼠脾脏中(A)CD4+的活化和免疫检查点标记物的流式细胞术分析。在CD4+T细胞中,与CD8+T细胞不同,CD62L-CD44+表达的表达没有变化。免疫检查点标记物的表达也没有变化:PD1、CTLA4、TIM3以及Ox40。
图28B.接受LB-100和/或aPD-1治疗的小鼠脾脏中CD8+淋巴细胞的活化和免疫检查点标记物的流式细胞术分析。在CD8+T细胞中,免疫检查点标记物的表达没有变化:PD1、CTLA4、TIM3以及Ox40。
图29A.接受LB-100和/或aPD-1治疗的小鼠的引流淋巴结(dLN)中CD4+的活化和免疫检查点标记物的流式细胞术分析。在CD4+T细胞中,与CD8+T细胞不同,CD62L-CD44+表达的表达没有变化。在aPD-1治疗的组中PD-1表达存在小但显著的增加,但单独或组合的LB-100没有进一步改变PD-1表达。其它免疫检查点标记物的表达没有变化:CTLA4、TIM3和Ox40。*P<0.05,**<P<0.01(单向ANOVA与Tukey的多重比较检验)。误差条描述SEM。
图29B.接受LB-100和/或aPD-1治疗的小鼠的引流淋巴结(dLN)中CD8+淋巴细胞的活化和免疫检查点标记物的流式细胞术分析。在CD8+T细胞中,免疫检查点标记物的表达没有变化:PD1、CTLA4、TIM3以及Ox40。*P<0.05,**<P<0.01(单向ANOVA与Tukey的多重比较检验)。误差条描述SEM。
图30.肿瘤浸润淋巴细胞的流式细胞术分析的门控策略。SSC-FSC门用于排除非细胞碎片,然后通过FSC-H-FSA-A门排除电子对。固定活-死(L/D)染色用于排除死细胞。然后,基于CD45+pan白血球标记物的表达对活细胞进行门控。CD45-细胞被认为是肿瘤细胞。然后,基于CD3、CD8、CD4表达对CD45+细胞进行进一步表型分型。将CD45+CD3+CD8+细胞门控为CD8+淋巴细胞,而将CD45+CD3+CD4+细胞门控为CD4+淋巴细胞。进一步地,然后如文中所表明的进行CD4+和CD8+亚群的染色。
图31A.示出了针对每个治疗组的CD3+、CD8+和CD4+细胞与CD45-肿瘤驻留细胞的比率。与对照相比,组合组中CD3/肿瘤与CD8/肿瘤比率增加,而CD4/肿瘤比率没有变化。
图31B.示出针对每个治疗组的每克肿瘤重量的CD3+、CD8+和CD4+细胞数。在图31A中看到类似的趋势,但与对照相比,单独的aPD-1治疗组中每克肿瘤的CD3+和CD8+存在显著差异。组合治疗的CD3+和CD8+/肿瘤有进一步增加的趋势,但无统计显著性。*P<0.05,***<P<0.001(单向ANOVA与Tukey的多重比较检验)。误差条描述SEM。
图32A.接受LB-100和/或aPD-1治疗的小鼠的肿瘤中CD4+淋巴细胞的免疫检查点标记物的流式细胞术分析。在CD4+T细胞中,免疫检查点标记物的表达没有变化:TIM3、Ox40、CTLA4和LAG3。
图32B.接受LB-100和/或aPD-1治疗的小鼠的肿瘤中CD8+淋巴细胞的免疫检查点标记物的流式细胞术分析。在CD8+T细胞中,免疫检查点标记物的表达没有变化:TIM3、Ox40、CTLA4和LAG3。
图33A.示出增加的TNF-α+的代表性流式细胞术图。显示的百分比是总CD3+的。
图33B.示出增加的TNF-α+IFN-γ+双阳性的代表性流式细胞术图。显示的百分比是总CD8+的。
图33C.示出增加的颗粒酶B+CD8肿瘤浸润T细胞的代表性流式细胞术图。显示的百分比是总CD3+细胞的。
图34A.将C57BL/6小鼠随机分成四个治疗组。治疗开始后2天,将2.5×105B16F10细胞皮下接种在右胸侧。每两天治疗小鼠直到存活终点。
图34B.左边个体肿瘤生长曲线:对照、LB-100、a-PD-1以及组合。右边平均肿瘤大小随时间变化。
图34C.接种后15天B16肿瘤体积的定量。(P<0.0001,单向ANOVA与Tukey的多重比较检验)。
图34D.随时间推移累积的存活期。*P<0.05,(对数秩检验),根据2个独立实验汇集数据。
图34E.每个治疗组(每组n=2-3)的皮肤和唾腺的苏木精和曙红染色的代表性图像。比例尺,100μm。
图35.每个治疗组(每组n=2-3)的胰腺、肺和胃的苏木精和曙红染色的代表性图像。比例尺,100μm。
图36A.从小鼠脾细胞中分离CD3T细胞,并使用固定化的抗CD3(10.ig/ml)和可溶抗CD28(2.ig/ml)在有或没有刺激的情况下培养。在活化3小时后测量PP2A酶活性。在存在LB-100剂量滴定的情况下,测量如相对于活化的对照的PP2A活性。
图36B.流式细胞术分析在存在LB-100剂量滴定的情况下刺激3小时后在Thr308(p-AKT(T308))或Ser473(p-AKT(S473))处磷酸化的AKT。
图36C.流式细胞术分析在存在LB-100剂量滴定的情况下磷酸化的S6(p-S6)。*P<0.05,***P<0.001,(单向ANOVA与Tukey的多重比较检验)。数据来自代表具有类似结果的两个独立的实验的一个实验。误差条描述SEM。
图37.在刺激30分钟后AKT和mTORC信号传导。流式细胞术分析在存在LB-100剂量滴定的情况下刺激30分钟后在Thr308(p-AKT(T308))、Ser473(p-AKT(S473))或磷酸化的S6(p-S6)处磷酸化的AKT。(单向ANOVA与Tukey的多重比较检验)。数据来自代表具有类似结果的两个独立的实验的一个实验。误差条描述SEM。
图38A.左,对Foxp3呈阳性的CD4细胞的%。右,代表性流式细胞术数据显示Foxp3细胞与LB-100的%降低。在CD4+细胞上对细胞进行门控。
图38B.用流式细胞术测量细胞内GATA3水平。左,对GATA3呈阳性的CD4细胞的%。右,代表性流式细胞术数据显示GATA3细胞与LB-100的%降低。
图38C.通过Tbet+Th1CD4细胞的GATA3+Th2的比率。
图38D.通过流式细胞术测量IFN-γ的细胞内产生。左,在TH1和TH2条件下对IFN-γ呈阳性的CD4细胞的%。右,代表性流式细胞术数据显示在TH1和TH2条件下IFN-γ细胞与LB-100的%增加。
图38E.在TH1偏斜条件下活化3天的未处理CD4+T细胞的上清液中的TNF、IL2和IFN-γ产生。
图38F.在TH2偏斜条件下活化3天的未处理CD4+T细胞的上清液中的TNF、IL2、IFN-γ和IL4产生。将细胞因子水平调整到绝对细胞数。*P<0.05,**P<0.01,***P<0.001(单向ANOVA与Tukey的多重比较检验)。数据来自代表具有类似结果的两个独立的实验的一个实验。误差条描述SEM。
图39A.通过在IL4和GM-CSF中培养7天,从纯化的单核细胞诱导DC。然后,在存在LB-100滴定的条件下,将105个标记为CD4+T细胞的纯化CFSE一式两份或一式三份地与104个同种异体DC共培养5天。第3天补充LB-100。第5天收集上清液并测量IFN-γ产生。对培养的细胞进行FACS分析。
图39B.在存在LB-100剂量滴定的情况下,通过稀释细胞溶质CFSE来测量CD4+T细胞的体外增殖。左,相对于LB-100的浓度绘制的分裂细胞的%。右,代表性流式细胞术数据显示在1uM的LB-100下分裂的细胞的%增加。
图39C.在第5天测量IFN-α产生,这表明使用LB-100的IFN-α分泌的剂量依赖性增加。
图39D.在共培养5天后,在CD4+T细胞中进行T-bet的细胞内染色。(CD4+细胞的)CD4+Tbet+相对于LB-100浓度的百分比。
图39E.用同种型对照,即LB-100和/或纳武单抗,治疗的细胞中(E)IFN-γ产生,这表明对组合治疗的协同应答。*P<0.05,**P<0.05,***P<0.001(单向ANOVA与Tukey的多重比较检验)。数据来自代表具有类似结果的两个独立的实验的一个实验。误差条描述SEM。
具体实施方式
本发明提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,其中当所述量一起服用时对治疗所述受试者有效。
本发明还提供了一种治疗患有癌症的受试者和接受检查点抑制剂的方法,所述方法包括向所述受试者施用相对于单独的所述检查点抑制剂有效增强治疗的一定量的PP2A抑制剂。
本发明还提供了一种治疗受试者的肿瘤或癌症的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,其中当所述量一起服用时对治疗所述肿瘤或癌症有效。
本发明还提供了一种增加针对患有癌症的受试者的癌细胞的T细胞应答的方法,所述方法包括向所述受试者施用一定量的PP2A抑制剂与有效增加针对所述癌细胞的所述T细胞应答的有效量的检查点抑制剂的组合。
本发明还提供了一种增加患有癌症的受试者的T细胞活化的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,由此增加所述T细胞活化。
在一些实施例中,将一定量的化合物和一定量的检查点抑制剂各自定期施用于所述受试者。
在一些实施例中,一定量的化合物和一定量的检查点抑制剂同时、分开或依次施用。
在一些实施例中,所述检查点抑制剂与所述PP2A抑制剂同时、在其之前或之后施用。
在一些实施例中,与单独施用相同量的每种药剂相比,一起施用一定量的检查点抑制剂和一定量的所述化合物对治疗所述受试者更有效。
在一些实施例中,当一起服用时,一定量的所述化合物和一定量的所述检查点抑制剂有效减少所述受试者的所述癌症的临床症状。
在一些实施例中,所述化合物增强了所述检查点抑制剂的免疫治疗效果。
在一些实施例中,所述癌症易受通过免疫应答进行治疗的影响。
在一些实施例中,所述免疫检查点抑制剂是CTLA-4药剂。
在一些实施例中,所述CTLA-4免疫检查点抑制剂是伊匹木单抗(ipilimumab)或曲美木单抗(tremelimumab)。
在一些实施例中,所述免疫检查点抑制剂是抗PD-1或抗PD-L1药剂。
在一些实施例中,所述PD-1和/或PD-L1检查点抑制剂是阿特朱单抗(atezolizumab)、纳武单抗(nivolumab)或派姆单抗(pembrolizumab)。
在一些实施例中,所述癌症是黑色素瘤、肾细胞癌、前列腺癌、尿路上皮癌或卵巢癌。
在一些实施例中,所述癌症是黑色素瘤。
在一些实施例中,所述PP2A抑制剂以0.25mg/m2、0.5mg/m2、0.83mg/m2、1.25mg/m2、1.75mg/m2、2.33mg/m2或3.1mg/m2的剂量施用。
在一些实施例中,所述PP2A抑制剂以2.33mg/m2的剂量施用。
在一些实施例中,所述PP2A抑制剂每3周施用3天。
在一些实施例中,所述伊匹木单抗以0.5mg/kg到10mg/kg或更低的剂量静脉内施用。
在一些实施例中,所述伊匹木单抗每3周或更短时间静脉内施用超过90分钟。
在一些实施例中,所述阿特朱单抗以0.1mg/kg到20mg/kg或更低的剂量静脉内施用。
在一些实施例中,所述阿特朱单抗每3周或更短时间静脉内施用超过60分钟。
在一些实施例中,所述纳武单抗以0.1mg/kg到10mg/kg或更低的剂量静脉内施用。
在一些实施例中,所述纳武单抗每2周或更短时间静脉内施用超过60分钟。
在一些实施例中,所述派姆单抗以1mg/kg到10mg/kg或更低的剂量静脉内施用。
在一些实施例中,所述派姆单抗每3周或更短时间静脉内施用超过30分钟。
本发明还提供了一种抑制T细胞中CTLA-4的功能的方法,所述方法包括向所述T细胞施用PP2A抑制剂,由此抑制所述CTLA-4的所述功能。
本发明还提供了一种抑制T细胞中PD-1:PD-L1相互作用的方法,所述方法包括向所述T细胞施用PP2A抑制剂,由此抑制PD-1:PD-L1的所述相互作用。
在一些实施例中,在所述方法中,PP2A抑制剂具有以下结构:
其中
键α存在或不存在;
R1和R2一起为=O;
R3为OH、O-、OR9、O(CH2)1-6R9、SH、S-或SR9
其中R9为H、烷基、烯基、炔基或芳基;
R4
其中X为O、S、NR10、N+HR10或N+R10R10
其中每个R10独立地为H、烷基、烯基、炔基、芳基、-CH2CN、-CH2CO2R11或-CH2COR11
其中每个R11独立地为H、烷基、烯基或炔基;
R5和R6一起为=O;
R7和R8各自为H、
或其盐、两性离子或酯。
在一些实施例中,化合物具有以下结构:
在一些实施例中,所述化合物中存在键α。
在一些实施例中,所述化合物中缺少键α。
在一些实施例中,R3为OH、O-或OR9
其中R9为烷基、烯基、炔基或芳基;
R4
其中X为O、S、NR10、N+HR10或N+R10R10
其中每个R10独立地为H、烷基、烯基、炔基、芳基、在一些实施例中,R3为OH、O-或OR9,其中R9为H、甲基、乙基或苯基。
在一些实施例中,R3为OH、O-或OR9,其中R9为甲基。
在一些实施例中,R4
在一些实施例中,R4
其中R10为H、烷基、烯基、炔基、芳基或
在一些实施例中,R4其中R10为-H、-CH3、-CH2CH3
在一些实施例中,R4
在一些实施例中,R4其中R10为H、烷基、烯基、炔基、芳基、
在一些实施例中,R4
在一些实施例中,R4
在一些实施例中,所述化合物具有以下结构:
其中
键α存在或不存在;
R9存在或不存在,并且当存在时为H、烷基、烯基、炔基或苯基;并且
X为O、NR10、NH+R10或N+R10R10
其中每个R10独立地为H、烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、芳基、-CH2CN、-CH2CO2R12或-CH2COR12
其中R12为H或烷基、
或其盐、两性离子或酯。
在一些实施例中,所述化合物具有以下结构:
其中
键α存在或不存在;
X为O或NR10
其中每个R10独立地为H、烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、芳基、-CH2CN、-CH2CO2R12或-CH2COR12
其中R12为H或烷基、
或其盐、两性离子或酯。
在一些实施例中,所述化合物具有以下结构:
其中
键α存在或不存在;
X为O或NH+R10
其中R10为H、烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、芳基-CH2CN、-CH2CO2R12或-CH2COR12
其中R12为H或烷基、
或其盐、两性离子或酯。
在一些实施例中,所述化合物具有以下结构:
或其盐或酯。
本发明提供了一种抑制T细胞中CTLA-4的功能的方法,所述方法包括向所述T细胞施用PP2A抑制剂,由此抑制CTLA-4的所述功能。
本发明还提供了一种抑制患有癌症的受试者的CTLA-4的功能的方法,所述方法包括向所述受试者施用PP2A抑制剂,由此抑制所述受试者的CTLA-4的所述功能。
本发明进一步提供了一种增加患有癌症的受试者的T细胞活化的方法,所述方法包括向所述受试者施用PP2A抑制剂,由此增加所述T细胞活化。
本发明仍进一步提供了一种增加针对患有癌症的受试者的癌细胞的T细胞应答的方法,所述方法包括向所述受试者施用PP2A抑制剂,由此增加针对所述癌细胞的所述T细胞应答。
本发明还提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的CTLA-4检查点抑制剂和有效量的PP2A抑制剂,其中当所述量一起服用时对治疗所述受试者有效。
在一些实施例中,所述PP2A抑制剂改变PP2A与CTLA-4的相互作用。
在一些实施例中,所述PP2A抑制剂降低PP2A与CTLA-4的结合。
在以上方法中的任一种方法的一些实施例中,所述癌症易受抗CTLA-4免疫疗法的影响。
在以上方法中的任一种方法的一些实施例中,所述受试者具有由CTLA-4介导的降低的T细胞活化。
本发明还提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂,由此治疗所述癌症,其中所述癌症易受抗CTLA-4免疫疗法的影响。
本发明还提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂,由此治疗所述癌症,其中所述癌症易受免疫疗法的影响。
本发明还提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂,由此治疗所述癌症,其中所述受试者具有由CTLA-4介导的降低的T细胞活化。
在以上方法中的任一种方法的一些实施例中,所述癌症易受抗CTLA-4免疫疗法的影响。
在以上方法中的任一种方法的一些实施例中,所述受试者具有由CTLA-4介导的降低的T细胞活化。
在以上方法中的任一种方法的一些实施例中,所述癌症是黑色素瘤、肾细胞癌、前列腺癌、尿路上皮癌或卵巢癌。
在以上方法中的任一种方法的一些实施例中,所述癌症是黑色素瘤。
在以上方法中的任一种方法的一些实施例中,易受抗CTLA-4免疫疗法影响的所述癌症是黑色素瘤。
在一些实施例中,所述癌症是胰腺癌。
在一些实施例中,所述癌症是胰腺癌,并且所述胰腺癌的癌细胞过度表达Mad2。
在一些实施例中,所述癌症在PP2A功能和/或DNA损伤-修复路径中具有异常情况。
在一些实施例中,所述受试者患有纤维肉瘤、软骨肉瘤、胸腺瘤、非典型肺类癌、或卵巢癌、睾丸癌、乳腺癌或前列腺癌。
在以上方法中的任一种方法的一些实施例中,所述PP2A抑制剂对治疗患有癌症的受试者有效。
在一些实施例中,以上方法进一步包括与所述PP2A抑制剂同时、在其之前或之后施用抗癌疗法。
在一些实施例中,所述抗癌疗法包括施用检查点抑制剂,例如CTLA-4检查点抑制剂。在以上方法的一些实施例中,所述PP2A抑制剂增强CTLA-4检查点抑制剂的化学治疗效果。
在以上方法的一些实施例中,所述CTLA-4检查点抑制剂是抗体。
在以上方法的一些实施例中,所述PP2A抑制剂改变PP2A与CTLA-4的相互作用。
在以上方法的一些实施例中,所述PP2A抑制剂增加PP2A与CTLA-4的结合。
易受抗CTLA-4免疫疗法影响的癌症包含但不限于已经在临床前或临床试验中示出适于抗CTLA-4免疫疗法的癌症。
易受抗PD-1或抗PD-L1免疫疗法影响的癌症包含但不限于已经在临床前或临床试验中示出适于抗PD-1或抗PD-L1免疫疗法的癌症。
在一些实施例中,一定量的所述化合物有效减少所述受试者的所述癌症的临床症状。
在一些实施例中,治疗包括增加所述受试者的细胞毒性T细胞的量。
在一些实施例中,治疗包括增加与所述受试者的癌细胞相互作用的细胞毒性T细胞的量。
在一些实施例中,治疗包括增加被所述受试者的细胞毒性T细胞杀死的癌细胞的量。
T细胞类型包含“杀伤”细胞毒性CD8+T细胞和“辅助”CD4+T细胞。后者涵盖参与调节免疫应答的亚型(如“Treg”细胞)以及刺激获得性免疫系统(包含识别可以刺激杀伤T细胞或产生抗体的B细胞的“非自身”蛋白质)的其它亚型。特异性T细胞克隆(其一些特异性T细胞克隆在抗原暴露后作为“记忆”T细胞维持在低水平)由特定MHC/表位组合活化,从而导致细胞因子释放、克隆扩增和获得性免疫应答。
在一些实施例中,所述T细胞是CD4+T细胞、CD8+T细胞和/或CD4+CD8+T细胞。
在一些实施例中,所述癌症是肝细胞癌、人骨肉瘤、原发性肝癌、胃癌、卵巢癌、子宫内膜癌、结肠直肠癌、非小细胞肺癌、软组织肉瘤、精原细胞瘤、乳癌、淋巴瘤、纤维肉瘤、神经母细胞瘤、粘液性卵巢癌、尿路上皮膀胱癌、子宫颈鳞状细胞癌、弥漫性大B细胞淋巴瘤、肺腺瘤、肝瘤、肠癌、纤维肉瘤、骨肉瘤、前列腺癌、血管平滑肌脂肪瘤、乳腺癌、急性髓性白血病、慢性淋巴细胞白血病、以及多发性骨髓瘤和其它浆细胞赘生物。
在一些实施例中,所述癌症是肺腺瘤、肝瘤、肝细胞癌、肠癌、淋巴瘤、纤维肉瘤、骨肉瘤、前列腺癌、血管平滑肌脂肪瘤或乳腺癌。
在一些实施例中,所述癌症是急性髓性白血病。
在一些实施例中,所述癌症是乳癌、结肠癌、大细胞肺癌、肺腺癌、小细胞肺癌、胃癌、肝癌、卵巢腺癌、胰腺癌、前列腺癌、早幼粒细胞白血病、慢性髓性白血病、急性淋巴母细胞白血病、慢性淋巴细胞白血病、多发性骨髓瘤和浆细胞赘生物、结肠直肠癌、卵巢癌、淋巴瘤、非霍奇金淋巴瘤、霍奇金淋巴瘤、神经母细胞瘤、成神经管细胞瘤、胶质母细胞瘤、脊索瘤、脑膜瘤(非恶性和恶性)、弥漫性内源性脑桥胶质瘤、或非典型畸胎样/横纹肌样瘤。
在以上方法的一些实施例中,所述癌症是乳癌、结肠癌、大细胞肺癌、肺腺癌、小细胞肺癌、胃癌、肝癌、卵巢腺癌、胰腺癌、前列腺癌、急性早幼粒细胞白血病、慢性髓性白血病、急性淋巴母细胞白血病、慢性淋巴细胞白血病、多发性骨髓瘤和浆细胞赘生物、结肠直肠癌、卵巢癌、淋巴瘤、非霍奇金淋巴瘤或霍奇金淋巴瘤。
在以上方法的一些实施例中,所述癌症是脑癌。
在以上方法的一些实施例中,所述脑癌是神经胶质瘤、纤维状细胞性星形细胞瘤、低度弥漫性星形细胞瘤、间变性星形细胞瘤、多形性胶质母细胞瘤、少突胶质细胞瘤、室管膜瘤、脑膜瘤、脑垂体瘤、原发性中枢神经系统淋巴瘤、成神经管细胞瘤、颅咽管瘤或弥漫性内源性脑桥胶质瘤。
在以上方法的一些实施例中,所述方法进一步包括向所述受试者施用抗癌剂。
在以上方法的一些实施例中,所述抗癌剂选自x辐射或电离辐射。
在以上方法的一些实施例中,靶细胞是癌细胞。
在以上方法的一些实施例中,所述癌细胞是乳腺癌、结肠癌、大细胞肺癌、肺腺癌、小细胞肺癌、胃癌、肝癌、卵巢腺癌、胰腺癌、前列腺癌、早幼粒细胞白血病、慢性粒细胞性白血病、急性淋巴细胞白血病、结肠直肠癌、卵巢癌、淋巴瘤、非霍奇金淋巴瘤或霍奇金淋巴瘤细胞。
LB-100的类似物具有与LB-100类似的活性,并且在本文所描述的方法中表现出类似的效果。此些类似物包含以下PCT国际申请公开号中描述的化合物:于2008年8月14日公开的PCT国际申请公开第WO 2008/097561号;于2010年2月4日公开的PCT国际申请公开第WO2010/014254号;于2015年5月21日公开的PCT国际申请公开第WO 2015/073802号;以及于2016年11月24日公开的PCT国际申请公开第WO 2016/186963号中描述的化合物,所述PCT国际申请中的每一个的内容特此通过引用并入。
充当体内递送LB-100和/或草多索(endothal)的前药的化合物具有与LB-100类似的活性,并且在本文所描述的方法中表现出类似的效果。更具体地,前药的施用提供了与LB-100的施用相似的效果。LB-100和/或草多索的前药包含于2015年5月21日公开的PCT国际申请公开第WO 2015/073802号;以及于2016年11月24日公开的PCT国际申请公开第WO2016/186963号中描述的化合物,所述PCT国际申请中的每一个的内容特此通过引用并入。
除非另有说明,当在本发明的方法中使用的化合物的结构包含不对称碳原子时,应理解所述化合物作为外消旋体、外消旋混合物和分离的单一对映体出现。这些化合物的所有此些异构体形式明确地包含在本发明中。除非另有说明,否则每种立构碳可以具有R或S构型。因此应理解,除非另有说明,否则由此不对称性产生的异构体(例如,所有对映异构体和非对映异构体)都包含在本发明的范围内。此些异构体可以通过经典分离技术和通过立体化学控制的合成以基本上纯的形式获得,如在由纽约约翰威利父子出版社(JohnWiley&Sons)的J.Jacques、A.Collet和S.Wilen发布的对映体、外消旋体和拆分(Enantiomers,Racemates and Resolutions),1981中所描述的。例如,拆分可以通过制备色谱法在手性柱上进行。
本主题发明还旨在包含在本文所公开的方法中在化合物上发生的原子的所有同位素。同位素包含具有相同原子序数但是不同质量数的那些原子。通过一般举例但不具有限制性,氢的同位素包含氚和氘。碳的同位素包含C-13和C-14。
应当注意,当在没有另外的符号的情况下使用时,贯穿本申请,结构中的碳的任何符号旨在表示碳的所有同位素,如12C、13C或14C。此外,含有13C或14C的任何化合物可以具体地具有本文所公开的任何化合物的结构。还应注意,当在没有另外的符号的情况下使用时,贯穿本申请,结构中的氢的任何符号旨在表示氢的所有同位素,如1H、2H或3H。此外,任何含2H或3H的化合物可以具体地具有本文所公开的任何化合物的结构。同位素标记的化合物通常可以使用代替所采用的非标记试剂的适当的同位素标记的试剂通过本领域技术人员已知的常规技术来制备。
在一些实施例中,在所述方法中,向所述受试者施用包括本发明的化合物和至少一种药学上可接受的载剂的药物组合物以治疗所述受试者的所述癌症。
在一些实施例中,在所述药物组合物中,所述药学上可接受的载剂包括脂质体。
在一些实施例中,在所述药物组合物中,所述化合物包含在脂质体或微球体中。
在一些实施例中,所述药物组合物包括所述PP2A抑制剂和所述CTLA-4检查点抑制剂。
在以上方法或用途中的任一种方法或用途的一些实施例中,所述受试者是人类。
在以上方法或用途中的任一种方法或用途的一些实施例中,所述化合物和/或所述CTLA-4检查点抑制剂口服施用给所述受试者。
本发明提供了一种用于抑制T细胞中CTLA-4的功能的PP2A抑制剂。
本发明提供了一种用于抑制患有癌症的受试者的CTLA-4的功能的PP2A抑制剂。
本发明提供了一种用于增加患有癌症的受试者的T细胞活化的PP2A抑制剂。
本发明提供了一种用于增加针对患有癌症的受试者的癌细胞的T细胞应答的PP2A抑制剂。
本发明提供了一种用于治疗患有癌症的受试者的PP2A抑制剂,其中所述癌症易受抗CTLA-4免疫疗法的影响。
本发明提供了一种用于治疗患有癌症的受试者的PP2A抑制剂,其中所述受试者具有由CTLA-4介导的降低的T细胞活化。
本发明提供了一种用于治疗患有癌症的受试者的PP2A抑制剂与CTLA-4检查点抑制剂的组合。
本发明提供了一种用于抑制T细胞中CTLA-4的功能的PP2A抑制剂的用途。
本发明提供了一种用于抑制患有癌症的受试者的CTLA-4的功能的PP2A抑制剂的用途。
本发明提供了一种用于增加患有癌症的受试者的T细胞活性的PP2A抑制剂的用途。
本发明提供了一种用于增加针对患有癌症的受试者的癌细胞的T细胞应答的PP2A抑制剂的用途。
本发明提供了一种用于治疗患有癌症的受试者的PP2A抑制剂的用途,其中所述癌症易受抗CTLA-4免疫疗法的影响。
本发明提供了一种用于治疗患有癌症的受试者的PP2A抑制剂的用途,其中所述受试者具有由CTLA-4介导的降低的T细胞活化。
本发明提供了一种用于治疗患有癌症的受试者的PP2A抑制剂与CTLA-4检查点抑制剂的组合的用途。
本发明还提供了一种优化已施用LB1-00的剂量的受试者的血流中的LB-100的浓度的方法,所述方法包括:
(a)测量所述受试者的LB-100的血浆浓度;
(b)基于(a)中的测量确定是否需要向所述受试者施用另外的LB-100剂量;以及
(c)基于(b)中的确定,根据需要施用所述LB-100的另外的一或多个剂量。
在一些实施例中,以上步骤(b)包括基于(a)中的测量结果是否高于、低于或等于LB-100的最小有效浓度(MEC)来确定是否需要向所述受试者施用另外的LB-100剂量。
在一些实施例中,施用于所述受试者的LB-100的初始剂量的量为0.1mg/m2到5mg/m2
在一些实施例中,施用于所述受试者的LB-100的另外的剂量的量为0.1mg/m2到5mg/m2
在一些实施例中,所述化合物以0.25mg/m2、0.5mg/m2、0.83mg/m2、1.25mg/m2、1.75mg/m2、2.33mg/m2或3.1mg/m2的剂量施用。
在一些实施例中,所述化合物以2.33mg/m2的剂量施用。
在一些实施例中,所述化合物每3周施用3天。
在一些实施例中,施用于所述受试者的LB-100的另外的剂量的量比所述初始剂量低25%。
在一些实施例中,施用于所述受试者的LB-100的另外的剂量的量比所述初始剂量低50%。
在一些实施例中,施用于所述受试者的LB-100的另外的剂量的量比所述初始剂量低75%。
在一些实施例中,施用于所述受试者的LB-100的另外的剂量的量比所述初始剂量高25%。
在一些实施例中,施用于所述受试者的LB-100的另外的剂量的量比所述初始剂量高50%。
在一些实施例中,施用于所述受试者的LB-100的另外的剂量的量比所述初始剂量高75%。
在一些实施例中,在施用同时、之前或之后,用抗癌疗法进一步治疗所述受试者。
抗癌疗法的实例包含放射疗法或化学疗法、促进抗原释放的靶向疗法、促进抗原呈递的疫苗接种、用于扩增T细胞活化的共刺激分子的激动剂或共抑制分子的阻断、调节性T细胞或髓源性抑制细胞的运输抑制、用于刺激肿瘤内T细胞浸润的抗血管内皮生长因子、用于增加T细胞浸润对癌症的识别或刺激肿瘤杀伤的过继性细胞转移。另外的实例可以在Swart等人,2016;Topalian等人,2015;和Tsiatas等人,2016中找到。
在一些实施例中,所述抗癌疗法包括免疫疗法。术语“免疫疗法”是指通过包括诱导、增强、抑制或以其它方式修饰免疫应答的方法治疗患有疾病的受试者。免疫治疗剂可以包含靶向CTLA-4、PD-1、PD-L1、GITR、OC40、LAG-3、KIR、TIM-3、B7-H3、B7-H4、CD28、CD40和CD137中的一或多种的抗体药剂。
在一些实施例中,所述抗癌疗法包括施用抗癌剂。
在一些实施例中,所述抗癌剂是免疫检查点调节剂。术语“免疫检查点调节剂”是指与免疫检查点直接或间接相互作用的药剂。可以施用免疫检查点调节剂以克服抑制信号并允许和/或增强针对癌细胞的免疫附着。在一些实施例中,免疫检查点调节剂增加免疫效应子应答(例如,细胞毒性T细胞应答)。在一些实施例中,免疫检查点调节剂减少、去除或阻止对一或多种抗原的免疫耐受。例如,免疫检查点调节剂可以通过减少、抑制或消除由负免疫应答调节因子(例如,CTLA4)进行的信号传导、通过刺激或增强免疫应答的正调节因子(例如,CD28)的信号传导、或通过预防自身免疫应答和限制免疫细胞介导的组织损伤来促进免疫细胞应答。
在一些实施例中,所述抗癌剂包括抗体或其抗原结合部分。
在一些实施例中,所述抗癌剂包括程序性死亡配体1(PD-L1)抑制剂。在一些实施例中,所述PD-L1抑制剂是阿特朱单抗。
阿特朱单抗(TecentriqTM的活性成分)是人类程序性死亡配体-1(PD-L1)阻断抗体。阿特朱单抗由特异性抗体鉴定(Tecentriq,食品和药物管理局批准的标记(参考ID:4000525)[在线],基因科技公司(Genentech Inc.),2016[于2017年2月24日检索],从互联网检索:<URL:www.accessdata.fda.gov/drugsatfda_docs/label/2016/761041lbl.pdf>)。
用于阿特朱单抗的推荐剂量和时间表是每3周静脉内施用1200mg超过60分钟,直到疾病进展或不可接受的毒性。如果第一次输注是耐受的,则随后的输注可以递送超过30分钟。
在一些实施例中,阿特朱单抗的施用包括1mg/kg、2mg/kg、3mg/kg、4mg/kg、5mg/kg、10mg/kg、15mg/kg、20mg/kg或更少的阿特朱单抗。
在一些实施例中,阿特朱单抗的定期施用包括1、2、3、4或更少的阿特朱单抗施用。
在一些实施例中,纳武单抗的施用是每2周或3周或更短时间。
在一些实施例中,抗体或其抗原结合部分特异性结合程序性死亡-1(PD-1)受体并抑制PD-1活性(“抗PD-1抗体”)。在一些实施例中,抗PD-1抗体是纳武单抗或派姆单抗。
纳武单抗(OpdivoTM的活性组分)是人类程序性死亡受体-1(PD-1)阻断抗体。纳武单抗由特异性抗体鉴定(OpdivoTM,食品和药物管理局批准的标记(参考ID:3677021)[在线],百时美施贵宝(Bristol-Myers Squibb),2014[于2017年2月24日检索],从互联网检索:<URL:www.accessdata.fda.gov/drugsatfda_docs/label/2014/125554lbl.pdf>)。
纳武单抗的推荐剂量和时间表是每2周静脉内施用4剂量的3mg/kg超过60分钟,直到疾病进展或不可接受的毒性。
在一些实施例中,纳武单抗的施用包括0.1mg/kg、0.5mg/kg、1mg/kg、2mg/kg、3mg/kg、4mg/kg、5mg/kg、6mg/kg、7mg/kg、8mg/kg、9mg/kg、10mg/kg或更少的纳武单抗。
在一些实施例中,纳武单抗的定期施用包括1、2、3、4或更少的纳武单抗施用。
在一些实施例中,纳武单抗的施用是每2周或3周或更短时间。
派姆单抗(KeytrudaTM的活性组分)是人类程序性死亡受体-1(PD-1)阻断抗体。派姆单抗由特异性抗体鉴定(Keytruda,食品和药物管理局批准的标记(参考ID:3621876)[在线],默克公司(Merck&Co),2014[于2017年2月24日检索],从互联网检索:<URL:www.accessdata.fda.gov/drugsatfda_docs/label/2014/125514lbl.pdf>)。
用于派姆单抗的推荐剂量和时间表是每3周静脉内施用2mg/kg超过30分钟,直到疾病进展或不可接受的毒性。
在一些实施例中,派姆单抗的施用包括1mg/kg、2mg/kg、3mg/kg、4mg/kg、5mg/kg、6mg/kg、7mg/kg、8mg/kg、9mg/kg、10mg/kg或更少的派姆单抗。
在一些实施例中,派姆单抗的定期施用包括1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18或更少的派姆单抗施用。
在一些实施例中,派姆单抗的施用是每2周或3周或更短时间。
在一些实施例中,抗体或其抗原结合部分特异性结合细胞毒性T淋巴细胞抗原-4(CTLA-4)并抑制CTLA-4活性(“抗CTLA-4抗体”)。在另一个实施例。在一些实施例中,抗CTLA-4抗体是伊匹木单抗或曲美木单抗。
伊匹木单抗(YervoyTM的活性组分)是人细胞毒性T淋巴细胞抗原4(CTLA-4)阻断抗体。伊匹木单抗由特异性抗体鉴定(Yervoy,食品和药物管理局批准的标记(参考ID:3839653)[在线],百时美施贵宝,2015[于2017年2月24日检索],从互联网检索:<URL:www.accessdata.fda.gov/drugsatfda_docs/label/2015/125377s073lbl.pdf>)。
用于不可切除或转移性黑色素瘤的伊匹木单抗的推荐剂量和时间表是每3周静脉内施用4剂量的3mg/kg超过90分钟。用于黑色素瘤辅助治疗的伊匹木单抗的推荐剂量和时间表是每3周静脉内施用4剂量的10mg/kg超过90分钟,随后每12周施用10mg/kg,持续长达3年。
在一些实施例中,伊匹木单抗的施用包括0.5mg/kg、1mg/kg、2mg/kg、3mg/kg、4mg/kg、5mg/kg、6mg/kg、7mg/kg、8mg/k、9mg/kg、10mg/kg或更少的伊匹木单抗。
在一些实施例中,伊匹木单抗的定期施用包括1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16或更少的伊匹木单抗施用。
本发明还提供了一种治疗受试者的肿瘤或癌症的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂,其中所述肿瘤或癌症易受通过免疫应答治疗的影响。
本发明还提供了一种增加针对患有癌症的受试者的癌细胞的T细胞应答的方法,所述方法包括向所述受试者施用一定量的有效增加所述T细胞应答的PP2A抑制剂。
在一些实施例中,所述PP2A抑制剂具有以下结构:
在一些实施例中,所述方法进一步包括施用一或多种额外的抗癌剂。
本发明还提供了一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的抗癌疗法的组合,其中当所述量一起服用时对治疗所述受试者有效。
本发明还提供了一种治疗患有癌症和接受抗癌疗法的受试者的方法,所述方法包括向所述受试者施用有效量的相对于单独的所述抗癌疗法有效增强治疗的PP2A抑制剂。
在一些实施例中,所述癌症易受通过免疫应答进行治疗的影响。
用于本发明的方法的化合物是蛋白磷酸酶2A(PP2A)抑制剂。制备方法可以在Lu等人,2009;US 7,998,957B2;和US 8,426,444中找到。当在小鼠胃肠外给予时,化合物LB-100是小鼠中人癌细胞和人肿瘤细胞的异种移植物中体外PP2A的抑制剂。LB-100抑制小鼠模型系统中癌细胞的生长。
如本文所使用的,与再灌注损伤相关联的“症状”包含与再灌注损伤相关联的任何临床或实验室表现,并且不限于受试者可以感觉或观察到的。
如本文所使用的,例如再灌注损伤的“疾病治疗”或“治疗”涵盖疾病的诱导预防、抑制、消退或停滞或与所述疾病相关联的症状或病状。
如本文所使用的,对受试者的疾病进展或疾病并发症的“抑制”意指预防或减少受试者的疾病进展和/或疾病并发症。
如本文所使用的,“烷基”旨在包含具有规定数量的碳原子的支链和直链饱和脂肪族烃基团。因此,在“C1-Cn烷基”中的C1-Cn定义为包含具有1、2或……、n-1或n个碳的以直链或支链布置的基团,并且具体地包含甲基、乙基、丙基、丁基、戊基、己基、庚基、异丙基、异丁基、仲丁基等。实施例可以是C1-C20烷基、C2-C20烷基、C3-C20烷基、C4-C20烷基等。实施例可以是C1-C30烷基、C2-C30烷基、C3-C30烷基、C4-C30烷基等。“烷氧基”表示通过氧桥附接的如以上所描述的烷基基团。
术语“烯基”是指直链或支链的非芳香族烃基,其含有至少1个碳-碳双键,并且可以存在多达最多可能数量的非芳香族碳-碳双键。因此,C2-Cn烯基定义为包含具有1、2、……、n-1或n个碳的基团。例如,“C2-C6烯基”是指具有相应地2个、3个、4个、5个、或6个碳原子和至少1个碳-碳双键以及多达例如3个碳-碳双键(在C6烯基的情况下)的烯基。烯基基团包含乙烯基、丙烯基、丁烯基和环己烯基。如以上关于烷基所描述的,烯基基团的直链、支链或环状部分可以含有双键并且可以被取代,如果指示取代的烯基基团的话。实施例可以是C2-C12烯基、C3-C12烯基、C2-C20烯基、C3-C20烯基、C2-C30烯基或C3-C30烯基。
术语“炔基”是指直链或支链的烃基,其含有至少1个碳-碳三键,并且可以存在多达最多可能数量的非芳香族碳-碳三键。因此,C2-Cn炔基定义为包含具有1、2……、n-1或n个碳的基团。例如,“C2-C6炔基”是指具有2或3个碳原子和1个碳-碳三键或具有4或5个碳原子和多达2个碳-碳三键或具有6个碳原子和多达3个碳-碳三键的炔基。炔基基团包含乙炔基、丙炔基和丁炔基。如上关于烷基所描述的,炔基基团的直链或支链部分可以含有三键并且可以被取代,如果指示取代的炔基基团的话。实施例可以是C2-Cn炔基。实施例可以是C2-C12炔基或C3-C12炔基、C2-C20炔基、C3-C20炔基、C2-C30炔基或C3-C30炔基。
如本文所使用的,“芳基”旨在表示每个环中多达10个原子的任何稳定的单环或双环碳环,其中至少一个环是芳香族的。此些芳基元素的实例包含苯基、萘基、四氢-萘基、茚满基、联苯基、菲基、蒽基或苊基。在芳基取代基是双环的并且一个环是非芳香族的情况下,应当理解的是通过芳香族环进行附接。本发明中包含的取代的芳基包含在任何适当位置处具有胺、取代的胺、烷基胺、羟基和烷基羟基的取代,其中烷基胺和烷基羟基的“烷基”部分是如上文所定义的C2-Cn烷基。取代的胺可以被如上文所定义的烷基、烯基、炔基或芳基取代。
烷基、烯基或炔基的每次出现都是支链的或非支链的、未取代的或取代的。
除非另外特别说明,否则烷基、烯基、炔基和芳基取代基可以是未取代的或未取代的。例如,(C1-C6)烷基可以被一或多个取代基取代,所述取代基选自OH、氧代、卤素、烷氧基、二烷基氨基或杂环基,如吗啉基、哌啶基等。
在本发明的化合物中,烷基、烯基和炔基可以通过以在可能的程度上用本文所描述的非氢基基团替代一或多个氢原子来进一步取代。这些包含但不限于卤素、羟基、巯基、氨基、羧基、氰基和氨基甲酰基。
如本文所使用的,术语“取代的”意指给定的结构具有取代基,所述取代基可以是如以上所定义的烷基基团、烯基基团或芳基基团。所述术语应被视为包含由指定的取代基进行的多个取代度。在公开或要求保护多个取代基部分的情况下,取代的化合物可以独立地被所公开或所要求保护的取代基部分中的一或多个取代基部分单数或复数地取代。通过独立取代,这意味着(两个或两个以上)取代基可以是相同的或不同的。
应当理解的是,在本发明的化合物上的取代基和取代模式可以由本领域普通技术人员选择,从而提供化学稳定且可以通过本领域已知的技术以及下面列出的那些方法从容易获得的原料中容易地合成的化合物。如果取代基本身被多于一个基团取代,应当理解的是这些多个基团可以是在同一个碳上或者是在不同的碳上,只要结果是得到一种稳定的结构就可以。
如本文所使用的,“施用”药剂可以使用本领域技术人员熟知的各种方法或递送系统中的任何一种方法或系统进行。施用可以例如口服、肠道外、腹膜内、静脉内、动脉内、经皮、舌下、肌内用、直肠、经口含化、鼻内、脂质体、通过吸入、阴道、眼内、通过局部递送、皮下、脂肪内、关节内、鞘内、注入脑室、关节内、肿瘤内、脑实质或脑实质内进行。
采用许多常规使用的药物载剂的以下递送系统可以被使用,但仅表示预期用于施用根据本发明的组合物的许多可能的系统。
可注射药物递送系统包含溶液、悬浮液、凝胶、微球和聚合物注射剂,并且可以包括如溶解度改变剂(例如,乙醇、丙二醇和蔗糖)和聚合物(例如,聚己内酯和PLGA)等赋形剂。
其它可注射药物递送系统包含溶液、悬浮液、凝胶。口服递送系统包含片剂和胶囊。这些可以含有赋形剂,如粘合剂(例如,羟丙基甲基纤维素、聚乙烯吡咯酮、其它纤维素材料和淀粉)、稀释剂(例如,乳糖和其它糖、淀粉、磷酸二钙和纤维素材料)、崩解剂(例如,淀粉聚合物和纤维素材料)和润滑剂(例如,硬脂酸盐和滑石粉)。
可植入系统包含杆和盘,并且可以含有如PLGA和聚己内酯等赋形剂。
口服递送系统包含片剂和胶囊。这些可以含有赋形剂,如粘合剂(例如,羟丙基甲基纤维素、聚乙烯吡咯酮、其它纤维素材料和淀粉)、稀释剂(例如,乳糖和其它糖、淀粉、磷酸二钙和纤维素材料)、崩解剂(例如,淀粉聚合物和纤维素材料)和润滑剂(例如,硬脂酸盐和滑石粉)。
转化粘液质递送系统包含贴剂、片剂、栓剂、阴道栓剂、凝胶和乳膏,并且可以含有赋形剂,如增溶剂和增强剂(例如,丙二醇、胆汁盐和氨基酸)和其它媒剂(例如,聚乙二醇、脂肪酸酯和衍生物、以及如羟丙基甲基纤维素和透明质酸等亲水聚合物)。
皮肤递送系统包含例如水性和非水性凝胶、乳膏、多重乳液、微乳液、脂质体、软膏、水性和非水性溶液、洗剂、气溶胶、烃基基质和粉末,并且可以含有赋形剂(如增溶剂)、渗透增强剂(例如,脂肪酸、脂肪酸酯、脂肪醇和氨基酸)和亲水聚合物(例如,聚卡波非和聚乙烯吡咯烷酮)。在一个实施例中,药学上可接受的载剂是脂质体或经皮增强剂。
用于可重构递送系统的溶液、悬浮液和粉末包含媒剂,如悬浮剂(例如,树胶、zanthan、纤维素和糖)、保湿剂(例如,山梨糖醇)、增溶剂(例如,乙醇、水、PEG和丙二醇)、表面活性剂(例如,十二烷基硫酸钠、Spans、Tweens和十六烷基吡啶)、防腐剂和抗氧化剂(例如,对羟基苯甲酸酯、维生素E和C以及抗坏血酸)、抗结块剂、包衣剂和螯合剂(例如,EDTA)。
如本文所使用的,“药学上可接受的载剂”是指适合与人和/或动物一起使用而没有与合理的益处/风险比相称的过度不良副作用(如毒性、刺激和过敏应答)的载剂或赋形剂。它可以是用于将本发明的化合物递送到受试者的药学上可接受的溶剂、悬浮剂或媒剂。
用于本发明的方法的化合物可以呈盐的形式。如本文所使用的,“盐”是已经通过制备化合物的酸或碱盐修饰的本发明化合物的盐。在用于治疗感染或疾病的化合物的情况下,盐是药学上可接受的。药学上可接受的盐的实例包含但不限于碱性残基如胺的无机酸盐或有机酸盐;如酚类等酸性残基的碱金属盐或有机盐。盐可以使用有机酸或无机酸制备。此些酸盐是氯化物、溴化物、硫酸盐、硝酸盐、磷酸盐、磺酸盐、甲酸盐、酒石酸盐、马来酸盐、苹果酸盐、柠檬酸盐、苯甲酸盐、水杨酸盐、抗坏血酸盐等。酚盐是碱土金属盐、钠、钾或锂。在这方面,术语“药学上可接受的盐”是指本发明的化合物的相对无毒的无机和有机酸或碱加成盐。这些盐可以在本发明的化合物的最终分离和纯化期间原位制备,或通过使呈游离碱形式或呈游离酸形式的本发明的经纯化化合物单独与适当的有机或无机酸或碱反应并分离由此形成的盐来制备。代表性的盐包括氢溴酸盐、盐酸盐、硫酸盐、硫酸氢盐、磷酸盐、硝酸盐、醋酸盐、戊酸盐、油酸盐、棕榈酸盐、硬脂酸盐、月硅酸盐、苯甲酸盐、乳酸盐、磷酸盐、甲苯磺酸盐、柠檬酸盐、马来酸盐、延胡索酸盐、琥珀酸盐、酒石酸盐、萘甲酸盐(napthylate)、甲磺酸盐、葡庚糖酸盐、乳糖醛酸盐、和月桂基磺酸盐等。(参见,例如,贝尔热(Berge)等人,(1977)“药用盐(Pharmaceutical Salts)”,药物科学期刊(J.Pharm.Sci.)66:1-19)。
本发明包含本发明方法的化合物的酯或药学上可接受的酯。术语“酯”包含但不限于含有R-CO-OR'基团的化合物。“R-CO-O”部分可以衍生自本发明的母体化合物。“R”部分包含但不限于烷基、烯基、炔基、杂烷基、芳基和羧基烷基。
本发明包含本发明方法的化合物的药学上可接受的前药酯。本发明的化合物的药学上可接受的前药酯是酯衍生物,其可通过溶剂分解或在生理学条件下转化为母体化合物的游离羧酸。前药的实例是烷基酯,其在体内裂解以产生所关注的化合物。
所述化合物或其盐、两性离子或酯任选地以药学上可接受的组合物形式提供,所述组合物包含适合的药学上可接受的载剂。
如本文所使用的,以毫克为单位计量的药剂的“量”或“剂量”是指药物产品中存在的药剂的毫克数,而与药物产品的形式无关。
美国国立卫生研究院(NIH)在下表(表A)中提供了等效表面积剂量换算因数表,其提供了考虑物种之间表面积重量比的换算因数。
表A:等效表面积剂量换算因数
如本文所使用的,术语“治疗有效量”或“有效量”是指当以本发明的方式使用时足以产生期望治疗应答而无与合理的益处/风险比相称的过度不良副作用(例如,毒性、刺激或过敏应答)的组分的量。具体的有效量将随这种因素而变化,如所治疗的特定病状、患者的身体状况、所治疗哺乳动物的类型、治疗持续时间、并发疗法的性质(如果有的话)以及所采用的具体配制品和化合物或其衍生物的结构。
在本说明书中给出范围的情况下,应理解的是所述范围包含所述范围内的所有整数和0.1个单位、以及其任何子范围。例如,77%到90%的范围是本公开的77%、78%、79%、80%和81%等。
如本文所使用的,关于所述数字的“约”涵盖所述值的+百分之一到-百分之一的范围。通过举例的方式,因此,约100mg/kg包含99mg/kg、99.1mg/kg、99.2mg/kg、99.3mg/kg、99.4mg/kg、99.5mg/kg、99.6mg/kg、99.7mg/kg、99.8mg/kg、99.9mg/kg、100mg/kg、100.1mg/kg、100.2mg/kg、100.3mg/kg、100.4mg/kg、100.5mg/kg、100.6mg/kg、100.7mg/kg、100.8mg/kg、100.9mg/kg和101mg/kg。因此,在一个实施例中,约100mg/kg包含100mg/kg。
应当理解,在提供参数范围的情况下,本发明还提供所述范围内的所有整数和其十分之一。例如,“0.2-5mg/kg/天”是本公开的0.2mg/kg/天、0.3mg/kg/天、0.4mg/kg/天、0.5mg/kg/天、0.6mg/kg/天等,多达5.0mg/kg/天。
对于前述实施例,本文所公开的每一个实施例被设想为适用于其它所公开的实施例中的每一个实施例。因此,本文所描述的各种要素的所有组合都在本发明的范围内。
通过参考以下的实验细节将更好地理解本发明,但是本领域技术人员将容易理解,如下文权利要求中更详细地描述的,详述的具体实验仅仅是对本发明的说明。
组合疗法
用于治疗如黑色素瘤等给定病状的两种药物的施用引发了许多潜在的问题。两种药物之间的体内相互作用是复杂的。任何单一药物的作用与其吸收、分布和消除有关。当两种药物引入体内时,每种药物可能影响另一种药物的吸收、分布和消除,并且因此改变另一种药物的效果。例如,一种药物可能抑制、活化或诱导参与消除另一种药物代谢途径的酶的产生(工业指南(Guidance for Industry),1999)。因此,当施用两种药物来治疗相同的病状时,每种药物是否将互补、不影响或干扰另一种药物在人类受试者中的治疗活性是不可预测的。
两种药物之间的相互作用不仅影响每种药物的预期治疗活性,而且相互作用可能增加毒性代谢物的水平(工业指南,1999)。相互作用还可以增强或减轻每种药物的副作用。因此,在施用两种药物来治疗疾病时,每种药物的副作用曲线将发生什么变化是不可预测的。
另外,难以准确地预测两种药物之间的相互作用的影响何时变得明显。例如,药物之间的代谢相互作用可能在第二种药物的初始施用后、在两种药物已经达到稳态浓度后或在所述药物中的一种药物中断后变得明显(工业指南,1999)。
实验细节
实例1.PP2A抑制和CTLA-4活性
本文所公开的化合物LB-100和其它LB-100同源物通过改变CTLA-4与PP2A的相互作用来抑制T细胞中CTLA-4的功能,从而阻断CTLA-4介导的T细胞活化抑制。此相互作用导致增加的T细胞活化。
实例2.体外研究:PP2A和CTLA4
用LB-100处理原代人T细胞和Jurkat T细胞并且测量T细胞活化水平。LB-100增加T细胞的活化。
用LB-100处理原代人T细胞和Jurkat T细胞并且对PP2A:CTLA-4相互作用进行估计。LB-100降低PP2A与CTLA-4的相互作用。
用LB-100处理原代人T细胞和Jurkat T细胞,并测量PP2A磷酸化水平。LB-100增加T细胞中的磷酸化。
实例3.LB-100和类似物的施用
向患有癌症的受试者施用一定量的化合物LB-100。一定量的化合物通过增加受试者的细胞毒性T细胞的数量来有效治疗癌症。
向患有癌症的受试者施用本文所公开的化合物LB-100的类似物。一定量的化合物通过增加受试者的细胞毒性T细胞的数量来有效治疗癌症。
向患有黑色素瘤的受试者施用一定量的化合物LB-100。一定量的化合物通过增加受试者的细胞毒性T细胞的数量来有效治疗癌症。
向患有黑色素瘤的受试者施用本文所公开的化合物LB-100的类似物。一定量的化合物通过增加受试者的细胞毒性T细胞的数量来有效治疗癌症。
实例4.施用LB-100与CTLA-4检查点抑制剂的组合
向患有癌症的受试者施用一定量的化合物LB-100与CTLA-4检查点抑制剂的组合。一定量的化合物和抑制剂可有效治疗受试者。
向患有癌症的受试者施用一定量的化合物LB-100与CTLA-4检查点抑制剂的组合。一定量的化合物有效增强CTLA-4检查点抑制剂的抗癌活性。
向患有黑色素瘤的受试者施用一定量的化合物LB-100与CTLA-4检查点抑制剂的组合。一定量的化合物和抑制剂可有效治疗受试者。
向患有黑色素瘤的受试者施用一定量的化合物LB-100与CTLA-4检查点抑制剂的组合。一定量的化合物有效增强CTLA-4检查点抑制剂的抗癌活性。
实例5:评估作为针对伊匹木单抗或曲美木单抗的添加疗法的LB-100的功效
添加疗法提供协同效应并允许具有减少的副作用的较低剂量。
向已接受伊匹木单抗或曲美木单抗的患有黑色素瘤的人类患者定期施用LB-100作为添加疗法提供临床上有意义的优点并且在治疗患者方面比单独施用伊匹木单抗或曲美木单抗(相同的剂量)更有效(提供至少一个累加效应或多于一个累加效应)。
向已接受LB-100的患有黑色素瘤的人类患者定期施用伊匹木单抗或曲美木单抗作为添加疗法提供临床上有意义的优点并且在治疗患者方面比单独施用LB-100(相同的剂量)更有效(提供至少一个累加效应或多于一个累加效应)。
添加疗法还在治疗患者时提供功效(提供至少一个累加效应或多于一个累加效应)而没有不当的副作用或影响治疗的安全性。与单独施用每种药剂相比:
1.添加疗法在增加患有黑色素瘤的患者的细胞毒性T细胞的量方面更有效(提供一个累加效应或多于一个累加效应);
2.添加疗法在减缓患有黑色素瘤的患者的黑色素瘤的进展方面更有效(提供一个累加效应或多于一个累加效应);和/或
3.添加疗法在降低黑色素瘤患者的CTLA-4的功能方面更有效(提供一个累加效应或多于一个累加效应)。
讨论(实例1-5)
随着癌症免疫疗法的发展,免疫系统在癌症的背景下的重要性日益受到认可。免疫系统防止自身免疫的自然控制机制通常被肿瘤征用以逃避免疫监视。检查点分子(如程序性死亡-1(PD-1)和细胞毒性T淋巴细胞相关蛋白4(CTLA-4))是由肿瘤组成性地活化的免疫系统的负调节因子,以抑制识别肿瘤新抗原的细胞毒性T细胞的活性(托帕利安(Topalian)等人,2015)。免疫抑制调节性T细胞(Treg)还被募集到肿瘤微环境(TME)中以降低CD8T细胞的有效性。阻断PD-1或CTLA-4信号传导的单克隆抗体可能诱导患有转移性黑色素瘤的一些患者的持久长期应答。为了治疗晚期黑色素瘤,这导致美国食品和药物管理局于2011年批准伊匹木单抗(抗CTLA-4)且于2014年批准纳武单抗(抗PD-1)。目前正在进行临床试验以将检查点抑制剂的用途扩展到多种其它癌症,从而引导癌症治疗方法的范式转变。然而,仅一小部分患者对作为单一药剂的检查点抑制有效地应答,这强调了多种冗余机制参与创建免疫抑制性TME的事实。因此,活跃的研究领域是鉴定可以增强检查点抑制效果的组合策略。
细胞毒性T淋巴细胞相关抗原-4(CTLA-4)是免疫球蛋白超家族的活化诱导的糖蛋白,其主要功能是下调T细胞应答(布吕内,J.F.(Brunet,J.F.)等人,1987)。CTLA-4在T细胞表面上表达,其主要通过诱导抑制性下游T细胞受体(TCR)信号传导和抵消T细胞共刺激受体CD28的活性来抑制其早期活化,从而抑制T细胞活化并增加对某些疾病(例如,癌症)的免疫耐受性。已经记录了若干种机制(包含CD28依赖性共刺激和直接负向信号传导的拮抗作用),以解释CTLA-4的抑制能力(卡雷诺,B.M.(Carreno,B.M.)等人,2000)。由于CTLA-4的细胞质尾区缺乏内在的酶活性,因此可以通过CTLA-4与关键信号传导分子的关联来提供此负信号的递送(坦伏特,W.A.(Teft,W.A.)等人,2006)。
已靶向CTLA-4的抑制以通过免疫检查点阻断的方式治疗癌症。细胞和鼠类恶性肿瘤模型表明,细胞毒性T淋巴细胞抗原-4(CTLA-4)(其是T细胞应答的负调节因子)的阻断增强了对肿瘤细胞的内源性应答,因此当单独使用或与其它治疗干预一起使用时导致肿瘤细胞死亡(格罗索,J.F.(Grosso,J.F.)等人,2013)。临床前发现已经转化为完全人、IgG1单克隆抗体(mAb)、伊匹木单抗和完全人、IgG2mAb、曲美木单抗的临床研发,所述抗体中的每一种抗体都与CTLA-4结合。
蛋白通过激酶的磷酸化和其通过磷酸酶的去磷酸化是调节包含细胞增殖和细胞死亡的多个过程的细胞信号传导途径的关键组分(石(Shi)等人,2009)。尽管磷酸酶长期以来被认为是癌症治疗的潜在重要靶标,但由于对毒性的关注,开发磷酸酶抑制剂的努力很少(汉森斯(Janssens)等人,2012)。
蛋白磷酸酶2A(PP2A)是普遍存在的丝氨酸/苏氨酸磷酸酶,其使ATM/ATR依赖性和非依赖性应答途径的许多蛋白质去磷酸化(马姆比M.,2007)。PP2A涉及一系列不同的细胞过程。在免疫系统中,已经示出,PP2A与CTLA-4相关联并介导Akt的去磷酸化,从而导致对活化的T细胞的抑制(帕里(Parry)等人,2005)。先前已经示出,PP2A的药理学抑制通过各种信号传导蛋白(如p53、γH2AX、PLK1和Akt)的组成型磷酸化使癌细胞对辐射介导的DNA损伤敏感,从而导致细胞周期失调、DNA修复抑制和细胞凋亡(魏,D.等人,2013)。
斑蝥提取物(Mylabris)的主要活性成分斑蝥素是衍生自传统中药的化合物,已经示出所述化合物是PP2A的有效抑制剂(厄佛斯,T.等人,2005)。虽然斑蝥素先前已经用于治疗肝细胞瘤并且已经示出针对多重耐药性白血病细胞系的功效(厄佛斯,T.等人,2002),但其严重的毒性限制了其临床有用性。据报道,斑蝥素(天然存在的毒素)和其去甲基化类似物、去甲斑蝥素(这两种均是有效的PP2A抑制剂(贝尔蒂尼(Bertini)等人,2009)在中国患有胃肠癌的患者中均具有抗癌活性(王(Wang)等人,1989),尽管可用的临床细节很少。
二十多年前,美国NCI赞助的多个1期试验中评估了另一种PP2A选择性抑制剂—福司曲星。在最大的试验中,福司曲星与46个实体瘤患者中的16个实体瘤患者(34.8%)的疾病稳定性相关联,而无剂量限制性毒性(DLT)(李(Lê)等人,2004)。由于药物供应不足,没有完成任何试验。
LB-100是具有显著较小毒性的斑蝥素的小分子衍生物。LB-100和其脂溶性同源物LB-102抑制来自多种人实体瘤的细胞系的增殖。这两种化合物均增强了活性,而不显著增加顺铂、阿霉素和替莫唑胺针对以下的异种移植的毒性:胰腺癌和肝细胞癌;纤维肉瘤;嗜铬细胞瘤;神经母细胞瘤;和胶质母细胞瘤以及针对胰腺癌、鼻咽癌和胶质母细胞瘤异种移植的局灶性X射线的毒性(白(Bai)等人,2014a;白等人,2014b;张(Zhang)等人,2010;马提尼瓦(Matiniova)等人,2011;刘(Lu)等人,2009;魏等人,2013;吕(Lv)等人,2014;戈登(Gordon)等人,2015)。此外,LB-100逆转了对卵巢癌和成神经管细胞瘤异种移植中顺铂的抗性(常(Chang)等人,2015;霍(Ho)等人,2016)。先前的临床前研究已经示出,LB-100可以增强替莫唑胺、多柔比星和放射疗法针对胶质细胞瘤(GBM)、转移性嗜铬细胞瘤和胰腺癌的细胞毒性作用(魏,D.等人,2013;陆,J.等人,2009;张,C.等人,2010;马提尼瓦,L.等人,2011)。
LB-100还正在经历与多西他赛组合治疗实体瘤的1期研究(钟,V.,2013)。LB-100是蛋白质磷酸酶2A(PP2A)的新颖的一流小分子抑制剂,最近在1期试验中示出其在与进展性实体瘤的稳定化相关的剂量下耐受良好(钟等人,2017)。PP2A已经涉及介导CTLA-4下游的Akt信号传导(帕里等人,2005)。在体内汇集的短发夹RNA筛选中,发现ppp2r2d(PP2A的调节亚单位)在被敲低时在最大程度上增加RNA文库中所有基因中肿瘤浸润淋巴细胞的增殖并且将PP2A鉴定为抑制肿瘤微环境中T细胞增殖的关键调节因子(周(Zhou)等人,2014)。此外,发现PP2A对调节性T细胞(Treg)功能至关重要(阿铂斯托利迪斯(Apostolidis)等人,2014)。
虽然多项临床前研究示出,LB-100在各种肿瘤模型中都是有效的化学或放射增敏剂(霍恩(Hone)等人,2015),但没有人研究过其对免疫系统的影响。
CTLA-4功能受损允许癌症患者产生对其癌症更有效的细胞毒性T细胞攻击。与临床上主要使用的CTLA-4调节剂(抗体伊匹木单抗(Yervoy),其在治疗有效剂量下与显著毒性相关联)不同,化合物LB-100在没有任何显著毒性或副作用的情况下与若干种不同类型的癌症的稳定性相关联。
有许多关于通过用伊匹木单抗抑制CTLA-4的临床活性的报道,特别是在患有晚期黑色素瘤的患者中。这些研究表明,单一药剂伊匹木单抗和与如达卡巴嗪等细胞毒性药物或另一种免疫检查点抑制剂—纳武单抗的组合导致癌症消退。单独或与其它药剂组合,伊匹木单抗与显著毒性相关联,如在霍迪(Hodi)等人(2010)的研究中,其中高达15%的患者发生3级或4级不良事件,包含2.1%的死亡发生率。沃夏克(Wolchok)等人(2013)对患有晚期黑色素瘤的患者进行了伊匹木单抗加纳武单抗的研究,但53%的患者发生了3级或4级不良事件。因此,在与进展性癌症的稳定化相关联的剂量下没有限制性毒性并且具有抗CTLA-4活性的分子(如LB-100)的可用性是治疗人类癌症的有吸引力的临床候选物。目前,针对CTLA-4调节的临床应答没有分子决定簇。斯奈德(Snyder)等人(2014年)报告了CTLA-4治疗黑色素瘤的潜在益处的遗传基础,为每位患者提供了表征候选肿瘤新抗原的潜在基础。
不受任何理论的束缚,据信CTLA-4与人T细胞中的PP2A相互作用,并且此相互作用对于CTLA-4的正常功能是必不可少的。当功能正常时,CTLA-4抑制T细胞活化,从而减少对癌细胞的免疫应答。向患有癌症的受试者施用PP2A抑制剂改变了PP2A与CTLA-4的相互作用,从而破坏了CTLA-4的正常功能。T细胞中CTLA-4功能的减少或消除导致增加的T细胞活化。增加的T细胞活化导致受试者中靶向并破坏癌细胞的细胞毒性T细胞增加。与现有免疫检查点抑制剂一样,LB-100单独和/或与其它检查点抑制剂组合有效。
实例6.对患有进展性实体瘤的成年患者中LB-100的评估
长期以来,PP2A一直被认为是癌症疗法的潜在重要靶标,因为其在细胞分裂、DNA损伤应答、同源重组修复和有丝分裂退出中的调节作用,但对这种酶的抑制被认为可能对临床使用毒性过大。此研究示出PP2A抑制剂(LB-100)在患有难治性实体瘤的患者中的安全性、耐受性和潜在的抗癌活性。在许多类型的癌症中,PP2A活性通过直接或间接突变而改变。临床上安全的PP2A抑制剂的可用性为癌症疗法开辟了有希望的新途径,即PP2A在PP2A功能和/或DNA-损伤-修复路径中具有突变获得性异常的癌症中的药理学抑制。此研究的结果支持单独的LB-100和与其它药物组合治疗癌症的进一步研发。
目的:估计LB-100(蛋白质磷酸酶2A(PP2A)的一流小分子抑制剂)在患有进展性实体瘤的成人患者中的安全性、耐受性和潜在活性。
实验设计:以3+3剂量递增设计的方式,在21天的周期中,每日静脉内注射LB-100持续3天。主要目标是确定最大耐受剂量和推荐的2期剂量(ClinicalTrials.gov:NCT01837667)。
材料与方法
符合条件的患者年龄为18岁或以上、已证实患有进展性实体瘤但未通过标准治疗。患者必须具有至少12周的预期寿命,ECOG表现状态为0或1,并且能够提供知情同意书。在参与之前,患者必须已经恢复到基线或低于先前治疗的1级毒性,有足够的骨髓(绝对中性粒细胞计数>1.5×109/L,并且血小板计数>100×109/L);肾脏(血清肌酐<1.2mg/dL,并且如果>1.2mg/dL,则肌酐清除率[Cockcroft-Gault法]>60mL/min/1.73m2);并且肝功能(血浆总胆红素<1.5mg/dL,丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)<2.5×正常上限)。他们不得患有任何其它不受控制的全身性疾病。具有生育潜能的女性必须具有阴性血清或尿液妊娠试验结果。
研究设计和治疗
执行开放标记、剂量递增的I期研究以估计每3周连续3天施用LB-100的安全性、耐受性和活性。以最大耐受剂量(MTD)计划药代动力学研究。起始剂量为0.25mg/m2,其为狗体内最高非严重毒性剂量的1/15,并且剂量递增计划由FDA规定。研究由每个研究中心的人类调查委员会批准,并在clinicaltrials.gov:NCT01837667注册。
LB-100作为一次性溶液提供。最初,LB-100在50mL生理盐水中施用超过15分钟。由于血清肌酸酐在2.33mg/m2水平下的非限制性可逆增加,LB-100随后在500mL生理盐水中施用超过2小时。禁止任何队列内的剂量递增。患者有资格接受多达6个周期的研究疗法,除非不可接受的毒性、疾病进展或间发疾病需要中断。在无进展和毒性的情况下允许多于6个周期。由于动物毒理学研究中在高剂量下的心脏和肾脏毒性,在每个周期之前对患者进行了广泛的监测(包含ECG、MUGA或超声心动图、心肌肌钙蛋白和BNP)。在每个周期之前并且在每个周期的第1天、第3天、第8天、第15天和第22天监测血液化学、尿分析、血液学特征和生命体征。实验室参数按最大NCI-CTCAE(版本4.0)严重度等级制成表格。安全审查委员会每2周对所有临床数据进行评估,并批准队列之间的剂量递增。
毒性和临床活性的评估
LB-100的剂量在三名患者的组中递增。在新的剂量水平下观察第一名患者三周,之后以所述剂量治疗接下来的两名患者。当潜在的DLT发生时,三名新患者以所述剂量进入。如果出现了另一个DLT,则以之前的非DLT剂量治疗另外三名患者,以确定用于2期试验的所述水平的安全性。
使用RECIST版本1.1评估对治疗的应答。评估对完成2个周期的LB-100并且具有至少1个基线后肿瘤评估的患有可测量疾病的所有患者的功效。可评估对接受任何LB-100的患者的安全性。根据NCI-CTCAE版本4.0报告不良事件和实验室异常的严重程度,并使用药事管理医学词典(Medical Dictionary for Regulatory Activities)进行编码。
结果
主要目的是确定每3周连续三天每日静脉内给予LB-100的安全性、耐受性和最大耐受剂量。次要目标是记录潜在抗肿瘤活性的任何证据,并获得在MTD下接受LB-100的患者的LB-100和代谢物草藻灭的药代动力学数据(光(Quang)等人,2016)。
结果:
有29名患者参与超过7次剂量递增。一名患者因急性感染而在一次剂量后停止治疗,并在恢复后重新入组。两个疗程都作为单独的患者条目进行分析。在3.1mg/m2水平下,两名患者具有剂量限制毒性(血清肌酐或计算的血清肌酐清除率可逆增加)。6名(20.7%)患者中出现很可能或可能的研究药物相关的3级不良事件[贫血(n=2)、肌酐清除率降低、呼吸困难、低钠血症、淋巴细胞减少症]。20名应答可评估患者中的十名(50%)患者在4个或四个以上周期内病情稳定。一名患有胰腺癌的患者在10个周期后出现部分应答,并持续另外5个周期。其它实现了病情稳定的患者患有以下中的一种:纤维肉瘤、软骨肉瘤、胸腺瘤、非典型肺类癌、或卵巢癌、睾丸癌、乳癌(n=2)和前列腺癌。推荐的2期LB-100的剂量为每天2.33mg/m2,每3周3天。
患者特征
在四个临床点招募了二十八名患有晚期实体瘤的患者。他们的人口统计学特征列于表1中。无法评估对四名患者的毒性。这些患者中的三名患者在完成第1周期之前患有疾病相关的并发症。由于急性感染,患有非典型肺类癌的第四名患者在一剂LB-100后被从研究中移除;他在7周后重新进入研究,并在5个周期内实现病情稳定。两个疗程均包含在分析中。这些不良事件均未被认为与药物施用有关。
剂量递增与毒性
二十四名患者完成了LB-100的至少一个3天周期。测试的剂量水平为0.25mg/m2、0.50mg/m2、0.83mg/m2、1.25mg/m2、1.75mg/m2、2.33mg/m2和3.1mg/m2。在前6个剂量水平期间没有DLT。在3.1mg/m2剂量水平下,患有前列腺癌的患者和患有软骨肉瘤的患者分别在4个和9个治疗周期期间没有DLT。第三名患有卵巢癌的患者在第1周期后计算出的肌酸酐清除率增加了3级,到第8天恢复正常,并且在肿瘤进展前以2.33mg/m2的减少剂量再接受3个周期。第四名患有纤维肉瘤的患者在第一疗程后计算出的肌酐清除率增加了3级。肌酐在第21天恢复到预治疗值,并且以2.33mg/m2进行第二疗程导致肌酐清除率增加2级,而无其它毒性。剂量降低到1.75mg/m2,并且在无毒性的情况下再施用十个周期,直到36周后进展为止。由于第一周期期间在3.1mg/m2下2/4患者的肌酐清除率增加了3级,因此在先前的2.33mg/m2剂量水平下对另外三名患者进行了评估。它们没有限制性毒性,从而在所述水平下建立MTD。除了可逆的轻度至中度疲劳外,没有症状性毒性。表2列出了可能与药物施用有关的不良事件。
药代动力学
在MTD下在第1天在一名患者中完成2.33mg/m2的LB-100的2小时输注和在第1天和第3天在两名患者中完成所述输注之前测量LB-100和草藻灭的血浆浓度并且在完成所述输注之后4小时内测量LB-100和草藻灭的血浆浓度(光等人,2016)。LB-100在第1天和第3天的药代动力学相似,并且具有清除率低、分布体积小和半衰期短的特点。在整个输注过程中,草藻灭的血浆浓度较低,低于一名患者的检测下限(5ng/mL)。在另外两名患者中,在最后一个采样时间点(4小时)观察到最大草藻灭浓度(34.7ng/mL),这排除了其消除半衰期的确定(表3)。
临床活动评估
在20名患有可测量疾病的患者中,一名患有胰腺癌的患者在10个周期后出现部分应答并持续5个以上的周期,并且16名患者的一或多个指标病变没有进展。由于出现判定代表临床进展的新的病变或症状,将它们从研究中移除。通过RECIST标准,只有3名患者(一名患有十二指肠癌并且两名患有结肠腺癌)的一或多个指标病变的大小显著增加(图1)。
实现部分应答或疾病稳定性并不明显是剂量依赖性的,在0.83mg/m2下在胰腺癌(15个周期)和非典型肺类癌(5个周期)中发生;在1.25mg/m2下在乳腺癌(4个周期)和睾丸癌(5个周期)中发生;并且在1.75mg/m2下在恶性胸腺瘤(8个周期)和卵巢癌(6个周期)中发生。在3.1mg/m2下,患有软骨肉瘤的患者在LB-100的8个周期内稳定,而正常肾功能没有发生任何改变,而以3.1mg/m2开始的患有纤维肉瘤的患者在两次剂量减少后稳定12个周期(图2)。
结论:LB-100的抗肿瘤活性和新颖机制的安全性、耐受性、初步证据支持其单独地和与其它疗法组合持续发展。
讨论(实例6)
在患有实体瘤的患者中确定了有效的PP2A抑制剂—LB-100的MTD。推荐的2期起始剂量为每天2.33mg/m2,每3周3天,在无肾毒性的情况下递增到3.1mg/m2,并且由于病情稳定或恶化的情况下的肾毒性,递减到1.75mg/m2或更低。由于患者具有疾病稳定性,并且一名患有胰腺癌的患者目标消退胰腺癌,剂量低至每天0.83mg/m2,每3周3天,因此人类的最佳抗癌活性可能远低于MTD。
接受至少2个周期的LB-100的20名患者中的十名(50%)在多达15个治疗周期中具有稳定的疾病,而没有限制或累积毒性。这种现象背后的机制尚不清楚。许多类型的癌症中的PP2A活性通过突变或通过增加若干内源性PP2A抑制剂中的一或多种抑制剂的表达而受损或增强(常等人,2015;佩罗蒂(Perotti)等人,2013;谢沙里路(Seshacharyulu)等人,2013;桑戈卡尔(Sangodkar)等人,2016)。由于本研究中的患有胰腺癌的单个患者具有目标应答并且以其它方式稳定疾病超过11个月,特别关注的是,最近已报道在大多数人类胰腺癌中与PP2A超活性相关联的PP2A调节亚单元的显著过度表达(海恩(Hein)等人,2016)。在原位植入裸鼠的人胰腺细胞系中,此亚单位PR55α的敲低显著降低了其致瘤性和转移潜能(海恩等人,2016)。
另一方面,在不希望受具体理论束缚的情况下,PP2A活性的获得性缺陷可能使肿瘤选择性地易受PP2A的进一步药物学抑制的影响。例如,在del(5q)骨髓增生异常综合征(MDS)中,PP2A催化亚单元的等位基因缺失(萨尔曼(Sallman)等人,2014)。据报道,由于其适度的PP2A抑制活性,来那度胺(一种治疗MDS的标准药剂)对这些PP2A单倍不足的del(5q)MDS细胞来说具有选择性细胞毒性(萨尔曼等人,2014)。PP2A抑制还导致过度表达Mad2(有丝分裂阻滞缺陷蛋白2)的癌细胞的合成杀伤性,其与Rb和/或p53路径中的突变一致发生(比安(Bian)等人,2014;施瓦特曼(Schvartman)等人,2011)。在本研究中,具有部分应答的胰腺癌患者显著地过度表达Mad2。
通过单一药剂LB-100可以抑制癌症进展的另一种可能机制是通过增强细胞毒性T细胞功能。不希望受具体理论束缚的情况下,PP2A的磷酸酶活性对于CTLA-4介导的T细胞活化是重要的(坦伏特等人,2009)并且对于调节性T细胞功能是至关重要的(阿铂斯托利迪斯等人,2016)。此外,PP2A的调节亚单元—Ppp2r2d的抑制通过除T细胞功能的已知负调节剂之外的机制增强T细胞增殖和细胞因子产生(周等人,2014)。然而,在本研究中,没有患者经历过表明自身免疫活性的毒性,所述毒性与目前批准的诱导免疫检查点阻断的化合物一起出现。
临床上安全的PP2A抑制剂的可用性为开发长期以来意识到但被忽视的癌症疗法的治疗靶标提供了机会。目前的试验表明LB-100单独具有抗癌活性。然而,当与细胞毒性药物和/或其它类型的免疫检查点抑制剂结合时,PP2A的药理学抑制可能对癌症治疗最有效,特别是对于具有获得性PP2A功能异常和/或DNA损伤修复路径的肿瘤(庄(Zhuang)等人,2009;洪(Hong)等人,2015)。
实例7.组合施用LB-100
向患有癌症的受试者施用一定量的化合物LB-100与抗癌疗法的组合。一定量的化合物和抗癌疗法对治疗受试者是有效的。
向患有癌症的受试者施用一定量的化合物LB-100与抗癌疗法的组合。相对于单独的抗癌疗法,一定量的化合物对增强抗癌活性是有效的。
实例8.PP2A和PD-1
PP2A的药理学抑制可以增强免疫活性和癌症免疫疗法。PP2A的抑制应通过直接地增加常规CD4和CD8T细胞的增殖和通过削弱Treg的免疫抑制功能来增强癌症免疫疗法。据推测,LB-100可以增强免疫检查点阻断的效果。首次在临床前模型中证明,PP2A的药理学抑制可以与免疫疗法协同作用。
在人同种异体混合淋巴细胞反应中评估LB-100对T细胞的作用,其中将CD8+或CD4+T细胞与自体单核细胞衍生的树突细胞共培养。在CD8+和CD4+细胞中的T细胞增殖中发现剂量依赖性增加(图4A-B和图5A-B),并且CD4+T细胞中IFNγ分泌增加(图3A-B)。发现剂量依赖性增加增强T细胞上的共刺激分子OX40表达(图6A-B)和Tbet(转录因子)以驱使CD4+T细胞中IFNγ的产生(图7A-B)。在相同测定中研究了LB-100加抗PD-1抗体对CD4+T细胞的作用。与单独的抗PD-1相比,所述组合增强了增殖(图8A-B,9A-D)、OX40表达(图10A-B)、Tbet表达(图11A-B)和IFNγ产生(图15)。
实例9.LB-100抑制和PD-1阻断引发持久的CD8+T细胞介导的肿瘤排斥
为了验证PP2A与LB-100的抑制可以增强免疫介导的抗肿瘤应答的假设,向小鼠植入CT26肿瘤细胞。CT26是表达低水平PD-L1的鼠类结肠腺癌,并且对抗PD1疗法具有抗性。大约13天后,将在30mm3到100mm3之间的肿瘤大小的小鼠随机分成四个治疗组(PBS对照、仅LB-100—0.16mg/kg、仅抗PD-1—10mg/kg、或两者的组合)。每2天治疗一次,持续共28天。每两天评估肿瘤大小(图20A-C)。使用抗PD1的单一药剂治疗在减轻肿瘤负担或增长存活期方面是无效的。单独的LB-100能够将中值存活期从21天增加到33天(p=0.02)。治疗后第14天,与对照(p<0.01)相比,组合治疗使平均肿瘤体积显著降低70%。中值存活期还从21天增加到72天(p<0.01)。更引人注目的是,50%的小鼠实现了没有疾病证据的肿瘤完全消退(CR)。这种应答在治疗完成后是持久的。
接下来,研究通过组合疗法实现CR的小鼠是否产生长期免疫记忆。在初始接种后约60天,用相同的CT26细胞重新接种治愈的小鼠(图21A-B)。在再激发后,没有一只小鼠(n=8)产生肿瘤。同时接种CT26未处理小鼠以用作对照。此结果表明通过组合疗法治愈的小鼠能够建立对肿瘤特异性抗原的长期记忆。
然后探讨LB-100与引起肿瘤消退的抗PD-1的协同作用是否由CD8T细胞介导。在开始治疗之前,使用消耗性抗生素对荷CT26肿瘤的小鼠进行CD8消融。治疗后3天,用脾细胞的FACS确认CD8+T细胞消融。随着CD8消耗,组合疗法未能引发抗肿瘤应答。与CD8+未消耗组中的72%相比,接受组合疗法的0%的CD8+消耗小鼠实现CR(图22A-C)。总之,这些结果证明LB-100的作用由免疫系统介导,而不是对肿瘤的直接细胞毒性作用。
方法
试剂-LB-100由Lixte生物技术公司提供。抗小鼠PD-1、克隆RMP1-14、抗体购自BioXcell。以下单克隆抗体(mAb)用于流式细胞术:大鼠抗小鼠CD4-BV421、大鼠抗小鼠CD3-PE、大鼠抗小鼠CD8a-Alexa 647、大鼠抗小鼠CD45-BV785、大鼠抗小鼠IFNg-FITC、大鼠抗小鼠FOXP3-Alexa 647。这些抗体购自百进生物科技(Biolegend)。
细胞系和小鼠-CT26.CL25结肠癌细胞系获自ATCC。在含有10%(vol/vol)FBS(赛默飞世尔公司(Thermofisher))、100U/mL青霉素、100μg/mL链霉素(吉博科公司(Gibco))的完全培养基(RPMI 1640;赛尔格罗(Cellgro))中培养肿瘤细胞。从查尔斯河(CharlesRiver)购买了六到8周龄的雌性BALB/c。将小鼠圈养在美国国立卫生研究院(NationalInstitutes of Health)(马里兰州贝塞斯达)的实验室动物设施中。所有实验均由美国国立卫生研究院动物护理和使用办公室(National Institutes of Health Office ofAnimal Care and Use)批准,并根据美国国立卫生研究院指南进行。
肿瘤接种和动物研究-将CT26肿瘤细胞(0.5×106)皮下注射到腹部右侧。在肿瘤植入后第11天开始分别以0.16mg/kg和10mg/kg的剂量通过腹膜内(i.p.)途径注射LB-100和抗PD-1,并且每2天进行,持续28天。每2到3天用数字卡尺监测肿瘤大小,并以体积(长×宽2×0.5)表示。对肿瘤溃烂/坏死或肿瘤负荷超过2,000mm3或最大直径大于2cm的动物实施安乐死。
对CD8T细胞的消耗在治疗前2天和1天、在治疗当天和在开始治疗后5天和8天注射抗CD8(克隆53.6.7)mAb(BioXcell)。剂量为每次注射0.1mg。
肿瘤再激发研究用CT26细胞接种未处理BALB/c小鼠和先前通过以上所描述的组合治疗治愈的小鼠,接种到左(之前未接种)胸侧。如以上所描述的,每周测量两次肿瘤。对肿瘤溃烂/坏死或肿瘤负荷超过2,000mm3或最大直径大于2cm的动物实施安乐死。
实例10.LB-100和PD-1阻断调节肿瘤浸润淋巴细胞(TIL)
评估肿瘤浸润淋巴细胞的治疗效果(图23A-B)。如上,用LB-100和/或抗PD-1抗体治疗荷CT26肿瘤的小鼠。治疗12天后,通过FACS分析肿瘤。用LB-100和抗PD-1抗体组合治疗来自小鼠的肿瘤浸润CD8+T细胞显示,与来自对照动物和单独用抗PD-1治疗的动物的细胞相比,IFN+CD8+T细胞显著增加(分别与11.0%和10.5%相比,25.3%,P=0.05)。由于IFNγ是介导抗肿瘤应答的最关键的细胞因子,因此所述结果证实组合治疗的小鼠在功能上对植入的肿瘤具有增强的免疫力。此外,鉴于PP2A在Treg中的已知重要性,研究了LB-100和/或抗PD-1治疗对肿瘤中存在的Treg的量的影响。单独的LB-100显著消耗肿瘤环境中的Treg(与对照中的14.7%相比,2.1%)。这种效果在程度上与抗PD-1或组合对Treg消耗的影响相似。单独的LB-100可以消耗Treg这一事实表明,解释在单独的LB-100治疗组中观察到的小但显著的存活益处的可能的机制。
此外,当用CT26细胞重新接种时,实现CR的小鼠对肿瘤生长具有抗性。尽管用组合疗法治疗,但是使用消耗抗体进行CD8+T细胞消融的小鼠不能拒绝CT26肿瘤-0/8(0%),这表明LB-100与抗PD-1治疗的抗肿瘤作用是CD8+T细胞介导的。总之,在同基因动物模型中,PP2A抑制剂(LB-100)具有与检查点阻断结合的协同潜能,这支持对其增强临床免疫疗法能力的研究。
总之,在此临床前模型中已经证明,当与抗PD-1组合时,LB-100具有导致经治疗小鼠的很大部分完全消退的稳健且协同效应。这种效应通过CD8+T细胞的适应性免疫介导。还建立了与肿瘤消退相关的免疫记忆。这是使用PP2A的药理学抑制作为增强免疫疗法的靶标的首次报道。
肿瘤经常发展出多种逃避免疫系统的机制,所述机制中的一种机制是T细胞的有效抑制T细胞攻击肿瘤的PD-1的表达。抗PD-1消除了这种抑制信号,从而使T细胞识别并根除肿瘤。发现LB-100,即蛋白磷酸酶2A(PP2A)的抑制剂,在结肠癌的临床前模型中具有显著的抗肿瘤作用。发现这种作用通过免疫系统的增强来介导。
实例11.施用LB-100与PD-1和/或PD-L1检查点抑制剂的组合
向患有癌症的受试者施用一定量的化合物LB-100与PD-1和/或PD-L1检查点抑制剂的组合。一定量的化合物和抑制剂可有效治疗受试者。
向患有癌症的受试者施用一定量的化合物LB-100与PD-1和/或PD-L1检查点抑制剂的组合。一定量的化合物有效增强PD-1和/或PD-L1检查点抑制剂的抗癌活性。
向患有黑色素瘤的受试者施用一定量的化合物LB-100与PD-1和/或PD-L1检查点抑制剂的组合。一定量的化合物和抑制剂可有效治疗受试者。
向患有黑色素瘤的受试者施用一定量的化合物LB-100与PD-1和/或PD-L1检查点抑制剂的组合。一定量的化合物有效增强PD-1和/或PD-L1检查点抑制剂的抗癌活性。
实例12:评估作为针对阿特朱单抗、纳武单抗或派姆单抗的添加疗法的LB-100的功效
添加疗法提供协同效应并允许具有减少的副作用的较低剂量。
向已接受阿特朱单抗、纳武单抗或派姆单抗的患有黑色素瘤的人类患者定期施用LB-100作为添加疗法提供临床上有意义的优点并且在治疗患者方面比单独施用阿特朱单抗、纳武单抗或派姆单抗(相同的剂量)更有效(提供至少一个累加效应或多于一个累加效应)。
向已接受LB-100的患有黑色素瘤的人类患者定期施用阿特朱单抗、纳武单抗或派姆单抗作为添加疗法提供临床上有意义的优点并且在治疗患者方面比单独施用LB-100(相同的剂量)更有效(提供至少一个累加效应或多于一个累加效应)。
添加疗法还在治疗患者时提供功效(提供至少一个累加效应或多于一个累加效应)而没有不当的副作用或影响治疗的安全性。与单独施用每种药剂相比:
1.添加疗法在增加患有黑色素瘤的患者的细胞毒性T细胞的量方面更有效(提供一个累加效应或多于一个累加效应);
2.添加疗法在减缓患有黑色素瘤的患者的黑色素瘤的进展方面更有效(提供一个累加效应或多于一个累加效应);和/或
3.添加疗法在降低黑色素瘤患者中PD-1和/或PD-L1的功能方面更有效(提供一个累加效应或多于一个累加效应)。
实例13:蛋白磷酸酶-2A与LB-100的药理学抑制在与PD-1阻断结合时实现持久的免疫介导的抗肿瘤活性
本实例尤其表明,小分子PP2A抑制剂(即LB-100)在与抗PD1(aPD-1)阻断结合时协同地引发CT26结肠癌模型中持久的免疫介导的抗肿瘤应答。这种效应是导致显著比例的肿瘤显著消退的T细胞依赖性。肿瘤淋巴细胞的分析表明效应子T细胞的浸润增强和抑制调节性T细胞的消耗,从而导致效应子与调节性T细胞比率显著增加。肿瘤的清除建立了抗原特异性继发性保护免疫。在B16黑色素瘤模型中还观察到LB-100和aPD-1阻断的协同作用。此外,本文所描述的发现是LB-100特异性地活化mTORC1信号传导路径,从而导致未处理CD4细胞分化为调节性T细胞减少。还发现Th1的表达增加并且Th2细胞因子的表达减少。这些数据强调了PP2A抑制与检查点抑制的组合的转化潜力。
LB-100和aPD-1组合治疗协同引发CT26肿瘤的排斥:为了验证在aPD-1难治性肿瘤中PP2A抑制与aPD-1疗法在体内协同作用的假说,使用了CT26肿瘤,其是具有高PD-L1表达但对aPD-1疗法应答有限的鼠类结肠直肠癌。用CT26肿瘤细胞(0.25×106)接种小鼠。10到13天后,将肿瘤大小达到50-100mm3的小鼠随机分成四个治疗组:对照(PBS)、aPD-1、LB-100以及aPD-1和LB-100的组合。每2天施用一次治疗,持续30天。每2天评估肿瘤生长(图24A)。在此模型中,单独的LB-100没有显著降低肿瘤生长,但确实延长了中值存活期(33对21天,p=0.02)。此外,单独的aPD1对肿瘤生长或存活期没有影响。然而,LB-100和aPD1的组合导致肿瘤的很大部分显著消退,其中50%在研究期间达到完全消退(CR)。在治疗(p≤0.05)后第8天,肿瘤大小有显著差异,并且组合治疗组与对照治疗组之间的存活率显著增加(p<0.005)(图24B)。
LB100和aPD-1组合的效果取决于CD8T细胞:接下来研究的是,导致持久肿瘤消退的LB-100和aPD-1组合的协同作用是否为免疫介导的过程。在用LB-100和aDD-1治疗之前和期间,使用消耗抗体对荷CT26肿瘤的小鼠进行CD8+T细胞消融(图24C)。在治疗后5天,通过FACS确认外围CD8+消耗(数据未示出)。当消耗CD8+T细胞时,LB-100和aPD-1组合不会引发肿瘤排斥(0对72%、p=0.0015)(图24D)。与非消耗组中的肿瘤体积相比,在使用CD8消耗的组合组中,治疗后10天平均肿瘤体积增加13倍(612对46mm3,p<0.001)。随着CD8消耗,存活期显著减少(p<0.0001)。与肿瘤生长和存活中的对照相比,单独的CD8T细胞消耗具有小的有害影响,这表明在基线条件下,CD8+T细胞介导的免疫的基线水平用于限制CT26生长。这些数据表明,LB-100与aPD-1协同作用依赖于CD8+T细胞介导的适应性免疫,而不是肿瘤生长的PP2A抑制的直接作用。
通过组合疗法治愈的小鼠产生抗原特异性长期记忆:成功的适应性免疫应答的标志是建立免疫记忆。以下实验测试了经历完全应答(CR)的小鼠的其继发性保护抗肿瘤应答。在初始肿瘤植入后约60天,用CT26细胞再激发小鼠(图25A)。这些小鼠对CT26细胞再激发具有完全抗性(图25B)。与CR小鼠(p<0.0001)中的0mm3相比,在(重新)植入后第18天,未处理小鼠的平均肿瘤大小为480mm3(图25C)。
接下来,测试保护性继发免疫应答是否对CT26肿瘤有特异性。在最初植入约60天后,用CT26细胞在侧翼再激发CR小鼠,并用4T1细胞(一种不相关的鼠类乳腺癌细胞系)在乳房脂肪垫再激发所述CR小鼠(图25D)。具有CR的小鼠对CT26具有抗性,但对4T1细胞无抗性。接种后十八天,未处理小鼠与CR小鼠之间的4T1肿瘤体积无差异,而CT26在CR小鼠中未能生长(图25E-F)。此结果表明继发性记忆应答特异于CT26表达的抗原。
组合治疗增强淋巴细胞活化:为了解决通过LB-100/aPD-1组合介导肿瘤排斥的细胞机制,研究了继发性淋巴器官和肿瘤中免疫系统的状态。如以上所描述的,向小鼠植入CT26肿瘤并用LB-100和/或aPD-1治疗。在第3天,在两次治疗后,采集脾脏、肿瘤引流淋巴结(dLN)和肿瘤并通过流式细胞术分析(图26-27)。在继发性淋巴组织中,观察到与对照相比用组合方案治疗的小鼠中的CD8+T细胞的更大活化,如由CD44+CD62L-CD8+T细胞的更高频率所指示的(图26A-C)。在脾脏中,用单独的LB-100治疗导致CD44+CD62L-CD8+T细胞少量增加(从13.0%增加到16.6%,p<0.05),但组合治疗导致比单独的LB-100或aPD1较大的增加(分别与16.6和15.5%相比,20.8,p<0.05和p<0.005)(图26B)。类似地,与对照相比,用组合治疗的小鼠的dLN中CD44+CD62L-CD8+T细胞增加(从7.4%增加到17.9%,p<0.05)(图26C)。脾脏和dLN中CD4+T细胞中CD44+CD62L-亚群的频率没有差异(图28A和29A)。在肿瘤引流淋巴结和脾脏中检查免疫检查点标记物,所述标记物包含PD-1、CTLA4、TIM3和Ox40在CD8+和CD4+T细胞上的表达(图28和29)。这些标记物的表达没有差异,除了dLN中aPD-1治疗的CD4+T细胞中PD-1表达的小但显著的增加外;然而,单独的LB-100或组合不会进一步改变PD-1表达(图29A)。
接下来执行肿瘤浸润淋巴细胞的综合分析(图26-27、30)。首先,研究CD45+细胞的绝对百分比。治疗组之间无显著差异。然而,与对照相比,在CD45+群体内,组合治疗中CD3+T细胞显著增加(从33.3%增加到49.9%,p<0.05)(图26E)。更重要的是,CD3+T细胞群的增加归因于CD8+T细胞的显著增加(图26D),无论是否归一化为CD45+细胞(25.9%到45.3%,p≤0.01)(图26F)或肿瘤驻留细胞的数量(8到19%,p<0.05)(图31A)。在归一化为肿瘤重量的CD8+T细胞中观察到类似的趋势(图31B)。相反,CD4+T细胞群保持不变(图26G、31),导致CD8/CD4比率显著增加(从3.6增加到9.0,p<0.001)(图27H)。这表明LB-100/aPD-1组合导致增强的CD8+T细胞转运到肿瘤,这一直被证明是对免疫疗法应答的最重要的预测因子之一。通过标记效应子表型标记物CD44+进一步研究CD8+TIL的亚群。相对于对照,用组合治疗的小鼠的CD8+CD44+T细胞显著增加(从9.8增加到17.1%,p≤0.01)(图26I)。还发现CD8+TIL的增殖增加,如通过细胞周期相关蛋白Ki67的表达所测量的(从12.3%增加到22.5%,p<0.05)(图26J)。接下来,检查TIL中免疫检查点标记物阵列的表达,包含PD-1、TIM3、Ox40、CTLA4和LAG3。用aPD-1治疗导致PD-1表达的预期降低,但单独的LB-100或除了aPD-1之外没有进一步改变CD4+和CD8+TIL中的PD-1表达(图26K-L)。TIM3、Ox40、CTLA4和LAG3在使用单一或组合治疗的CD4+或CD8+TIL中的表达没有显著改变(图32),这表明将LB-100与针对这些检查点标记物的靶向治疗相结合是有潜力的。
鉴于先前的研究证明PP2A在抑制性Treg中起重要作用,然后研究了添加LB-100是否会导致类似于抗CTLA4疗法的Treg消耗。已知aPD-1在肿瘤水平起作用并且具有消耗Treg的有限能力。然而,在添加LB-100后,组合治疗显著降低TIL中CD4+FoxP3+Treg细胞的百分比(从CD3+T细胞的10.3%降低到4.9%,p<0.05)(图27A-B)。伴随Treg的减少和CD8+T细胞的增加导致TIL中CD8+与Treg的比率显著增加3.5倍(从7.5增加到26.4,p<0.05)(图27C)。随后,评估了LB-100/aPD-1组合在TIL中的功能结果。分析了响应于用PMA/离子霉素体外刺激的IFN-γ的细胞内表达。相对于对照,组合治疗显著增强CD8+TIL的IFN-γ产生(从CD45+的16.6到31.5%,p<0.05)(图27D-E)。此外,通过组合治疗,肿瘤坏死因子α(TNF-α)产生(图27F、33A)和IFN-γ/TNF-α双产生(图27G、33B)的CD8+TIL的频率显著增加。CD8+TIL的细胞溶解能力还由颗粒酶B(GzmB)的表达确定,这也通过LB-100/a-PD1治疗而显著增加(图27H、33c)。在CD4+T细胞中,观察到IFN-γ产生的小但统计学上显著的增加(从CD4+细胞的6.1增加到10.8%,p<0.05)(图27I)。这表明,尽管用LB-100/α-PD1组合进行的CD4+浸润没有全面增加,但肿瘤中存在的效应CD4+T细胞随着IFN-γ产生增强而更具功能活性。
总之,将LB-100与aPD-1阻断组合导致TIL的组成显著变化(图27J)。虽然总体CD45+群体保持相对稳定,但CD3+T细胞浸润明显增加,这由占优势的CD8+T细胞所驱使。同时,Treg群体同时消耗,导致CD8/Treg比率显著增加。此外,如细胞因子表达所指示的,CD8+T细胞更具增殖性和功能活性。这些发现与LB-100/a-PD1组合可以以免疫依赖性方式引发CT26中持久性肿瘤排斥的观察结果一致。
LB-100和aPD-1增强B16黑色素瘤的抗肿瘤活性,但没有自身免疫的组织学证据:接下来确定LB-100/aPD-1组合是否对其它aPD-1抗性肿瘤有效。在肿瘤预防模型中,将6到8周龄的C57BL/6小鼠随机分成四个治疗组:PBS、LB-100、aPD-1和组合。在右胸侧皮下注射治疗开始后2天接种B16F10细胞(2.5×105)。在存活后每两天施用治疗(图34A)。在肿瘤植入后第15天,对照与单一药剂组之间没有差异。然而,相对于对照(305.9到109.0mm3,p<0.05),组合组的肿瘤大小明显较小(图34B-C),并且存活期通过组合治疗延长(p<0.05)(图34D)。
值得注意的是,组合组中没有一只小鼠表现出任何自身免疫炎症事件的临床体征。然而,鉴于LB-100/aPD-1组合导致效应子功能增加和Treg消耗,自身免疫是一个问题。因此,我们研究了经治疗小鼠的多个器官的组织学,以寻找炎症的迹象。处死达到存活终点的C57BL/6小鼠并研究皮肤、唾腺、胰腺、肺和胃的组织学(图34E、35)。在任何治疗组中都没有证据表明淋巴细胞浸润增加或自身免疫的迹象。
LB-100抑制PP2A活性并增强mTORC1活化:在用铺板的CD3和可溶CD28体外刺激3小时后,测量从小鼠脾细胞分离的CD4和CD8细胞的PP2A酶活性。CD4和CD8细胞的PP2A酶活性均呈剂量依赖性下降,与CD4细胞相比,CD8细胞的作用更大(图36A)。
在体外活化分离的CD3细胞3小时后,通过分别检查核糖体S6蛋白(S6)、Thr473处的AKT和Thr308处的AKT的磷酸化来评估mTORC1、mTORC2和PI(3)K-AKT路径的活性。发现,虽然LB-100对mTORC2和PI(3)K-AKT路径的影响很小(图36B),但如通过S6磷酸化测量的,mTORC1活性有剂量依赖性增加(图36c)。在活化后30分钟的早期时间点,在3种路径中的任一个路径中未观察到这种差异(图37)。
LB-100抑制未处理CD4细胞发育成调节性或Th2CD4细胞:
从小鼠脾细胞中分离未处理CD4细胞,并在存在TGF-β或IL4的情况下用抗CD3和CD28体外活化以分别诱导Treg或Th2CD4+细胞产生。72小时后,通过流式细胞术定量Foxp3或GATA3的核内表达以分别确定Treg或Th2细胞的百分比。LB-100治疗以剂量依赖性方式通过IL-4显著损害TGF-β(图38A)或GATA3(图38B)对Foxp3的诱导。此外,通过标记T-bet来量化Th2和Th1CD4+细胞的相对比例。通过LB-100治疗,GATA3表达细胞相对于Tbet表达细胞的频率显著降低(图38C)。接下来,探讨使用LB-100治疗的Th1CD4+细胞的功能结果。在Th1和Th2偏斜的条件下,使用PP2A抑制的IFN-γ表达呈剂量依赖性增加。这示出了细胞内染色(图38D)和细胞因子分泌的测量(图38E-F)。其它Th1相关细胞因子(包含TNF-α和IL2)在Th1和Th2条件下也增加。预期IL4的分泌减少(图38F)。这些数据表明,PP2A抑制降低了Treg形成并使CD4细胞向Th1谱系分化偏斜,导致Th1细胞因子分泌总体增加。这些体外实验与体内TILS发现一致,并潜在地表明PP2A抑制通过mTORC1超活化增强癌症免疫。
LB-100在人混合淋巴细胞反应中的体外活性:为了进一步证实LB-100的免疫调节作用具有临床效用,使用来自健康人供体的PBMC进行混合淋巴细胞反应(MLR)。将单核细胞衍生的树突细胞与用细胞溶质染料CFSE标记的同种异体CD4+T细胞共培养。在共培养当天(第0天)给予LB-100并且在第3天再次给予LB-100。在第5天评估通过CD4T细胞进行的增殖和IFN-γ分泌(图39A)。如通过分裂细胞的百分比所测量的,通过1μM的LB-100治疗,CD4T细胞增殖显著增加(与对照中的20%相比,31%)(图39B)。在较低的LB100浓度下(在亚微摩尔范围内),也有增殖增加的趋势。在5μM的高剂量下,增殖受损,这表明存在增强免疫的LB-100暴露的最佳窗口。在IFN-γ分泌中观察到类似的模式(图39C)。在0.2和1μM的LB-100下,IFN-γ释放分别显著增强3.5到4倍。还通过标记T-bet研究了CD4T细胞中谱系分化的影响。1μM下的LB-100显著增加T-bet的表达(图8D),这证实了我们先前的发现,LB-100似乎使CD4谱系向Th1分化偏斜。接下来测试LB-100是否可以使用纳武单抗在体外增强IFN-γ分泌与PD1阻断的组合。用LB-100进行类似的MLR测定。发现与单一药剂相比,LB-100与抗PD1(aPD-1)阻断协同作用,并增强IFN-γ分泌(图39E)。
材料与方法
药物-纳武单抗获自百时美施贵宝,并且LB-100获自Lixte生物技术控股有限公司(Lixte Biotechnology Holdings,Inc)。
细胞系-CT26.CL25结肠癌、B16F10黑色素瘤和4T1乳腺癌细胞系获自ATCC。在含有10%(vol/vol)FBS(吉博科公司)、100U/mL青霉素、100μg/mL链霉素(吉博科公司)的完全培养基(RPMI 1640,吉博科公司)中培养肿瘤细胞。
同基因肿瘤模型-维持小鼠并在NINDS动物使用和护理委员会(NINDS Animal Useand Care Committees)的批准下进行实验。针对CT26肿瘤:BALB/c(6到8周龄)购自查尔斯河实验室(Charles River Laboratory)。将CT26细胞(0.5×106)皮下注射到右侧腹部。一旦肿瘤达到30-100mm3(第0天)的体积,对小鼠进行随机分组并用PBS、LB-100(0.156mg/kg)和/或抗小鼠PD-1(10mg/kg)(RMP1-14;大鼠IgG2b;Bio X细胞)进行治疗。每2天治疗一次,持续共30天。使用卡尺每2天测量肿瘤体积,并根据下式计算肿瘤体积:体积(mm3)=L×W2/2,其中L为长度,并且W为肿瘤的宽度(以毫米为单位)。对于B16肿瘤;C57BL/6(6到8周龄)购自查尔斯河实验室。将小鼠随机分成相应的治疗组,并在初步治疗后2天,将B16F10细胞(0.5×106)皮下注射到右侧腹部。每2天进行一次治疗和测量。存活终点定义为达到以下任何标准时:1)肿瘤体积超过2000mm3;2)肿瘤直径超过2cm;3)肿瘤严重不愈合皮肤坏死。当指出时,通过注射250∝g的CD8消耗抗体来消耗一些小鼠的CD8+T细胞(克隆53.6.7;BioXcell)。在治疗前2天和1天、治疗开始当天、治疗开始后第5天和第8天以及每周向前进行注射。
肿瘤再激发研究-用0.5×106个CT26细胞接种未处理BALB/c小鼠和先前用CT26肿瘤组合疗法治愈的(CR)小鼠,接种到左(CR)和右(未处理)胸侧。在指出的情况下,在一些小鼠的乳房脂肪垫中接种1.25×105个4T1乳头状癌细胞。然后,如上类似地监测肿瘤体积。
TIL的分离-在小鼠的右胸侧注射0.5×106个CT26细胞,并在肿瘤达到50到100mm3之间后进行如上治疗。治疗2次后,处死小鼠并切除肿瘤。在存在使用肿瘤解离试剂盒(美天旎生物技术有限公司(Miltenyi Biotec))进行酶消化的情况下,使用GentleMACS解离器(美天旎生物技术有限公司)对肿瘤进行机械破坏。图S3中示出了用于分析TIL的门控策略。细胞内细胞因子染色、磷酸荧光和流式细胞术-在PBS中,用可固定活/死染色(英杰公司(Invitrogen))对含有T细胞的悬浮液进行染色,然后在FACS缓冲液(具有0.5%BSA和0.1%叠氮化钠的PBS)中进行表面抗体染色。对于细胞内染色,对细胞的表面分子进行染色,随后进行固定和透化(eBioscience)。对于细胞因子染色,在进行染色之前,首先用含有PMA/离子霉素和蛋白质转运抑制剂的细胞刺激混合物(eBioscience)刺激细胞。对于磷酸染色,使用4%甲醛进行固定,并使用100%甲醇进行透化方案。通过流式细胞术(LSRII;BD生物科学公司(BD Bioscience))对细胞进行分析。使用FlowJo软件(TreeStar)进行数据分析。
PP2A磷酸酶测定-分别用CD4和CD8分离试剂盒(干细胞公司(StemCell))分离小鼠CD4+和CD8+T细胞。使用固定化抗CD3(10ug/ml)和可溶抗CD28(2ug/ml)活化细胞三小时。然后,根据制造商的说明书(EMD密理博公司(EMD Millipore)),使用孔雀石绿磷酸酶测定试剂盒在免疫沉淀后评估PP2A活性。
T细胞刺激和偏斜-从小鼠脾细胞(干细胞公司)中分离出未处理CD4细胞。使用固定化抗CD3(10ug/ml)和可溶抗CD28(2ug/ml)活化细胞3天。偏斜条件如下:TH1,1.ig/mL抗IL4、5ng/mL IL2和10ng/mL IL12;TH2,1.ig/mL抗IFN-γ、5ng/mL IL2和10ng/mL IL4;Treg,1.ig/mL抗IFNγ和1.ig/mL抗IL4、以及2ng/mL TGFβ1。根据制造商的说明,使用基于珠粒的多分析物流动免疫测定(BD生物科学公司)来测量上清液中细胞因子的产生。使用计数珠粒(百进生物科技),用流式细胞术量化绝对细胞数。
用于流式细胞术的抗体-抗小鼠:α-CD45(30-F11,BD)、α-CD3(145-2C11,百进生物科技)、α-CD4(GK1.5,百进生物科技)、α-CD8(53-6.7,BD)、α-PD-1(J43,赛默飞世尔公司)、α-CTLA4(1B8,艾博抗公司(abcam))、α-TIM-3(B8.2C12,百进生物科技)、α-OX-40(OX-86,百进生物科技)、α-CD62L(MEL-14,BD)、α-CD44(IM7,百进生物科技)、α-LAG-3(C9B7W,百进生物科技)、α-IFN-γ(XMG1.2,百进生物科技)、α-TNF-α(MP6-XT22,百进生物科技)、α-颗粒酶B(NGZB,赛默飞世尔公司)、α-FOXP3(MF-14,百进生物科技)、α-Ki67(SolA15,赛默飞世尔公司)。抗人:α-CD4(A161A1,百进生物科技)、α-T-bet(4B10,百进生物科技)、α-磷酸-Akt(Ser473)(D9E,细胞信号传导公司(Cell Signaling))、α-磷酸-Akt(Thr308)(D25E6,细胞信号传导公司)、α-磷酸-S6核糖体蛋白(Ser235/236)(D57.2.2E,细胞信号传导公司)。
组织学-处理福尔马林固定的组织,用苏木精和曙红染色,并由委员会认证的病理学家盲评估。
人混合淋巴细胞应答-如先前在39中所描述的。通过用500U/ml白细胞介素-4(IL-4)和250U/ml GM-CSF(R&D系统公司(R&D Systems))在体外培养使用单核细胞分离试剂盒(干细胞公司)从PBMC中分离的单核细胞7天来产生树突细胞(DC)。将用CD4分离试剂盒(干细胞公司)分离并用CFSE(赛默飞世尔公司)标记的CD4+T细胞(1×105)与同种异体DC(1×104)共培养。在测定开始时,添加LB-100和/或纳武单抗的滴定。3天后,将LB-100补充到最终指定浓度。5天后,通过ELISA(eBioscience)分析培养物上清液,并通过流式细胞术分析细胞。获得至少3个独立的供体,并报告了一个代表性供体的结果。
统计-如果图例中没有另外说明,则使用Tukey的多重比较检验,用GraphPadPrism软件分析样品。散点图被描述为平均值与SEM。
参考文献
阿珀斯托利迪斯S(Apostolidis S)、罗德里格斯-罗德里格斯N(Rodríguez-Rodríguez N)、苏亚雷斯-富埃约A(Suárez-Fueyo A)等人,“磷酸酶PP2A是调节性T细胞功能所必需的(Phosphatase PP2A is requisite for the function of regulatory T cells)”,自然免疫学(Nat Immunol.),2016,17:556-64。
白X(Bai X)、志X(Zhi X)、张Q(Zhang Q)等人,“蛋白磷酸酶2A的抑制通过经由HIF-1α-VEGF介导的血管生成的药物灌注使胰腺癌对化学疗法敏感(Inhibition ofprotein phosphatase 2A sensitizes pancreatic cancer to chemotherapy byincreasing drug perfusion via HIF-1α-VEGF mediated angiogenesis)”,癌症快报(Cancer Lett),2014,355:281-287。
白XL(Bai Xl)、张Q、叶LY(Ye LY)等人,“蛋白磷酸酶2A的抑制增强细胞毒性和化学治疗药物对肝细胞癌的可及性(Inhibition of protein phosphatase 2A enhancescytotoxicity and accessibility of chemotherapeutic drugs to hepatocellularcarcinomas)”,分子癌症疗法(Mol Cancer Ther),2014,13:2062-72。
巴罗哈,M.L.(Baroja,M.L.)等人,“丝氨酸/苏氨酸磷酸酶2A调节亚单元对CTLA-4功能的抑制作用(Inhibition of CTLA-4Function by the Regulatory Subunit ofSerine/Threonine Phosphatase 2A)”,免疫学期刊(J Immunol),2002;168:5070-5078。
贝尔蒂尼I(Bertini I)、考尔德伦V(Calderone V)、弗拉盖M(Fragai M)、卢钦纳C(Luchinat C)、塔鲁E(Tallu E),“原型小分子斑蝥素和去甲斑蝥素抑制丝氨酸/苏氨酸磷酸酶的结构基础(Structural Basis of Serine/Threonine Phosphatase Inhibition bythe Archetypal Small Molecules Cantharidin and Norcantharidin)”,药物化学期刊(J.Med.Chem),2009,52:4838-4843。
比安Y(Bian Y)、北川富朗R(Kitagawa R)、KB帕米尔(KB Parmil)、藤井裕久Y(Fujii Y)、帕诺夫A(Stepanov A)以及北川富朗K,“合成遗传阵列筛选将PP2A鉴定为Mad2-过度表达肿瘤中的治疗靶标(Synthetic genetic array screen identifies PP2A as atherapeutic target in Mad2-overexpressing tumors)”,美国国家科学院院刊(ProcNatl Acad Sci U S A),2014,111:1628-1633。
布拉默JR(Brahmer JR)等人,“难治性实体瘤中的单一药剂抗程序性死亡-1(MDX-1106)的I期研究:安全性、临床活动、药效学和免疫相关性(Phase I study of single-agent anti-programmed death-1(MDX-1106)in refractory solid tumors:safety,clinical activity,pharmacodynamics,and immunologic correlates)”,临床肿瘤学期刊(J Clin Oncol),28,31673175(2010)。
布吕内JF(Brunet JF)、德尼佐F(Denizot F)、卢西亚尼MF(Luciani MF)、鲁克斯-多塞托M(Roux-Dosseto M)、苏桑M(Suzan M)、康泰迪MG(Mattei MG)、戈尔施泰因P(Golstein P):“免疫球蛋白超家族的新成员-CTLA-4(A new member of theimmunoglobulin superfamily-CTLA-4)”,自然(Nature),1987,328:267-270。
卡雷洛BM(Carreno BM)、班尼特F(Bennett F)、邹TA(Chau TA)、林V(Ling V)、拉克森伯格D(Luxenberg D)、加斯夫J(Jussif J)、巴罗哈ML、马德里纳斯J(Madrenas J):“CTLA-4(CD152)可以通过两种不同的机制抑制T细胞活化,这取决于其细胞表面表达水平(CTLA-4(CD152)can inhibit T cell activation by two different mechanismsdepending on its level of cell surface expression)”,免疫学期刊,2000,165:1352-1356。
常KE(Chang KE)、魏BR(Wei BR)、马迪根JP(Madigan JP)等人,“蛋白磷酸酶2A抑制剂LB-100使卵巢癌细胞对顺铂介导的细胞毒性敏感(The Protein Phosphatase 2AInhibitor LB-100Sensitizes Ovarian Carcinoma Cells to Cisplatin-MediatedCytotoxicity)”,分子癌症疗法,2015,14:90-100。
查普曼NM(Chapman NM)、志H(Chi H),“mTOR信号传导、Treg和免疫调节(mTORsignaling,Tregs and immune modulation)”,免疫疗法(Immunotherapy),6,1295-1311(2014)。
陈DS(Chen DS)、梅尔曼I(Mellman I),“肿瘤学符合免疫学:癌症免疫周期(Oncology meets immunology:the cancer-immunity cycle”,免疫(Immunity),39,1-10(2013)。
庄,E.(Chuang,E.)等人,“CD28和CTLA-4受体与丝氨酸/苏氨酸磷酸酶PP2A相关(The CD28and CTLA-4Receptors Associate with the Serine/Threonine PhosphatasePP2A”,2000,免疫,第13卷,313-322。
钟V(Chung V)、曼斯菲尔德AS(Mansfield AS)、布拉伊赫F(Braiteh F)、理查兹D(Richards D)、杜伊凡H(Durivage H)、昂格莱德RS(Ungerleider RS)、约翰逊F(JohnsonF)以及科瓦奇JS(Kovach JS),“LB-100(一种蛋白磷酸酶2A抑制剂)在患有复发性实体瘤的患者中的安全性、耐受性和初步活性(Safety,tolerability,and preliminary activityof LB-100,an inhibitor of protein phosphatase 2A,in patients with relapsedsolid tumors)”,临床癌症研究(Clin Cancer Res),2017。
钟,V.,“实体瘤中LB-100与多西他赛的1期研究(Phase I study of LB-100withdocetaxel in solid tumors)”,2013:ClinicalTrials.gov.
德尔戈夫GM(Delgoffe GM)等人,“激酶mTOR通过mTORC1和mTORC2选择性活化信号传导来调节辅助性T细胞的分化(The kinase mTOR regulates the differentiation ofhelper T cells through the selective activation of signaling by mTORC1andmTORC2)”,自然免疫学,12,295-303(2011)。
德尔戈夫GM,“mTOR的PP2A抑制对T(reg)细胞活性至关重要(PP2A's restraintof mTOR is critical for T(reg)cell activity)”,自然免疫学,17,478-479(2016)。
埃伯特PJ(Ebert PJ)等人,“MAP激酶抑制促进T细胞和抗肿瘤活性与PD-L1检查点阻断的组合(MAP Kinase Inhibition Promotes T Cell and Anti-tumor Activity inCombination with PD-L1Checkpoint Blockade)”,免疫,44,609-621(2016)。
厄佛斯,T.(Efferth,T.)等人,(2005)“斑蝥素在肿瘤细胞中的分子作用模式(Molecular modes of action of cantharidin in tumor cells)”,生物化学药理学(Biochem Pharmacol),69(5):第811-8页。
埃费思,T.等人,(2002)“中药对敏感和多药耐药的人CCRF-CEM白血病细胞的MDR1-或MRP1过度表达药物的活性(Activity of drugs from traditional Chinesemedicine toward sensitive and MDR1-or MRP1-overexpressing multidrug-resistanthuman CCRF-CEM leukemia cells)”,血细胞、分子与疾病(Blood Cells Mol Dis.)28(2):第160-8页。
伊尔R(Eil R)、沃尼拉SK(Vodnala SK)、克勒维尔D(Clever D)、克莱巴诺夫CA(Klebanoff CA)、苏库马尔M(Sukumar M)、帕恩JH(Pan JH)、帕尔马尔DC(Palmar DC)、格罗斯A(Gros A)、山本耀司TN(Yamamoto TN)、帕特尔SJ(Patel SJ)、吉塔尔GC(Guittard GC)、于Z(Yu Z)、卡尔博纳罗V(Carbonaro V)、奥肯豪格K(Okkenhaug K)、谢伦普DS、莱恩汉WM(Linehan WM)、罗西努杜里R(Roychoudhuri R)、雷斯蒂佛NP(Restifo NP)。“肿瘤微环境内的离子免疫抑制限制了T细胞效应子功能(Ionic immune suppression within thetumour microenvironment limits T cell effector function)”,自然,2016,537:539-543。
福尔克纳IR(Falconer IR)、哈姆佩奇AR(Humpage AR),“通过口服施用含有毒素柱孢藻毒素的蓝绿色圆柱藻提取物引发体内肿瘤的初步证据(Preliminary evidence forin vivo tumour initiation by oral administration of extracts of the blue-green alga cylindrospermopsis raciborskii containing the toxincylindrospermopsin”,环境毒理学(Environ Toxicol),16,192-195(2001)。
格兰加MM(Gehringer MM),“微囊藻毒素-LR和冈田酸诱导的细胞效应:二元应答(Microcystin-LR and okadaic acid-induced cellular effects:a dualisticresponse”,FEBS快报(FEBS Lett),557,1-8(2004)。
戈登IK(Gordon Ik)、鲁J(Lu J)、格雷夫斯CA(Graves CA)等人,“用LB-100抑制蛋白磷酸酶2A增强胶质母细胞瘤中辐射诱导的有丝分裂突变和肿瘤生长延迟(ProteinPhosphatase 2A Inhibition with LB-100Enhances Radiation-Induced MitoticCatastrophe and Tumor Growth Delay in Glioblastoma)”,分子癌症疗法,2015,14:1540-47。
哈希纳斯托S(Haxhinasto S)、马西斯D(Mathis D)、伯努瓦C(Benoist C)。“AKT-mTOR轴调节CD4+Foxp3+细胞的从头分化(The AKT-mTOR axis regulates de novodifferentiation of CD4+Foxp3+cells)”,实验医学期刊(J Exp Med 205),565-574(2008)。
海恩AL(Hein AL)、谢沙里路P(Seshacharyulu P)、拉哈甘尼S(Rachagani S)等人,“蛋白磷酸酶2A的PR55α亚单元通过维持多动症致癌信号传导来支持胰腺癌细胞的致瘤和转移潜能(PR55αSubunit of Protein Phosphatase 2A Supports the Tumorigenicand Metastatic Potential of Pancreatic Cancer Cells by Sustaining HyperactiveOncogenic Signaling)”,癌症研究(Cancer Res),2016,8:2243-53
霍WS(Ho WS)、费尔德曼MJ(Feldman MJ)、马里克D(Maric D)等人,“用LB-100抑制PP2A增强顺铂细胞毒性并克服成神经管细胞瘤细胞中的顺铂抗性(PP2A inhibition withLB-100enhances cisplatin cytotoxicity and overcomes cisplatin resistance inmedulloblastoma cells)”,癌靶标(Oncotarget),2016,7:12447-63。
霍迪,F.S.(Hodi,F.S.)等人,“用伊匹木单抗提高患有转移性黑色素瘤的患者的存活率(Improved Survival with Ipilimumab in Patients with MetastaticMelanoma)”,2010,新英格兰医学期刊(N Engl J Med),363;8。
霍尔姆高RB(Holmgaard RB)、扎马林D(Zamarin D)、芒恩DH(Munn DH)、沃尔克JD(Wolchok JD)、艾里逊JP(Allison JP)。“吲哚胺2,3-双加氧酶是靶向CTLA-4的抗肿瘤T细胞免疫疗法中的关键抗性机制(Indoleamine 2,3-dioxygenase is a criticalresistance mechanism in antitumor T cell immunotherapy targeting CTLA-4)”,实验医学期刊,210 1389-1402(2013)。
洪CS(Hong Cs)、霍W(Ho W)、张C(Zhang C)、杨C(Yang C)、埃尔德JB(Elder JB)、庄Z(Zhuang Z),“具有强大的化学和放射致敏潜能的PP2A的小分子抑制剂LB-100(LB-100,a Small Molecule Inhibitor of PP2A with Potent Chemo-and Radio-sensitizingPotential)”,癌症生物学疗法(Cancer Biol Ther),2015,16:821-33。
汉森斯V(Janssens V)、隆然S(Longin S)、戈里斯J(Goris J),“PP2A全酶组装:在毒尾(叮咬在尾巴上)(PP2A holoenzyme assembly:in cauda venenum(the sting is inthe tail)”,生物化学科学动向(Trends Biochem Sci),33,113-121(2008)。
汉森斯V、雷波洛A(Rebollo A),“丝氨酸/苏氨酸磷酸酶PP2A在人癌细胞凋亡信号传导网络中的作用和治疗潜力(The Role and Therapeutic Potential of Ser/ThrPhosphatase PP2A in Apoptotic Signalling Networks in Human Cancer Cells)”,当代分子医学期刊(Curr Mol Med),2012,12:268-287。
约瑟夫F(Joseph F)、格罗索和玛丽亚N(Grosso和Maria N)、尤雷-孔克尔(Jure-Kunkel),“肿瘤模型中的CTLA-4阻断:临床前和转化研究概述(CTLA-4blockade in tumormodels:an overview of preclinical and translational research)”,癌症免疫(Cancer Immun),2013;13:5。
凯利M(Kiely M)、凯利PA(Kiely PA),“PP2A:披着羊皮的狼?(PP2A:The Wolf inSheep's Clothing?)”,癌症(巴塞尔)(Cancers(Basel)),7,648-669(2015)。
金威尔K(Kingwell K),“癌症:实时筛查免疫治疗目标(Cancer:Live screeningof immunotherapy targets)”,自然综述:药物发现(Nat Rev Drug Discov),13,258(2014)。
科瓦奇JS(Kovach JS)、约翰逊(Johnson F),(2008),氧杂双环庚烷和氧杂双环庚烯、其制备和用途(Oxabicycloheptanes and oxabicycloheptenes,their preparationand use),US7998957,2011年8月16日。
拉金J(Larkin J)等人,“未治疗的黑色素瘤的组合纳武单抗和伊匹木单抗或单一疗法(Combined Nivolumab and Ipilimumab or Monotherapy in UntreatedMelanoma)”,新英格兰医学期刊,373,23-34(2015)。
乐L(LêL)、阿里克曼C(Erlichman C)、皮隆L(Pillon L)等人,“连续五天每日静脉推注给予福司曲星的1期和药动学研究(Phase I and pharmacokinetic study offostriecin given as an intravenous bolus daily for five consecutive days)”,调研新药(Invest New Drugs),2004,22:159-167。
莱卡S(Lecca S)等人,“通过蛋白磷酸酶2A抑制在外侧缰核中拯救GABAB和GIRK功能改善小鼠中的抑郁样表型(Rescue of GABAB and GIRK function in the lateralhabenula by protein phosphatase 2A inhibition ameliorates depression-likephenotypes in mice)”,自然医学(Nat Med)22,254-261(2016)。
鲁,J.(Lu,J.)等人,“丝氨酸/苏氨酸磷酸酶PP2A的抑制通过阻断DNA损伤诱导的防御机制来增强癌症化学疗法(Inhibition of serine/threonine phosphatase PP2Aenhances cancer chemotherapy by blocking DNA damage induced defensemechanisms)”,美国国家科学院院刊,2009.106(28):第11697-702页。
Lv彭(Lv Peng)、王Y(Wang Y)、马J(Ma J)等人,“具有小分子LB-100的蛋白磷酸酶2A的抑制通过诱导有丝分裂突变和阻断DNA损伤修复来放射敏感鼻咽癌异种移植物(Inhibition of protein phosphatase 2A with a small molecule LB-100radiosensitizes nasopharyngeal carcinoma xenografts by inducing mitoticcatastrophe and blocking DNA damage repair)”,癌靶标,2014,5:7512-7524。
马蒂尼奥娃,L.(Martiniova,L.)等人,“丝氨酸/苏氨酸磷酸化的药理学调节使MPC细胞和小鼠模型中的PHEO对常规化学疗法高度敏感(Pharmacologic modulation ofserine/threonine phosphorylation highly sensitizes PHEO in a MPC cell andmouse model to conventional chemotherapy)”,公共科学图书馆综合(PLoS One),2011.6(2):p.e14678。
梅莱罗I(Melero I)、鲁祖特A(Rouzaut A)、莫茨GT(Motz GT)、库科斯G(CoukosG),“T细胞和NK细胞浸润到实体瘤中:有效的癌症免疫疗法的关键限制因素(T-cell andNK-cell infiltration into solid tumors:a key limiting factor for efficaciouscancer immunotherapy)”,癌症发现(Cancer Discov),4,522-526(2014)。
马姆比M(Mumby M),“PP2A:揭示不情愿的肿瘤抑制因子(PP2A:unveiling areluctant tumor suppressor)”,细胞,2007;130:21-4。
恩乔奥SF(Ngiow SF)等人,“肿瘤内CD8+T细胞PD1表达的阈值水平决定了对抗PD1的治疗应答(A Threshold Level of Intratumor CD8+T-cell PD1Expression DictatesTherapeutic Response to Anti-PD1)”,癌症研究,75,3800-3811(2015)。
帕里,R.V.(Parry,R.V.)等人,“CTLA-4和PD-1受体通过不同的机制抑制T细胞活化(CTLA-4and PD-1Receptors Inhibit T-Cell Activation by DistinctMechanisms)”,分子与细胞生物学(Molecular and Cellular Biology),2005,第9543-9553页,第25卷,第21期。
佩罗蒂D(Perotti D)、内维亚尼P(Neviani P),“靶向抑制肿瘤生长的肿瘤抑制因子:关于蛋白磷酸酶2A(PP2A)作为抗癌治疗靶标的新闻和观点(Targeting A TumorSuppressor To Suppress Tumor Growth:News and Views on Protein Phosphatase 2A(PP2A)as a Target for Anti-cancer Therapy)”,柳叶刀肿瘤学(Lancet Oncol),2013,14:e229-e238。
科纳峰,Y.(Pico de Coana,Y.)等人,“检查点阻断癌症疗法:振兴分子医学中受抑制的免疫系统趋势(Checkpoint blockade for cancer therapy:revitalizing asuppressed immune system Trends in Molecular Medicine)”,(2015)1-10。
光C(Quang C)、西姆柯JL(Simko JL)、内瑟罗WC(Nethero WC)、古博EA(GroeberEA)、科瓦奇JS(Kovach JS),“LC-MS/MS方法开发和验证生物基质中LB-100和草藻灭代谢物的定量(LC-MS/MS Method Development and Validation for the Quantification ofLB-100and Endothall Metabolite in Biological Matrices(20))”,海报MP 158(PosterMP158),美国质谱学会质谱学和相关主题会议(American Society for MassSpectrometry Conference on Mass Spectrometry and Allied Topics),2016年6月6日,圣安东尼奥(San Antonio),德克萨斯州(TX)。
罗伯特C(Robert C)等人,“纳武单抗在之前未治疗的黑色素瘤中没有BRAF突变(Nivolumab in previously untreated melanoma without BRAF mutation)”,新英格兰医学期刊,372,320-330(2015)。
罗西尼GP(Rossini GP)、斯加比N(Sgarbi N)、麦拉古迪C(Malaguti C),“冈田酸诱导的毒性应答涉及多种半胱天冬酶同种型的加工(The toxic responses induced byokadaic acid involve processing of multiple caspase isoforms.)”,毒素(Toxicon),39,763-770(2001)。
萨吉-巴尔菲I(Sagiv-Barfi I)、科赫特HE(Kohrt HE)、切尔文斯基DK(Czerwinski DK)、额PP(Ng PP)、常BY(Chang BY)、莱维R(Levy R),“通过检查点阻断的治疗性抗肿瘤免疫由依鲁替尼(BTK和ITK的抑制剂)增强(Therapeutic antitumor immunityby checkpoint blockade is enhanced by ibrutinib,an inhibitor of both BTK andITK)”,美国国家科学院院刊,112,E966-972(2015)。
桑戈卡尔J(Sangodkar J)、法林顿CC(Farrington CC)、马奇K(McClinch K)、加利斯基MD(Galsky MD)、卡斯特林斯基DB(Kastrinsky DB)、纳拉G(Narla G),“所有道路都通向PP2A:利用这种磷酸酶的治疗潜力(All roads lead to PP2A:exploiting thetherapeutic potential of this phosphatase)”,美国实验生物学会组合会会志(FEBSJ),2016,283:1004-24。
萨尔曼D(Sallman D)、魏S(Wei S)、利斯特A(List A)等人,“PP2A:阿基里斯在5q缺失的情况下治愈MDS(PP2A:the Achilles heal in MDS with 5q deletion)”,前肿瘤防治期刊(Front Oncol.),2014,4:1-7。
施瓦尔茨曼JM(Schvartzman JM)、帕斯卡尔HGD(Pascal HGD)、索蒂约R(SotilloR)、科克尔C(Coker C)、贝内兹拉R(Benezra R),“Mad2是Rb和p53路径抑制后观察到的染色体不稳定性的关键介体(Mad2 Is a Critical Mediator of the ChromosomeInstability Observed upon Rb and p53Pathway Inhibition)”,癌细胞(Cancer Cell),2011,19:701-714。
谢沙里路P(Seshacharyulu P)、潘迪P(Pandey P)、达塔K(Datta K)等人,“磷酸酶:PP2A在癌症中的结构重要性、调节和其异常表达(Phosphatase:PP2A structuralimportance,regulation and its aberrant expression in cancer)”,癌症快报,2013,335:9-118。
石Y(Shi Y),“丝氨酸/苏氨酸磷酸酶:通过结构的机制(Serine/ThreoninePhosphatases:Mechanism through Structure)”,细胞2009,139:468-484。
斯奈德,A.(Snyder,A.)等人,“黑色素瘤中CTLA-4阻断的临床应答的遗传基础(Genetic Basis for Clinical Response to CTLA-4Blockade in Melanoma)”,2014,新英格兰医学期刊,371;23。
苏卡里A(Sukari A)、纳格拉卡M(Nagasaka M)、阿哈迪迪A(Al-Hadidi A)、卢姆LG(Lum LG),“癌症免疫学和免疫疗法(Cancer Immunology and Immunotherapy)”,抗癌研究(Anticancer Res),36,5593-5606(2016)。
斯沃特M(Swart M)、维尔布鲁格I(Verbrugge I)、贝尔特曼(Beltman),“癌症疗法中免疫检查点阻断的组合方法(Combination Approaches with Immune-CheckpointBlockade in Cancer Therapy)”,活体外毒理学(Frontiers in Oncology),2016,6:233。
塔福斯RE(Taffs RE)、莱戴格德FA(Redegeld FA)以及西科夫斯基(Sitkovsky),“通过丝氨酸/苏氨酸磷酸酶(即冈田酸)的抑制剂调节细胞溶解性T淋巴细胞功能,增强细胞溶解性T淋巴细胞介导的细胞毒性(Modulation of cytolytic T lymphocytefunctions by an inhibitor of serine/threonine phosphatase,okadaicacid.Enhancement of cytolytic T lymphocyte-mediated cytotoxicity)”,免疫学期刊(J Immunol),1991,147:722-728。
特夫特WA(Teft WA)、基希霍夫MG(Kirchhof MG)、马德里纳斯J(Madrenas J):“CTLA-4功能的分子视角(A molecular perspective of CTLA-4function)”,免疫学年度综述(Annu Rev Immunol),2006,24:65-97。
特夫特WA、基希霍夫MG、马德里纳斯J:“CTLA-4与PP2A相互作用的结构-功能分析(Structure-Function analysis of the CTLA-4interaction with PP2A)”,英国医学委员会免疫学(BMC Immunology),2009,10:23。
托帕利安SL(Topalian SL)、德雷克CG(Drake CG)、帕多尔DM(Pardoll DM),“免疫检查点阻断:癌症疗法的共同特征方法(Immune Checkpoint Blockage:A CommonDenominator Approach to Cancer Therapy)”,癌细胞,2015,27:450-461。
齐亚塔M(Tsiatas M)、芒特齐奥斯(Mountzios)、曲里亚诺(Curigliano),“癌症免疫疗法的未来前景(Future perspective in cancer immunotherapy)”,自然转化医学(Ann Transl Med),2016,4(14):273。
王C(Wang C)等人,“抗PD-1抗体纳武单抗的体外表征、BMS-936558和非人灵长类动物的体内毒理学(In vitro characterization of the anti-PD-1antibodynivolumab,BMS-936558,and in vivo toxicology in non-human primates)”,临床癌症研究(Cancer Immunol Res),2,846-856(2014)。
王GS(Wang GS),“中国古代斑蝥的医学用途和近期研究(Medical uses ofmylabris in ancient China and recent studies)”,民族药物学期刊(JEthnopharmacol)。1989,2:147-62。
魏,D.(Wei,D.)等人,“蛋白磷酸酶2A的抑制通过调节CDC25C/CDK1和同源重组修复来放射敏感胰腺癌(Inhibition of protein phosphatase 2A radiosensitizespancreatic cancers by modulating CDC25C/CDK1and homologous recombinationrepair),临床癌症研究(Clin Cancer Res),2013。19(16):第4422-32页。
及韦司特墨J(Westermarck J)、哈恩WC(Hahn WC),“肿瘤抑制因子PP2A在转化过程中调节多种路径(Multiple pathways regulated by the tumor suppressor PP2A intransformation)”,分子医学进展(Trends Mol Med.),2008,14:152-160。
亚特苏纳米J(Yatsunami J)、小森A(Komori A)、奥塔T(Ohta T)、苏加努马M(Suganuma M)、尤斯帕SH(Yuspa SH)、藤木H(Fujiki H),“原代人角质形成细胞中冈田酸类肿瘤启动子对细胞角蛋白的高度磷酸化(Hyperphosphorylation of cytokeratins byokadaic acid class tumor promoters in primary human keratinocytes)”,癌症研究,53,992-996(1993)。
张,C.(Zhang,C.)等人,“用于增强干细胞衍生的侵袭性肉瘤的阿霉素抑制的合成斑蝥素类似物(A synthetic cantharidin analog for the enhancement ofdoxorubicin suppression of stem cell-derived aggressive sarcoma)”,生物材料(Biomaterials),2010。31(36):第9535-43页。
张M(Zhang M)、瑜戈沙SD(Yogesha SD)、梅菲尔德JE(Mayfield JE)、吉尔GN(GillGN)、张Y(Zhang Y),“通过药物设计者的眼睛观察丝氨酸/苏氨酸蛋白磷酸酶(Viewingserine/threonine protein phosphatases through the eyes of drug designers)”,美国实验生物学会组合会会志,280,4739-4760(2013)。
周P(Zhou P)、谢弗DR(Shaffer DR)、阿尔瓦雷斯DA(Alvarez DA)等人,“肿瘤微环境中的免疫治疗靶标的体内发现(In vivo Discovery of Immunotherapy Targets inthe Tumor Microenvironment)”,自然,2014,506:52-57。
庄Z(Zhuang Z)、鲁J(Lu J)、隆索R(Lonser R)、科瓦奇JS(Kovach JS),“通过全面修饰丝氨酸/苏氨酸磷酸化蛋白质组同时改变细胞周期进程和DNA损伤防御来增强癌症化学疗法(Enhancement of cancer chemotherapy by simultaneously altering cellcycle progression and DNA-damage defenses through global modification of theserine/threonine phospho-proteome)”,细胞周期(Cell Cycle),2009,8:3303-6。
US 8,697,845B2,发布于2014年4月15日。

Claims (49)

1.一种治疗患有癌症的受试者的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,其中当所述量一起服用时对治疗所述受试者有效。
2.一种治疗患有癌症的受试者和接受检查点抑制剂的方法,所述方法包括向所述受试者施用相对于单独的所述检查点抑制剂有效增强治疗的一定量的PP2A抑制剂。
3.一种治疗受试者的肿瘤或癌症的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,其中当所述量一起服用时对治疗所述肿瘤或癌症有效。
4.一种增加针对患有癌症的受试者的癌细胞的T细胞应答的方法,所述方法包括向所述受试者施用一定量的PP2A抑制剂与有效增加针对所述癌细胞的所述T细胞应答的有效量的检查点抑制剂的组合。
5.一种增加患有癌症的受试者的T细胞活化的方法,所述方法包括向所述受试者施用有效量的PP2A抑制剂与有效量的检查点抑制剂的组合,由此增加所述T细胞活化。
6.根据权利要求1到5中任一权利要求所述的方法,其中所述量的所述化合物和所述量的所述检查点抑制剂各自定期施用于所述受试者。
7.根据权利要求1到6中任一权利要求所述的方法,其中所述量的所述化合物和所述量的所述检查点抑制剂同时、分开或依次施用。
8.根据权利要求1到7中任一权利要求所述的方法,其中所述检查点抑制剂与所述PP2A抑制剂同时、在其之前或之后施用。
9.根据权利要求1到8中任一权利要求所述的方法,其中所述量的检查点抑制剂和所述量的化合物在一起施用时比在单独施用相同量的每种药剂时对治疗所述受试者更有效。
10.根据权利要求1到9中任一权利要求所述的方法,其中所述量的所述化合物和所述量的所述检查点抑制剂在一起服用时有效减少所述受试者的所述癌症的临床症状。
11.根据权利要求1到10中任一权利要求所述的方法,其中所述化合物增强了所述检查点抑制剂的免疫治疗效果。
12.根据权利要求1到11中任一权利要求所述的方法,其中所述癌症易受通过免疫应答进行的治疗的影响。
13.根据权利要求1到12中任一权利要求所述的方法,其中所述免疫检查点抑制剂是CTLA-4药剂。
14.根据权利要求13所述的方法,其中所述CTLA-4检查点抑制剂是伊匹木单抗或曲美木单抗。
15.根据权利要求1到12中任一权利要求所述的方法,其中所述免疫检查点抑制剂是抗PD-1或抗PD-L1药剂。
16.根据权利要求15所述的方法,其中所述PD-1和/或PD-L1检查点抑制剂是阿特朱单抗、纳武单抗或派姆单抗。
17.根据权利要求1到16中任一权利要求所述的方法,其中所述癌症是黑色素瘤、肾细胞癌、前列腺癌、尿路上皮癌或卵巢癌。
18.根据权利要求17所述的方法,其中所述癌症是黑色素瘤。
19.根据权利要求1到16中任一权利要求所述的方法,其中所述化合物以0.25mg/m2、0.5mg/m2、0.83mg/m2、1.25mg/m2、1.75mg/m2、2.33mg/m2或3.1mg/m2的剂量施用。
20.根据权利要求19所述的方法,其中所述化合物以2.33mg/m2的剂量施用。
21.根据权利要求1到16中任一权利要求所述的方法,其中所述化合物每3周施用3天。
22.根据权利要求14所述的方法,其中所述伊匹木单抗以0.5mg/kg到10mg/kg或更低的剂量静脉内施用。
23.根据权利要求22所述的方法,其中所述伊匹木单抗每3周或更短时间静脉内在90分钟内施用。
24.根据权利要求14所述的方法,其中所述阿特朱单抗以0.1mg/kg到20mg/kg或更低的剂量静脉内施用。
25.根据权利要求22所述的方法,其中所述阿特朱单抗每3周或更短时间在60分钟内静脉内施用。
26.根据权利要求16所述的方法,其中所述纳武单抗以0.1mg/kg到10mg/kg或更低的剂量静脉内施用。
27.根据权利要求26所述的方法,其中所述纳武单抗每2周或更短时间在60分钟内静脉内施用。
28.根据权利要求16所述的方法,其中所述派姆单抗以1mg/kg到10mg/kg或更低的剂量静脉内施用。
29.根据权利要求28所述的方法,其中所述派姆单抗每3周或更短时间在30分钟内静脉内施用。
30.一种抑制T细胞中CTLA-4的功能的方法,所述方法包括向所述T细胞施用PP2A抑制剂,由此抑制所述CTLA-4的所述功能。
31.一种抑制T细胞中PD-1:PD-L1相互作用的方法,所述方法包括向所述T细胞施用PP2A抑制剂,由此抑制PD-1:PD-L1的所述相互作用。
32.根据权利要求1到23中任一权利要求所述的方法,其中所述PP2A抑制剂具有以下结构:
其中
键α存在或不存在;
R1和R2一起为=O;
R3为OH、O-、OR9、O(CH2)1-6R9、SH、S-或SR9
其中R9为H、烷基、烯基、炔基或芳基;
R4
其中X为O、S、NR10、N+HR10或N+R10R10
其中每个R10独立地为H、烷基、烯基、炔基、芳基、-CH2CN、-CH2CO2R11或-CH2COR11
其中每个R11独立地为H、烷基、烯基或炔基;
R5和R6一起为=O;
R7和R8各自为H,
或其盐、两性离子或酯。
33.根据权利要求32所述的方法,其中所述化合物具有以下结构:
34.根据权利要求32或33所述的方法,其中所述化合物中存在键α。
35.根据权利要求32或33所述的方法,其中所述化合物中缺少键α。
36.根据权利要求32或33所述的方法,其中
R3为OH、O-或OR9
其中R9为烷基、烯基、炔基或芳基;
R4
其中X为O、S、NR10、N+HR10或N+R10R10
其中每个R10独立地为H、烷基、烯基、炔基、芳基、
37.根据权利要求36所述的方法,其中R3为OH、O-或OR9,其中R9为H、甲基、乙基或苯基。
38.根据权利要求37所述的方法,其中R3为OH、O-或OR9,其中R9为甲基。
39.根据权利要求36所述的方法,其中R4
40.根据权利要求36所述的方法,其中R4
其中R10为H、烷基、烯基、炔基、芳基或
41.根据权利要求40所述的方法,其中R4
其中R10为-H、-CH3、-CH2CH3
42.根据权利要求41所述的方法,其中R4
43.根据权利要求36所述的方法,其中R4
其中R10为H、烷基、烯基、炔基、芳基、
44.根据权利要求43所述的方法,其中R4
45.根据权利要求36所述的方法,其中R4
46.根据权利要求34或35所述的方法,其中所述化合物具有以下结构:
其中:
键α存在或不存在;
R9存在或不存在,并且当存在时为H、烷基、烯基、炔基或苯基;并且
X为O、NR10、NH+R10或N+R10R10
其中每个R10独立地为H、烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、芳基、-CH2CN、-CH2CO2R12或CH2COR12
其中R12为H或烷基,
或其盐、两性离子或酯。
47.根据权利要求46所述的方法,其中所述化合物具有以下结构:
其中:
键α存在或不存在;
X为O或NR10
其中每个R10独立地为H、烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、芳基、-CH2CN、-CH2CO2R12或CH2COR12
其中R12为H或烷基,
或其盐、两性离子或酯。
48.根据权利要求46所述的方法,其中所述化合物具有以下结构:
其中:
键α存在或不存在;
X为O或NH+R10
其中R10为H、烷基、取代的烷基、烯基、取代的烯基、炔基、取代的炔基、芳基、-CH2CN、-CH2CO2R12或-CH2COR12
其中R12为H或烷基,
或其盐、两性离子或酯。
49.根据权利要求40所述的方法,其中所述化合物具有以下结构:
或其盐或酯。
CN201780084881.1A 2016-12-08 2017-12-08 用于调节免疫应答的氧杂双环庚烷 Active CN110234647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310498623.5A CN116585480A (zh) 2016-12-08 2017-12-08 用于调节免疫应答的氧杂双环庚烷

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201662497949P 2016-12-08 2016-12-08
US62/497,949 2016-12-08
US201762465001P 2017-02-28 2017-02-28
US62/465,001 2017-02-28
US201762545373P 2017-08-14 2017-08-14
US62/545,373 2017-08-14
PCT/US2017/065270 WO2018107004A1 (en) 2016-12-08 2017-12-08 Oxabicycloheptanes for modulation of immune response

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310498623.5A Division CN116585480A (zh) 2016-12-08 2017-12-08 用于调节免疫应答的氧杂双环庚烷

Publications (2)

Publication Number Publication Date
CN110234647A true CN110234647A (zh) 2019-09-13
CN110234647B CN110234647B (zh) 2023-05-23

Family

ID=62491355

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310498623.5A Pending CN116585480A (zh) 2016-12-08 2017-12-08 用于调节免疫应答的氧杂双环庚烷
CN201780084881.1A Active CN110234647B (zh) 2016-12-08 2017-12-08 用于调节免疫应答的氧杂双环庚烷

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202310498623.5A Pending CN116585480A (zh) 2016-12-08 2017-12-08 用于调节免疫应答的氧杂双环庚烷

Country Status (12)

Country Link
US (1) US20200069680A1 (zh)
EP (2) EP3551629B1 (zh)
JP (2) JP7246309B2 (zh)
KR (2) KR20190098995A (zh)
CN (2) CN116585480A (zh)
AU (1) AU2017370731B2 (zh)
BR (1) BR112019011627A2 (zh)
CA (1) CA3046515A1 (zh)
DK (1) DK3551629T3 (zh)
IL (2) IL290857B2 (zh)
MX (1) MX2019006694A (zh)
WO (1) WO2018107004A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2909160C (en) 2013-04-09 2021-05-25 Lixte Biotechnology, Inc. Formulations of oxabicycloheptanes and oxabicycloheptenes
CN113150030A (zh) 2015-05-15 2021-07-23 莱克斯特生物技术公司 氧杂二环庚烷前药
KR20210019857A (ko) 2019-08-13 2021-02-23 주식회사 엘지화학 전극 스크랩 재활용 방법 및 이를 이용한 전극 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066045A2 (en) * 2001-02-16 2002-08-29 Genetics Institute, Llc. Methods for modulating an immune response by modulating the interaction between ctla4 and pp2a
CN102333752A (zh) * 2008-08-01 2012-01-25 利克斯特生物技术公司 氧杂二环庚烷与氧杂二环庚烯、它们的制备及应用
WO2014005084A1 (en) * 2012-06-29 2014-01-03 Lixte Biotechnology, Inc. Oxabicycloheptanes and oxabicycloheptenes for the treatment of diabetes
CN104619710A (zh) * 2012-06-29 2015-05-13 里克思特生物技术有限公司 用于治疗再灌注损伤的氧杂二环庚烷和氧杂二环庚烯
CN105209036A (zh) * 2013-04-09 2015-12-30 莱克斯特生物技术公司 氧杂双环庚烷和氧杂双环庚烯的配制品
WO2016040877A1 (en) * 2014-09-12 2016-03-17 Lixte Biotechnology, Inc. Human dosing of phosphatase inhibitor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2676422C (en) 2007-02-06 2018-10-16 Lixte Biotechnology Holdings, Inc. Oxabicycloheptanes and oxabicycloheptenes, their preparation and use
GB0903325D0 (en) 2009-02-26 2009-04-08 Univ Aberdeen Antibody molecules
JP2016538281A (ja) 2013-11-15 2016-12-08 リクスト・バイオテクノロジー,インコーポレイテッド 血液脳関門を通過するタンパク質ホスファターゼ阻害剤
US20170136008A1 (en) * 2014-06-20 2017-05-18 Lixte Biotechnology, Inc. Oxabicycloheptanes and oxabicycloheptenes for the treatment of ovarian cancer
BR112017021688A2 (pt) * 2015-04-17 2018-08-14 Bristol-Myers Squibb Company composições compreendendo uma combinação de um anticorpo anti-pd-1 e outro anticorpo
CN113150030A (zh) 2015-05-15 2021-07-23 莱克斯特生物技术公司 氧杂二环庚烷前药

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002066045A2 (en) * 2001-02-16 2002-08-29 Genetics Institute, Llc. Methods for modulating an immune response by modulating the interaction between ctla4 and pp2a
CN102333752A (zh) * 2008-08-01 2012-01-25 利克斯特生物技术公司 氧杂二环庚烷与氧杂二环庚烯、它们的制备及应用
WO2014005084A1 (en) * 2012-06-29 2014-01-03 Lixte Biotechnology, Inc. Oxabicycloheptanes and oxabicycloheptenes for the treatment of diabetes
CN104619710A (zh) * 2012-06-29 2015-05-13 里克思特生物技术有限公司 用于治疗再灌注损伤的氧杂二环庚烷和氧杂二环庚烯
CN105209036A (zh) * 2013-04-09 2015-12-30 莱克斯特生物技术公司 氧杂双环庚烷和氧杂双环庚烯的配制品
WO2016040877A1 (en) * 2014-09-12 2016-03-17 Lixte Biotechnology, Inc. Human dosing of phosphatase inhibitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREW M. INTLEKOFER等: "At the Bench:Preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy", 《JOURNAL OF LEUKOCYTE BIOLOGY》 *
RICHARD V. PARRY等: "CTLA-4 and PD-1 Receptors Inhibit T-Cell Activation by Distinct Mechanisms", 《MOL.CELL.BIOL.》 *

Also Published As

Publication number Publication date
EP4324477A2 (en) 2024-02-21
JP2020502094A (ja) 2020-01-23
WO2018107004A1 (en) 2018-06-14
CA3046515A1 (en) 2018-06-14
AU2017370731A1 (en) 2019-07-04
IL290857A (en) 2022-04-01
EP4324477A3 (en) 2024-05-22
AU2017370731B2 (en) 2022-06-02
IL267134B (en) 2022-04-01
JP7246309B2 (ja) 2023-03-27
DK3551629T3 (da) 2024-02-12
BR112019011627A2 (pt) 2019-11-12
EP3551629B1 (en) 2023-11-15
KR20190098995A (ko) 2019-08-23
IL290857B2 (en) 2023-03-01
CN110234647B (zh) 2023-05-23
EP3551629A4 (en) 2020-07-29
EP3551629A1 (en) 2019-10-16
IL290857B (en) 2022-11-01
MX2019006694A (es) 2019-08-21
KR20240042151A (ko) 2024-04-01
IL267134A (en) 2019-08-29
CN116585480A (zh) 2023-08-15
US20200069680A1 (en) 2020-03-05
JP2023036999A (ja) 2023-03-14

Similar Documents

Publication Publication Date Title
Ray et al. A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma
Li et al. Low-dose anti-angiogenic therapy sensitizes breast cancer to PD-1 blockade
CN110475571B (zh) 细胞免疫疗法前细胞毒性预调理的替代
Antonia et al. Immuno-oncology combinations: a review of clinical experience and future prospects
Gao et al. Transgenic expression of IL-33 activates CD8+ T cells and NK cells and inhibits tumor growth and metastasis in mice
Cai et al. Apatinib enhanced anti-PD-1 therapy for colon cancer in mice via promoting PD-L1 expression
Wang et al. Chemoimmunotherapy by combining oxaliplatin with immune checkpoint blockades reduced tumor burden in colorectal cancer animal model
Iribarren et al. Anticancer effects of anti-CD47 immunotherapy in vivo
CN107801379A (zh) 抗癌剂
US20210060158A1 (en) Agonist of aryl hydrocarbon receptor for use in cancer combination therapy
Atay et al. BRAF targeting sensitizes resistant melanoma to cytotoxic T cells
Stolk et al. Positive & negative roles of innate effector cells in controlling cancer progression
Fu et al. Combination foretinib and anti-PD-1 antibody immunotherapy for colorectal carcinoma
JP2023036999A (ja) 免疫応答を調節するためのオキサビシクロヘプタン
Dagar et al. Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments
Du et al. Gemcitabine and checkpoint blockade exhibit synergistic anti-tumor effects in a model of murine lung carcinoma
Ceresoli et al. Immune checkpoint inhibitors in malignant pleural mesothelioma
Yu et al. Synergistic antitumor effects of 9.2. 27-PE38KDEL and ABT-737 in primary and metastatic brain tumors
Ma et al. Anti-CD3 x EGFR bispecific antibody redirects cytokine-induced killer cells to glioblastoma in vitro and in vivo
Lv et al. CD19-targeting fusion protein combined with PD1 antibody enhances anti-tumor immunity in mouse models
Mougel et al. Synergistic effect of combining sunitinib with a peptide-based vaccine in cancer treatment after microenvironment remodeling
Rizvi et al. A phase I study of lirilumab (BMS-986015), an anti-KIR monoclonal antibody, administered with ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with select advanced solid tumors
Oludada et al. VSTM5 is a novel immune checkpoint that promotes oral tolerance of cell-mediated and antibody responses
Alexander American association for cancer research and american psychiatric association
Xue et al. Clinical drug screening reveals clofazimine potentiates the efficacy while reducing the toxicity of anti-PD-1 and CTLA-4 immunotherapy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: California, USA

Patentee after: Lixte Biotechnology, Inc.

Patentee after: The United States is represented by the Department of Health

Address before: New York, United States

Patentee before: Lixte Biotechnology, Inc.

Patentee before: The United States is represented by the Department of Health

CP02 Change in the address of a patent holder