CN110231334B - 一种锥形微米孔有效孔径调控电致化学发光信号的方法 - Google Patents

一种锥形微米孔有效孔径调控电致化学发光信号的方法 Download PDF

Info

Publication number
CN110231334B
CN110231334B CN201910516437.3A CN201910516437A CN110231334B CN 110231334 B CN110231334 B CN 110231334B CN 201910516437 A CN201910516437 A CN 201910516437A CN 110231334 B CN110231334 B CN 110231334B
Authority
CN
China
Prior art keywords
conical
micro
tube
electrochemiluminescence
tris
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910516437.3A
Other languages
English (en)
Other versions
CN110231334A (zh
Inventor
林振宇
黄艳玲
郭隆华
邱彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910516437.3A priority Critical patent/CN110231334B/zh
Publication of CN110231334A publication Critical patent/CN110231334A/zh
Application granted granted Critical
Publication of CN110231334B publication Critical patent/CN110231334B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种基于锥形微米孔有效孔径调控电致化学发光检测的方法。该方法以微米管为分析元件,以Ru(phen)3 2+/TPrA研究模型,研究锥形微米孔有效孔径调控Ru(phen)3 2+/TPrA氧化反应的法拉第电流传递效率,产生不同的电致化学发光信号,首次实现锥形微米孔有效孔径调控电致化学发光信号,该实验装置结构简单,成本低廉,使用方便,拓宽了电致化学发光的应用范围,具有广阔的应用前景。

Description

一种锥形微米孔有效孔径调控电致化学发光信号的方法
技术领域
本发明属于分析化学领域,具体涉及一种锥形微米孔有效孔径调控电致化学发光检测的方法。
背景技术
电致化学发光是在含有发光指示剂的体系中施加一定的电压或通过一定的电流产生发光信号,通过测量发光光谱和强度,实现目标物的定性和定量分析。目前电致化学发光传感器主要通过目标物调控工作电极上发光指示剂的含量、发光指示剂的发光效率、电子在电极界面上的传递效率等实现目标物的定量分析。微纳米通道分析技术以微纳米通道为分析元件,在外加电压驱动下锥形微纳米孔表面有效孔径影响通道电流的大小,通过分析通道电流的变化实现目标物的定量分析。然而,目前通过锥形微纳米孔有效孔径调控电流大小进而调控体系电致化学发光信号的传感器鲜见报道。微纳米分析这一前沿技术与高灵敏的电致化学发光技术联用必将拓宽电致化学发光传感器的应用范围。
发明内容
本发明的目的在于提供一种锥形微米孔有效孔径调控电致化学发光的检测方法。
为实现上述目的,该方法,包括如下步骤:
(1)拉制玻璃毛细管得到锥形微米管,并用断针仪将锥形微米管尖端抛光至不同孔径;往所述的微米管通道内注入支持电解质并插入对电极,将工作电极,对电极,参比电极浸入电致化学发光检测液中,形成微电池。
(2)往所述微电池施加电压,微电池的工作电极表面发生氧化反应,产生发光信号,并用微弱发光仪收集信号,分析锥形微米管有效孔径对电致化学发光信号的影响。
(3)上述方法所述的步骤(1)中,所述的毛细管内径为0.86 mm,外径为1.5 mm;锥形的微米管有效孔径为1.680-3.868µm,具体为3.868,3.195,2.498,1.680 µm;所述三电极体系,工作电极为玻碳材质,参比电极为Ag/AgCl,对电极为铂丝;所述支持电解质为10 µLTris-HCl缓冲液 (20 mM Tris, 0.6 M KCl, pH=8.0);所述电致化学发光检测液由2 mLTris-HCl缓冲液,10 µL Ru(phen)3 2+(浓度为10 mM)、10 µL的99% TPrA组成;
(4)上述方法所述的步骤(2)中,所述施加于微电池的电位区间为0.4~1.6 V;产生电化学发光电位约为0.9 V;所述施加于微电池的电位扫速为0.1 V/s;所述微弱发光仪光电倍增管电压为 -800 V。
(5)本发明以微米管为分析元件,以Ru(phen)3 2+/TPrA为研究模型,对体系施加电压,微米孔有效孔径调控体系电流大小进而调控Ru(phen)3 2+/TPrA在工作电极表面氧化反应的法拉第电流传递效率。该技术首次实现锥形微米孔有效孔径调控电致化学发光信号,实验装置简单,成本低廉,操作方便,具有广阔的应用前景。
附图说明
图1微米管有效孔径调控电致化学发光信号实验装置图;
图2不同有效孔径微米管 (A)扫描电镜表征图,(B) I-V曲线,(C) ECL光谱图,其中(a) 3.868, (b) 3.195,(c) 2.498,(d) 1.680 µm。
具体实施方式
以下结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
拉制玻璃毛细管得到锥形微米管,并用断针仪将锥形微米管尖端抛光至不同孔径,分别为3.868µm,3.195µm,2.498µm,1.680 µm,往不同孔径(3.868µm,3.195µm,2.498µm,1.680 µm)的微米管中分别注入10 µL Tris-HCl缓冲液 (20 mM Tris, 0.6 M KCl, pH=8.0)并插入铂丝为对电极,玻碳电极为工作电极,Ag/AgCl电极为参比电极,将三电极浸入含有2 mL Tris-HCl缓冲液,10 µL的 10 mM Ru(phen)3 2+、10 µL的99% TPrA电化学检测液中(图1)。对体系施加电压0.4~1.6 V,扫速为0.1 V/s,光电倍增管电压为-800 V,即可检测微米孔有效孔径对电致化学发光的影响。
随着微米孔的孔径减小,有效孔径分别为3.868,3.195,2.498,1.680 µm(图2A),对应的I-V曲线斜率逐渐减小(图2B),说明了微米孔的电导率与孔径大小呈正相关,导致(phen)3 2+/TPrA氧化反应的法拉第电流传递效率受限,电致化学发光强度分别为2500,1600,1200,0,说明微米孔有效孔径可调控电流大小进而调控电致化学发光强度。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种锥形微米孔有效孔径调控电致化学发光信号的方法,包括以下步骤:
(1)拉制玻璃毛细管得到锥形微米管,并用断针仪将微米管的锥形尖端抛光至不同孔径得到处理后的锥形微米管;
(2)往步骤(1)处理后的锥形微米管通道内注入支持电解质,然后将工作电极,对电极,参比电极及锥形微米管浸入电致化学发光检测液中,形成微电池;
(3)对步骤(2)的微电池施加电压,微电池的工作电极表面发生氧化反应,产生发光信号,并用微弱发光仪收集信号,分析锥形微米管有效孔径与电致化学发光信号的关系;
所述电致化学发光检测液由2 mL Tris-HCl缓冲液,10 µL的10 mM Ru(phen)3 2+、10 µL的99% TPrA组成;所述施加于微电池的电位区间为0.4~1.6 V;所述施加微电池电压的扫速为0.1 V/s;所述微弱发光仪光电倍增管电压为-800 V;所述锥形微米管的孔径为1.680-3.868µm。
2.根据权利要求1所述的方法,其特征在于:步骤(2)所述的支持电解质为10 µL pH值为8.0的Tris-HCl缓冲液,其由20mM Tris和0.6M KCl组成。
3.根据权利要求1所述的方法,其特征在于:所述工作电极为玻碳材质,参比电极为Ag/AgCl,对电极为铂丝。
CN201910516437.3A 2019-06-14 2019-06-14 一种锥形微米孔有效孔径调控电致化学发光信号的方法 Expired - Fee Related CN110231334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910516437.3A CN110231334B (zh) 2019-06-14 2019-06-14 一种锥形微米孔有效孔径调控电致化学发光信号的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910516437.3A CN110231334B (zh) 2019-06-14 2019-06-14 一种锥形微米孔有效孔径调控电致化学发光信号的方法

Publications (2)

Publication Number Publication Date
CN110231334A CN110231334A (zh) 2019-09-13
CN110231334B true CN110231334B (zh) 2021-09-28

Family

ID=67859931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910516437.3A Expired - Fee Related CN110231334B (zh) 2019-06-14 2019-06-14 一种锥形微米孔有效孔径调控电致化学发光信号的方法

Country Status (1)

Country Link
CN (1) CN110231334B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960115A (zh) * 2021-10-27 2022-01-21 福州大学 基于数字万用表的微通道有效孔径测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320555A (zh) * 2010-12-07 2012-01-18 东南大学 基于玻璃微管的单纳米孔制备及辨识介质的方法
CN105806912A (zh) * 2016-05-13 2016-07-27 河南工业大学 基于纳米孔道和电化学传感定量检测端粒酶活性的方法
CN106570297A (zh) * 2016-11-15 2017-04-19 南京理工大学 一种带pH可调电解质层的锥形纳米孔离子整流研究方法
CN108996461A (zh) * 2018-06-21 2018-12-14 安徽师范大学 一种直径小于10nm的玻璃纳米孔、制备方法及其用于检测DNA的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3268736B1 (en) * 2015-03-12 2021-08-18 Ecole Polytechnique Fédérale de Lausanne (EPFL) Nanopore forming method and uses thereof
US10761058B2 (en) * 2017-02-01 2020-09-01 Seagate Technology Llc Nanostructures to control DNA strand orientation and position location for transverse DNA sequencing
CN107024471B (zh) * 2017-04-28 2019-10-01 福州大学 一种基于化学发光体系的硫化氢检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320555A (zh) * 2010-12-07 2012-01-18 东南大学 基于玻璃微管的单纳米孔制备及辨识介质的方法
CN105806912A (zh) * 2016-05-13 2016-07-27 河南工业大学 基于纳米孔道和电化学传感定量检测端粒酶活性的方法
CN106570297A (zh) * 2016-11-15 2017-04-19 南京理工大学 一种带pH可调电解质层的锥形纳米孔离子整流研究方法
CN108996461A (zh) * 2018-06-21 2018-12-14 安徽师范大学 一种直径小于10nm的玻璃纳米孔、制备方法及其用于检测DNA的应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Effect of Conical Nanopore Diameter on Ion Current Rectification";Michelle L. Kovarik.et al;《J. Phys. Chem. B》;20091231;第15960-15961页 *
"应用电致化学发光分子探针技术对微小原甲藻的检测";朱霞;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20120615;第17-20页 *
"锥形玻璃纳米孔中溶液浓度和 pH 值对整流的影响";黄玉华;《东南大学学报》;20140531;第526-529页 *

Also Published As

Publication number Publication date
CN110231334A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110132947B (zh) 一种锥形微米孔表面电荷密度调控电致化学发光信号的方法
CN108802141B (zh) 无酶的葡萄糖电化学传感器及其检测方法
Chen et al. Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols
CN100504370C (zh) 电化学超微电极制备工艺
CN105866107B (zh) 基于电致化学发光技术和双极电极构造的分析装置
Wang et al. Determination of dopamine in rat less differentiated pheochromocytoma cells by capillary electrophoresis with a palladium nanoparticles microdisk electrode
CN110231334B (zh) 一种锥形微米孔有效孔径调控电致化学发光信号的方法
CN101441193A (zh) 一种硝酸根离子选择性微电极及其制备方法
CN110057897A (zh) 电泳沉积碳纳米管修饰碳纤维电极及其在活体抗坏血酸的检测中的应用
Jin et al. Assay of glutathione in individual mouse peritoneal macrophages by capillary zone electrophoresis with electrochemical detection
CN101650329A (zh) 一种带毛细管接口的薄层长光程光谱电化学池
CN104614422A (zh) 一种双极电极耦合电化学反应装置及方法
Cheng et al. Carbon fiber nanoelectrodes applied to microchip electrophoresis amperometric detection of neurotransmitter dopamine in rat pheochromocytoma (PC12) cells
CN103743801A (zh) 基于液滴微流控的铂黑修饰电极生物传感器的制备方法及其应用
CN201352209Y (zh) 一种铵离子选择性复合微电极
Jin et al. Determination of clozapine by capillary zone electrophoresis following end‐column amperometric detection with simplified capillary/electrode alignment
CN110186986B (zh) 无酶的葡萄糖电化学传感器及其检测方法
CN100429511C (zh) 一种集成于芯片毛细管电泳的电化学检测方法
CN103604845A (zh) 快速检测痕量重金属离子的电化学探头及其制作方法
Xu et al. In‐channel indirect amperometric detection of nonelectroactive anions for electrophoresis on a poly (dimethylsiloxane) microchip
CN107870188B (zh) 检测试剂盒及其制备方法、包含检测试剂盒的分析系统、及它们的用途
CN101216451B (zh) 一种dna生物传感器电极的制作方法及其应用
Liu et al. Amperometric detection of perphenazine at a carbon fiber micro-disk bundle electrode by capillary zone electrophoresis
CN201352210Y (zh) 一种硝酸根离子选择性微电极
Liu et al. Voltammetric study of vitamin K3 at interdigitated array microelectrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210928

CF01 Termination of patent right due to non-payment of annual fee