CN110229383B - 基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用 - Google Patents

基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用 Download PDF

Info

Publication number
CN110229383B
CN110229383B CN201910531047.3A CN201910531047A CN110229383B CN 110229383 B CN110229383 B CN 110229383B CN 201910531047 A CN201910531047 A CN 201910531047A CN 110229383 B CN110229383 B CN 110229383B
Authority
CN
China
Prior art keywords
cellulose
sodium alginate
magnetic
nano
diamidoxime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910531047.3A
Other languages
English (en)
Other versions
CN110229383A (zh
Inventor
焦晨璐
杜兆芳
刘陶
张晓丽
王浩
王嘉晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Agricultural University AHAU
Original Assignee
Anhui Agricultural University AHAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Agricultural University AHAU filed Critical Anhui Agricultural University AHAU
Priority to CN201910531047.3A priority Critical patent/CN110229383B/zh
Publication of CN110229383A publication Critical patent/CN110229383A/zh
Application granted granted Critical
Publication of CN110229383B publication Critical patent/CN110229383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/286Treatment of water, waste water, or sewage by sorption using natural organic sorbents or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Medicinal Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

本发明公开了一种基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用。其中,按组分的重量份数比:双胺肟纤维素0.5‑5份、纳米Fe3O4 0.2‑2份、海藻酸钠3‑9份。制备步骤如下:首先,通过化学改性,获得高活性的双胺肟纤维素;然后以双胺肟纤维素为模板,原位负载分散均匀、附着牢固的纳米Fe3O4;再以其为凝胶框架,海藻酸钠做凝胶网络组建单元,经共混自组装、交联固化、冷冻干燥制得基于双胺肟纤维素/海藻酸钠的磁性气凝胶材料。所得气凝胶的微观形貌可调、组织结构规整、机械强度高、孔隙率大,可用于废水中污染物的富集分离、协同吸附降解,以及生物医药中靶向磁疗和靶向给药等。

Description

基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用
技术领域
本发明涉及一种基于双胺肟纤维素/海藻酸钠的磁性气凝胶材料及其制备和应用,属于功能复合材料科学领域。
背景技术
气凝胶,又名干凝胶,是由相互贯通或封闭的孔洞构成的网络结构状单元,具备孔道结构有序、物质传输性高、比表面积大、质量轻等优点。正因其显著的物理机械性能而备受关注,被广泛应用于药物输送、污水处理、化工石油催化、降噪吸声和组织工程等领域。然而,单一组分气凝胶材料存在许多缺陷,比如机械性能较差、脆性大、相互连接弱、性能比较单调等,阻碍了一些高要求和特殊场合的应用。多组分组装气凝胶,能够将各组分在介观尺度上重建孔洞结构可调的多功能气凝胶材料,所得气凝胶不仅结合了各组分自身的优势,还将产生意想不到的协同增效作用。
据调查,多组分组装气凝胶并不多见,且目前并未见有关于双胺肟纤维素、纳米Fe3O4和海藻酸钠复合磁性气凝胶的报道。因此,本发明预解决的关键技术问题在于如何将三种组分有效结合制备形貌可调、结构可控、性能优越的多功能气凝胶,并使其能够应用于工业废水中污染物的富集分离、吸附净化和协同吸附降解,以及生物医药中靶向磁疗、靶向给药、医用敷料、组织工程等。
发明内容
本发明提出的是一种基于双胺肟纤维素/海藻酸钠的磁性气凝胶材料及其制备和应用,本发明的目的旨在提供一种形貌可调、微观结构可控、性能优越的磁性复合气凝胶的制备方法。
为实现上述技术目的,本发明所提供的技术方案为:
一种基于双胺肟纤维素/海藻酸钠的磁性气凝胶,包含以下组分,且各组分按照重量份数计为:双胺肟纤维素0.5-5份、纳米Fe3O4 0.2-2份、海藻酸钠3-9份。
本发明还提供一种上述基于双胺肟纤维素/海藻酸钠的磁性气凝胶的制备方法,该方法包括以下步骤:
S1将双胺肟纤维素按浴比1:10~1:1000加入到0.001~0.2mol/L的三价铁盐水溶液中,置于超声波细胞粉碎机,功率设置为500~1200W,处理时间为15~120min,室温下磁力搅拌30-120min;产物经过滤、水洗,重新分散于去离子水中,按体积计,去离子水为三价铁盐水溶液的0.1~10倍;通入氮气,加入0.001~0.2mol/L的二价铁盐溶液,并使反应体系保持50~90℃;待混合均匀后,加入氨水溶液调节反应体系的pH值为8.5-10,保持反应0.5~12h,对产物过滤、水洗、烘干,得到双胺肟纤维素基纳米Fe3O4
S2将双胺肟纤维素基纳米Fe3O4与0.5~5wt%的海藻酸钠溶胶按浴比1:250~1:25复合复合,形成三元共混溶胶;
S3将碳酸钙均匀分散液加入上述三元共混溶胶中,待搅拌均匀后,加入葡萄糖酸内脂溶液,再次分散均匀;立即将上述共混溶胶注入模具,静置脱泡、交联30~360min;经冷冻干燥,制得基于双胺肟纤维素/海藻酸钠的磁性气凝胶。
进一步,双胺肟纤维素的制备方法包括如下步骤:
步骤1、将纤维素按浴比1:100~1:10置于浓度为0.5~5wt%的NaOH溶液中,煮沸30~150min;而后按浴比1:100~1:10置于10~30wt%的NaOH溶液中室温下搅拌30~180min;经过滤、水洗、烘干,得到碱化纤维素;
步骤2、将碱化纤维素按浴比1:20~1:50置于丙酮中,在50~60℃、氮气保护条件下冷凝回流10~45min;随后加入2-氰基-3-乙氧基丙烯酸乙酯,按重量计,2-氰基-3-乙氧基丙烯酸乙酯为碱化纤维素的0.2~2倍,磁力搅拌10~45min后,再加入硝酸铈铵继续反应1~8h,硝酸铈铵为碱化纤维素质量的0.2~3%;产物过滤后经甲醇、水洗数次,烘干得到接枝共聚纤维素;
步骤3、将接枝共聚纤维素按浴比1:15~1:50加入到1mol/L的羟胺溶液中,在温度为65~75℃、磁力搅拌条件下反应1~6h,产物依次经甲醇、水洗,烘干,得到双胺肟纤维素。
进一步,所述的纤维素为棒状的微晶纤维素、纳米纤维素中的一种或二者的混合物。
进一步,所述的纤维素来源于天然纤维素及其制品、再生纤维素及其制品、富含纤维素农副产品或微晶纤维素中的一种。
进一步,S1中所述的三价铁盐与二价铁盐的摩尔比为1:1~4:1。
进一步,步骤S1中所述的三价铁盐为氯化铁、硫酸铁、硝酸铁中的一种。
进一步,步骤S1中所述的二价铁盐为氯化亚铁、硫酸亚铁、硝酸亚铁中的一种。
进一步,所述碳酸钙分散液中的碳酸钙与海藻酸钠溶胶中的海藻酸钠的质量比为1:16~1:8,葡萄糖酸内酯溶液中的葡萄糖酸内脂与碳酸钙分散液中的碳酸钙的摩尔比为1:1~3:1。
本发明还提供一种上述磁性气凝胶材料的制备方法制备获得的产物在富集分离、协同吸附降解、靶向磁疗、靶向给药、医用敷料、组织工程领域中的应用。
与现有技术相比,本发明的优点在于:
(1)一方面,双胺肟纤维素为纳米Fe3O4的分布提供良好的载体和稳定剂作用,避免了纳米颗粒的团聚;另一方面,提高了纳米Fe3O4在气凝胶中的固着性,防止流体系统使用中纳米粒子的流失。
(2)以双胺肟纤维素基纳米Fe3O4为凝胶“框架”,海藻酸钠为网络连接单元构筑气凝胶,通过控制“框架”的加入量调控气凝胶的微观形貌、机械性能、磁性能和协同吸附降解等功能,为功能复合材料的开发提供一种新的策略。
(3)操作简单、成本低廉。制得的磁性气凝胶具备组织结构规整、机械强度高和孔隙率大等优势,可用于废水中污染物的富集分离、协同吸附降解等,生物医药领域的靶向磁疗、靶向给药、医用敷料、组织工程等。
附图说明
图1为本发明实施例1所用的双胺肟微晶纤维素基纳米Fe3O4的扫描电镜图;
图2为在图1基础上进一步放大的扫描电镜图;
图3为纯海藻酸钠气凝胶的扫描电镜图;
图4为实施例1制备的磁性气凝胶的扫描电镜图;
图5为实施例1制备的磁性气凝胶对亚甲基蓝染料的协同吸附降解曲线图。
具体实施方式
为阐明本发明的技术方案及技术目的,下面结合附图及具体实施例对本发明做进一步的介绍。
实施例1:
称取5g微晶纤维素,置于200mL浓度为1.25wt%的NaOH溶液中,煮沸90min;而后转移至120mL浓度为20wt%的NaOH溶液中,室温搅拌60min;经过滤、水洗、烘干,得到碱化微晶纤维素。取2g碱化微晶纤维素置于45mL丙酮中,氮气保护下60℃冷凝回流30min,加入2g的2-氰基-3-乙氧基丙烯酸乙酯反应10min,随后将0.01g硝酸铈铵加入继续反应4h,产物过滤后经甲醇洗、水洗、烘干,得到接枝共聚微晶纤维素。将其按浴比1:30加入到1mol/L的羟胺溶液中,65℃反应3h,产物依次经甲醇洗、水洗、烘干,制得双胺肟微晶纤维素。
称取2g的双胺肟微晶纤维素加入到50mL浓度为0.1mol/L的氯化铁水溶液中,置于超声波细胞粉碎机,功率设置为500W,处理时间为30min,室温下磁力搅拌30min,将双胺肟微晶纤维素过滤、水洗,并重新分散于50mL去离子水中;在60℃下通入氮气,加入45mL浓度为0.05mol/L硫酸亚铁溶液;待混合均匀后,加入氨水溶液调节反应体系的pH值为10,保持反应2h后,产物经过滤、水洗、烘干,得到双胺肟纤维素基纳米Fe3O4
将1g双胺肟纤维素基纳米Fe3O4与50mL浓度为2wt%的海藻酸钠溶胶复合,形成共混溶胶。依次向共混溶胶中加入5mL碳酸钙含量为0.1g的均匀分散液、5mL浓度为0.4mol/L的葡萄糖酸内酯溶液,待分散均匀后立即将复合溶胶转入模具真空脱泡、静置交联60min;经冷冻干燥,获得磁性气凝胶材料。
实施例2:
称取4g纳米纤维素,置于100mL浓度为3wt%的NaOH溶液中,煮沸60min;而后转移至200mL浓度为15wt%的NaOH溶液中,室温搅拌45min;经过滤、水洗、烘干,得到碱化纳米纤维素。取2g碱化纳米纤维素置于50mL丙酮中,氮气保护下50℃冷凝回流15min,加入1g单体2-氰基-3-乙氧基丙烯酸乙酯反应10min,随后加入0.01g硝酸铈铵继续反应1h,产物过滤后经甲醇洗、去离子水洗、烘干,得接枝共聚纳米纤维素。将其按浴比1:15加入到1mol/L的羟胺溶液中,70℃下反应4h,产物依次经甲醇、去离子水洗涤,烘干,得到双胺肟纳米纤维素材料。
称取5g的双胺肟纳米纤维素加入到500mL浓度为0.05mol/L的硝酸铁水溶液中,置于超声波细胞粉碎机,功率设置为700W,处理时间为20min,室温下磁力搅拌60min后,将双胺肟纳米纤维素过滤、水洗,并重新分散于100mL去离子水中;在80℃下通入氮气,加入300mL浓度为0.025mol/L氯化亚铁溶液;待混合均匀后,加入氨水溶液调节反应体系的pH值为9,保持反应5h后,产物经过滤、水洗、烘干,得到双胺肟纤维素基纳米Fe3O4
将2g双胺肟纤维素基纳米Fe3O4与1wt%的海藻酸钠溶胶按浴比1:100复合,形成共混溶胶。依次向共混溶胶中加入2mL碳酸钙含量为0.13g的均匀分散液、3mL浓度为0.5mol/L的葡萄糖酸内酯溶液,待分散均匀后立即将复合溶胶转入模具真空脱泡、静置交联240min;经冷冻干燥,获得磁性气凝胶材料。
实施例3:
称取3g微晶纤维素,置于100mL浓度为2wt%的NaOH溶液中,煮沸120min;而后转移至150mL浓度为10wt%的NaOH溶液中,室温搅拌120min;经过滤、水洗、烘干,得到碱化微晶纤维素。取2g碱化微晶纤维素置于75mL丙酮中,氮气保护下50℃冷凝回流45min;加入6g单体2-氰基-3-乙氧基丙烯酸乙酯反应45min,随后加入0.01g硝酸铈铵反应8h,产物过滤后经甲醇洗、去离子水洗、烘干,得接枝共聚纳米纤维素。将其按浴比1:45置于1mol/L的羟胺溶液中,70℃下反应6h,产物依次经甲醇洗、去离子水洗、烘干,制得双胺肟纳米纤维素材料。
称取0.5g的双胺肟微晶纤维素加入到50mL浓度为0.005mol/L的硫酸铁水溶液中,置于超声波细胞粉碎机,功率设置为1000W,处理时间为30min,室温下磁力搅拌120min后,将双胺肟微晶纤维素过滤、水洗,并重新分散于75mL去离子水中;85℃下通入氮气,加入30mL浓度为0.003mol/L硝酸亚铁溶液;待混合均匀后,加入氨水溶液调节反应体系的pH值为9.5,保持反应8h后,产物经过滤、水洗、烘干,得到双胺肟纤维素基纳米Fe3O4
将0.3g双胺肟纤维素基纳米Fe3O4与3wt%的海藻酸钠溶胶按浴比1:150复合,形成共混溶胶。依次向共混溶胶中加入3mL碳酸钙含量为0.09g的均匀分散液、4mL浓度为0.25mol/L的葡萄糖酸内酯溶液,待分散均匀后立即将复合溶胶转入模具真空脱泡、静置交联120min;经冷冻干燥,获得磁性气凝胶材料。
本发明列举但并不限于以上列出的具体实施例方案。通过上述制备过程所得到的基于双胺肟纤维素/海藻酸钠的磁性气凝胶,主要含有双胺肟纤维素、纳米Fe3O4和海藻酸钠等几种组分,可用于废水中污染物的富集分离、协同吸附降解等,生物医药领域的靶向磁疗、靶向给药、医用敷料、组织工程等。
以上述实施例1制得的基于双胺肟微晶纤维素/海藻酸钠的磁性气凝胶为例,进一步地研究和分析。如图1所示为在双胺肟微晶纤维素表面原位生成纳米Fe3O4的扫描电镜图。由图可见,纤维素表面能观察到颗粒物的存在。进一步放大图形(图2),可以发现纳米Fe3O4颗粒均匀地、单层地分散于双胺肟微晶纤维素表面,且粒径的大小分布在35~50nm,这一分布得益于双胺肟微晶纤维素表面丰富的功能基团与Fe3+之间的强配位作用和双胺肟改性纤维素表面的纳米多孔结构。此外,将纳米Fe3O4颗粒负载于双胺肟微晶纤维素表面的设计,一方面,双胺肟微晶纤维素为纳米Fe3O4的分布提供良好的载体作用,避免了直接分散纳米颗粒导致的团聚现象的出现;另一方面,提高了纳米Fe3O4颗粒在气凝胶中的固着性,防止在流体系统使用中纳米Fe3O4的流失。
为对比气凝胶微观结构的变化,按照同样的方法制备了纯海藻酸钠气凝胶作为对照(如图3),图4为实施例1制备的基于双胺肟微晶纤维素的磁性气凝胶。对比发现,两者均呈现出多孔结构状,但多孔网络的分布略有不同。纯海藻酸钠气凝胶表现为三维网络互穿结构状,而磁性气凝胶则表现为单向片层多孔的结构,且后者孔径比前者略小。另外,相比较于纯海藻酸钠气凝胶,磁性气凝胶的机械性能将更加突出。分析产生的原因为:首先,当“坚硬”的棒状双胺肟纤维素基纳米Fe3O4加入后,将取代海藻酸钠“柔性”分子链成为气凝胶构建的“框架”。此时,“柔性”的海藻酸钠分子链的移动将受到限制,并沿着棒状双胺肟纤维素的伸展方向定向排列,使得海藻酸钠分子链的组装更加有序,且逐渐趋向于单向多孔结构状。其次,随着“坚硬的”棒状双胺肟纤维素基纳米Fe3O4加入量的增加,溶胶浓度不断提高、粘度增大、储存模量增大,分子链间排列愈发紧凑和密集,伴随凝胶网络结构的调控,表现为网络单元的逐渐减小。最后,在压缩应变初始阶段,由海藻酸钠分子链形成的网络结构承担载荷,随着应变增加至一定程度后,棒状双胺肟纤维素基纳米Fe3O4开始均摊载荷,因此,复合气凝胶的机械强度随着棒状双胺肟纤维素基纳米Fe3O4的加入量的增加不断提高。
图5为磁性气凝胶对亚甲基蓝(MB)染料溶液协同吸附降解不同阶段的紫外吸收光谱图。结果显示,降解时间越长,该磁性气凝胶对亚甲基蓝溶液的降解效果越好,15min左右即接近无色,对应664nm处紫外吸收峰的峰值不断降低直至接近零。该材料较快的降解速度离不开磁性气凝胶的吸附-降解相互促进和协同一体化,充分提高了气凝胶的降解效率和利用率。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

1.一种基于双胺肟纤维素/海藻酸钠的磁性气凝胶的制备方法,其特征在于,所述磁性气凝胶包含以下组分,且各组分按照重量份数计为:双胺肟纤维素0.5-5份、纳米Fe3O4 0.2-2份、海藻酸钠3-9份,其制备方法包括以下步骤:
S1将双胺肟纤维素按浴比1:10~1:1000加入到0.001~0.2mol/L的三价铁盐水溶液中,置于超声波细胞粉碎机,功率设置为500~1200W,处理时间为15~120min,室温下磁力搅拌30-120min;产物经过滤、水洗,重新分散于去离子水中,按体积计,去离子水为三价铁盐水溶液的0.1~10倍;通入氮气,加入0.001~0.2mol/L的二价铁盐溶液,并使反应体系保持50~90℃;待混合均匀后,加入氨水溶液调节反应体系的pH值为8.5-10,保持反应0.5~12h,对产物过滤、水洗、烘干,得到双胺肟纤维素基纳米Fe3O4
S2将双胺肟纤维素基纳米Fe3O4与0.5~5wt%的海藻酸钠溶胶按浴比1:250~1:25复合,形成三元共混溶胶;
S3将碳酸钙均匀分散液加入上述三元共混溶胶中,待搅拌均匀后,加入葡萄糖酸内脂溶液,再次分散均匀;立即将上述共混溶胶注入模具,真空脱泡、静置交联30~360min;经冷冻干燥,制得基于双胺肟纤维素/海藻酸钠的磁性气凝胶。
2.根据权利要求1所述的制备方法,其特征在于,双胺肟纤维素的制备方法包括如下步骤:
步骤1、将纤维素按浴比1:100~1:10置于浓度为0.5~5wt%的NaOH溶液中,煮沸30~150min;而后按浴比1:100~1:10置于10~30wt%的NaOH溶液中室温下搅拌30~180min;经过滤、水洗、烘干,得到碱化纤维素;
步骤2、将碱化纤维素按浴比1:20~1:50置于丙酮中,在50~60℃、氮气保护条件下冷凝回流10~45min;随后加入2-氰基-3-乙氧基丙烯酸乙酯,按重量计,2-氰基-3-乙氧基丙烯酸乙酯为碱化纤维素的0.2~2倍,磁力搅拌10~45min后,再加入硝酸铈铵继续反应1~8h,硝酸铈铵为碱化纤维素质量的0.2~3%;产物过滤后经甲醇、水洗数次,烘干得到接枝共聚纤维素;
步骤3、将接枝共聚纤维素按浴比1:15~1:50加入到1mol/L的羟胺溶液中,在温度为65~75℃、磁力搅拌条件下反应1~6h,产物依次经甲醇、水洗,烘干,得到双胺肟纤维素。
3.根据权利要求2所述的制备方法,其特征在于,所述的纤维素为棒状的微晶纤维素、纳米纤维素中的一种或二者的混合物。
4.根据权利要求3所述的制备方法,其特征在于,所述的纤维素来源于天然纤维素及其制品、再生纤维素及其制品、富含纤维素农副产品或微晶纤维素中的一种。
5.根据权利要求4所述的制备方法,其特征在于,步骤S1中所述的三价铁盐与二价铁盐的摩尔比为1:1~4:1。
6.根据权利要求5所述的制备方法,其特征在于,步骤S1中所述的三价铁盐为氯化铁、硫酸铁、硝酸铁中的一种。
7.根据权利要求6所述的制备方法,其特征在于,步骤S1中所述的二价铁盐为氯化亚铁、硫酸亚铁、硝酸亚铁中的一种。
8.根据权利要求7所述的制备方法,其特征在于,所述碳酸钙分散液中的碳酸钙与海藻酸钠溶胶中的海藻酸钠的质量比为1:16~1:8,葡萄糖酸内酯溶液中的葡萄糖酸内脂与碳酸钙分散液中的碳酸钙的摩尔比为1:1~3:1。
9.一种权利要求8所述的制备方法制备获得的产物在富集分离、协同吸附降解、靶向磁疗、靶向给药、医用敷料、组织工程领域中的应用。
CN201910531047.3A 2019-06-19 2019-06-19 基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用 Active CN110229383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910531047.3A CN110229383B (zh) 2019-06-19 2019-06-19 基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910531047.3A CN110229383B (zh) 2019-06-19 2019-06-19 基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用

Publications (2)

Publication Number Publication Date
CN110229383A CN110229383A (zh) 2019-09-13
CN110229383B true CN110229383B (zh) 2021-10-22

Family

ID=67856186

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910531047.3A Active CN110229383B (zh) 2019-06-19 2019-06-19 基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用

Country Status (1)

Country Link
CN (1) CN110229383B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111920759B (zh) * 2020-07-17 2021-12-14 华南农业大学 一种兽用胃肠道联合给药凝胶及其制备方法与应用
CN115739052A (zh) * 2022-12-06 2023-03-07 安徽农业大学 一种TiO2/微晶纤维素/海藻酸钠三元复合气凝胶及其制备方法
CN118652512A (zh) * 2024-08-14 2024-09-17 福建德绿新材料科技有限公司 一种生物降解性树脂颗粒

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104448659A (zh) * 2014-12-14 2015-03-25 苏州大学 一种磁性两性纤维素粉体材料、制备方法及应用
CN104650294A (zh) * 2014-12-14 2015-05-27 苏州大学 一种双胺肟改性纤维素材料、制备方法及其应用
CN104941610A (zh) * 2015-06-09 2015-09-30 西安交通大学 一种负载一维Fe3O4纳米晶体的磁性水凝胶的制备与应用
WO2017079976A1 (en) * 2015-11-13 2017-05-18 Robert Bosch Gmbh Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same
CN107259642A (zh) * 2017-06-29 2017-10-20 滁州卷烟材料厂 一种四氧化三铁‑羧甲基纤维素‑海藻酸钠复合滤嘴添加剂的制备方法
CN107573535A (zh) * 2017-08-09 2018-01-12 华南理工大学 一种磁性纤维素气凝胶的制备方法
CN109295713A (zh) * 2018-09-21 2019-02-01 晋江瑞碧科技有限公司 基于纤维素纳米纤维的磁性复合水凝胶的制备方法及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525412A (ja) * 2003-05-02 2006-11-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー マイクロファイバーを含有するポリエステル、ならびにその製造および使用方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104448659A (zh) * 2014-12-14 2015-03-25 苏州大学 一种磁性两性纤维素粉体材料、制备方法及应用
CN104650294A (zh) * 2014-12-14 2015-05-27 苏州大学 一种双胺肟改性纤维素材料、制备方法及其应用
CN104941610A (zh) * 2015-06-09 2015-09-30 西安交通大学 一种负载一维Fe3O4纳米晶体的磁性水凝胶的制备与应用
WO2017079976A1 (en) * 2015-11-13 2017-05-18 Robert Bosch Gmbh Sulfur-carbon composite comprising a highly graphitic carbon material for lithium-sulfur batteries and process for preparing the same
CN107259642A (zh) * 2017-06-29 2017-10-20 滁州卷烟材料厂 一种四氧化三铁‑羧甲基纤维素‑海藻酸钠复合滤嘴添加剂的制备方法
CN107573535A (zh) * 2017-08-09 2018-01-12 华南理工大学 一种磁性纤维素气凝胶的制备方法
CN109295713A (zh) * 2018-09-21 2019-02-01 晋江瑞碧科技有限公司 基于纤维素纳米纤维的磁性复合水凝胶的制备方法及用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于两性纤维素的磁性气凝胶制备及吸附性能研究;熊佳庆;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20160615(第06期);第8页第1.2.1节、第28页第3段 *
微晶纤维素基气凝胶的制备及对重金属、染料的吸附降解性研究;焦晨璐;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20180415(第04期);摘要、第66页第1段、第106页第6.2.1节、第27页第2-3段、第42页第3段、第43-44页第3.1.2.1节、第68页第4.1.2节第2段 *

Also Published As

Publication number Publication date
CN110229383A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110229383B (zh) 基于双胺肟纤维素/海藻酸钠的磁性气凝胶及其制备和应用
Peng et al. Advanced MOFs@ aerogel composites: construction and application towards environmental remediation
Hosseini et al. Bacterial cellulose/polyaniline nanocomposite aerogels as novel bioadsorbents for removal of hexavalent chromium: Experimental and simulation study
Tan et al. Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr (VI) removal
CN104479174A (zh) 一种基于纤维素的磁性气凝胶材料及其制备方法
CN102321255A (zh) 一种离子型纳米复合水凝胶及其制备方法
CN106565913A (zh) 一种尿素包裹型纤维素基高吸水树脂的制备方法
CN110256735B (zh) 一种偕胺肟-羟胺肟纤维素/纳米银/壳聚糖复合气凝胶的制备方法
CN109400955A (zh) 一种单官能团聚醚胺改性氧化石墨烯及其在环氧树脂中的应用
CN101716482B (zh) 一种聚合物/贵金属纳米粒子杂化空心智能微球及其制备方法
CN110229384B (zh) 一种载银双胺肟纤维素/壳聚糖/丝素复合气凝胶及其制备方法
Hu et al. Recent Advances in Polysaccharide‐Based Physical Hydrogels and Their Potential Applications for Biomedical and Wastewater Treatment
CN111847492A (zh) 纳米钙矾石颗粒与改性纳米钙矾石颗粒的制备方法及其在聚氨酯薄膜中的应用
Chen et al. Removal of methylene blue dye from aqueous solutions by pullulan polysaccharide/polyacrylamide/activated carbon complex hydrogel adsorption
Hajili et al. Fabrication of 3D hierarchically porous chitosan monoliths by thermally induced phase separation of chemically modified chitin
CN113292762B (zh) 一种双醛纳米纤维素三维柔性材料及其制备方法与应用
CN101412793A (zh) 利用蚕丝改性丙烯酸高分子吸水树脂的方法
CN112315976B (zh) 一种载银凹凸棒交联的可注射型抗菌复合水凝胶及其制备方法和应用
CN106582564A (zh) 一种吸附性强的凹凸棒土/聚丙烯酸纳米复合凝胶及其制备方法
CN1982349A (zh) 一种纳米二氧化钛表面处理方法
CN112390901A (zh) 一种二氧化硅-银纳米复合材料的制备方法及应用
CN101805443B (zh) 以埃洛石纳米管为催化剂催化合成聚乳酸的方法
CN114668728B (zh) 魔芋葡甘聚糖海藻酸钠复合载药微球及其制备方法和应用
Chen et al. Semidry synthesis of the poly (acrylic acid)/palygorskite superabsorbent with high‐percentage clay via a freeze–thaw–extrusion process
Wei et al. Multifunctional Poly (acrylic acid)/Chitosan nanoparticle network hydrogels with tunable mechanics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant