CN110218950B - 一种铁基纳米晶软磁合金及其制备方法 - Google Patents
一种铁基纳米晶软磁合金及其制备方法 Download PDFInfo
- Publication number
- CN110218950B CN110218950B CN201910501824.XA CN201910501824A CN110218950B CN 110218950 B CN110218950 B CN 110218950B CN 201910501824 A CN201910501824 A CN 201910501824A CN 110218950 B CN110218950 B CN 110218950B
- Authority
- CN
- China
- Prior art keywords
- percent
- alloy
- iron
- based nanocrystalline
- magnetically soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/773—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/003—Making ferrous alloys making amorphous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/10—Ferrous alloys, e.g. steel alloys containing cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C45/00—Amorphous alloys
- C22C45/02—Amorphous alloys with iron as the major constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15333—Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Inorganic Chemistry (AREA)
- Soft Magnetic Materials (AREA)
- Continuous Casting (AREA)
Abstract
本发明属于软磁合金技术领域,尤其是一种铁基纳米晶软磁合金及其制备方法;所述铁基纳米晶软磁合金的化学成分及其原子百分含量为:Fe 72.5%‑73.8%、Cu 0.89%‑0.91%、Si 8.2‑8.8%、Al 2.5%‑3.5%、M 13.8%‑15.1%;其中M按原子百分含量计,由以下化学成分组成:Mn 2%‑2.2%、Mo 2.2%‑2.4%、Ti 3%‑3.2%、Co 2.1%‑2.3%Nb、3%‑3.1%、B 1.5%‑1.9%。该合金的制备方法为:先按上述百分含量配料,并将原材料混合粉碎至5cm以下;然后加到熔化炉中熔化;再将熔化的合金喷射到高速旋转的金属辊轮表面,连续形成薄带;而后将薄带进行退火,自然冷却即可。本发明所提供的合金,兼具高饱和磁感应强度、低矫顽力、低损耗等优点,同时具有良好的抗摔、抗碰性,可用于小尺寸、大功率的电磁产品的制造。
Description
技术领域
本发明属于软磁合金技术领域,尤其是一种铁基纳米晶软磁合金及其制备方法。
背景技术
纳米晶金属材料是将金属加热到液态,采用急速冷却将其冷却到玻璃态(非晶态),然后通过回火,让玻璃态金属在金属的凝固点以下的温度,通过原子移动,形成具有超细晶粒的纳米晶金属材料。纳米晶材料的晶粒大小可以通过工艺参数进行控制,一般退火温度越高、时间越长,晶粒越大。这种非晶态与纳米晶状态的金属材料具有非常多的与常态金属没有的优异性能。
近年来,科学工作者将纳米晶制作方法用于金属软磁材料的制作,取得了非常好的效果,这些金属纳米晶软磁材料,不仅保留了非晶合金的性能特点,而且还具有更加优异的软磁材料特性,成为了软磁材料发展的重要方向。铁基纳米晶软磁材料就是以铁为基础,加入多种合金元素,采用纳米晶制作方法制成的铁软磁材料。铁基纳米晶软磁材料,具有高磁导率、低的磁损耗、高饱和磁感应强度、高工频损耗等优点,磁性能优异、生产工艺简单,成本低廉,是硅钢铁氧体和坡莫台金等传统软磁材料的替代品,未来对我国传统产业的改造和高新技术的发展,将发挥越来越重要的作用,已经成为软磁材料主要研究趋势。
目前,我国研究出的纳米晶铁磁材料的性能不能同时兼备高饱和磁感强度、低矫顽力、低损耗多项优点;此外,软磁材料怕摔、怕碰的通性弱点仍然没有得到解决,这给铁基纳米晶软磁材料的应用造成了极大的影响,特别是小尺寸、大功率的电磁传感器等电磁产品,尚不能使用铁基纳米晶软磁材料制造。如专利申请号为CN201110282189.4的文件公开了一种高饱和磁感应强度低成本铁基纳米晶软磁合金,合金组成满足关系式:FeaBbCcMdCue,式中M为选自Si、Al、Cr和Mn中的一种或多种,下标a、b、c、d、e分别表示各对应合金元素的原子百分比,并且满足以下条件:78≤a≤88;4≤b≤16;3≤c≤10;0≤d≤8;0.3≤e≤1.5;a+b+c+d+e=100,所述铁基纳米晶合金由非晶基体相和纳米晶相组成。虽然该合金兼具高饱和磁感应强度,低矫顽力,低损耗等优异的软磁性能,并且不含贵金属元素及挥发性元素,降低了原材料的加工成本;但是该合金的低矫顽力为4.5-16.5A/m左右,仍比较高,且没有解决铁磁软合金不能用于小尺寸、大功率电磁产品制造的问题。
发明内容
为了解决现有技术中存在的上述技术问题,本发明通过调整铁基软磁材料的配方成分,调整非晶态合金制作工艺和热处理工艺参数,提供了一种铁基纳米晶软磁合金及其制备方法,具体是通过以下技术方案实现的:
一种铁基纳米晶软磁合金,所述铁基纳米晶软磁合金的化学成分及其原子百分含量为:Fe 72.5%-73.8%、Cu 0.89%-0.91%、Si 8.2-8.8%、Al 2.5%-3.5%、M 15.1%-13.8%。
优选地,所述M按原子百分含量计,由以下化学成分组成:Mn 2%-2.2%、Mo2.2%-2.4%、Ti 3%-3.2%、Co 2.1%-2.3%Nb、3%-3.1%、B 1.5%-1.9%。
本发明通过大量试验研究了各种化学成分在铁基纳米晶软磁合金中的作用,结果如表1所示:
表1各化学成分的作用
本发明还提供了一种所述铁基纳米晶软磁合金的制备方法,包括以下步骤:
(1)材料处理:按照上述化学成分及其原子百分含量配制原材料,将原材料混合粉碎;
(2)熔融:将粉碎后的原材料加入到熔化炉中加热到熔化温度,保温20-30min,得熔融合金;
(3)抽带成形:熔融合金高速喷射到高速旋转的金属辊轮表面,连续形成非晶体(玻璃态)的合金薄带;
(4)真空退火:将合金薄带真空热处理炉中进行退火处理后,自然冷却至室温,得到铁基纳米晶软磁合金,其组织状态为:在非晶体(玻璃态)基体上均匀弥散分布着体心立方结构的铁素体晶粒,晶粒大小为8-50nm。
优选地,所述熔化温度为1500℃-2800℃。
需要说明的是,合金的熔化温度与铁基纳米晶软磁合金中的M含量相关,M含量越高,熔化温度也越高。
优选地,所述退火处理,是将合金薄带放入真空度为1×10-1∽-2MPa的真空热处理炉中升温至300℃-650℃,保温1-8h。
优选地,所述步骤(1),原材料粉碎至于5cm以下。
优选地,所述的金属辊轮采用铜制成,转速为0.5-1.5m/s,确保熔融合金的冷却速度大于106K/S。
本发明还对影响铁基纳米晶软磁材料性能的主要因素进行了研究:
纳米晶是由非晶态的玻璃态合金通过低温超细化晶粒实现的,所以纳米晶的内部组织主要有两种状态,一是非晶态的合金组织,二是超细化的细晶粒组织,合金元素主要是以固溶状态和晶界析出的形势存在,因此材料的成分和组织状态是决定材料性能的主要因素。本发明研究者通过大量实验发现:影响铁基纳米晶软磁材料性能的主要原因是铁基纳米晶软磁材料的成分及显微组织状态,材料的成分是决定材料性能的根本因素,这由材料的配方确定;而材料的显微组织状态是靠材料制作中的工艺参数实现的。
材料晶体的磁导率主要与晶体交换能、磁晶的各项异性、磁致伸缩系数有关,与纳米晶的晶粒形状、晶粒大小、表面取向、合金元素的种类、数量,以及合金元素弥散分布状态等有关,而这些材料的组织状态参数,就是由材料生产的工艺参数确定的。本发明通过大量试验发现:材料的晶粒大小不仅与材料的磁性能关系重大,而且还与材料的组织稳定性、项目稳定性有关,一般晶粒越细小、材料的磁性能越好,但稳定性越差,晶粒越大材料的稳定性越好。
本发明还检测了所制备的铁基纳米晶软磁合金产品的磁性能和抗摔性:
1、以铁氧体为对照,检测本发明实施例1所制成的铁基纳米晶软磁合金的磁性能,结构如表1所示:
表1铁基纳米晶软磁合金产品的性能
性能 | 性能单位 | 铁氧体 | 项目产品 |
M | (10-100)KHz | 5300 | 80000-23000 |
Bs | T | 0.44 | 1.25 |
Hc | Nm | 8.0 | 0.3-0.8 |
Bm/Bs | —— | 0.23 | 0.1-0.98 |
Pc(损)(20kHz) | W/kg | 1200 | 0.3 |
Ig | 吨/m<sup>3</sup> | 7.8 | |
Tc | ℃ | 150 | 570 |
R | Ωm | 0.2 | 1.3x10<sup>-4</sup> |
2、采用常规的试验方法实测绘制的本发明实施例1所制成的铁基纳米晶软磁合金产品的能性能曲线,测得铁基纳米晶软磁合金的磁滞回曲线、饱合磁强度曲线,如附图1、附图2所示。
3、取本发明实施例1所制成的铁基纳米晶软磁合金产品从2m高的地方自由落体后,检测铁基纳米晶软磁合金产品的饱和磁强度曲线,如附图3所示;将附图3与附图2对比,其磁性能下降率小于5%,基本没有发生变化,说明本技术方案所制成的铁基纳米软磁合金具有良好的抗摔、抗碰性。
本发明的有益效果在于:
本发明通过材料配方的选择及制备工艺参数的控制,使制成的铁基纳米晶软磁合金具有优异的磁性能,同时兼具高饱和磁感应强度、低矫顽力、低损耗等多项优点,饱和磁感应强高,可达1.25T左右,矫顽力低,最低可达0.3A/m左右,损耗小,20kHz频率下的功率为0.3W/kg左右;通过控制退火过程中的氧含量及工艺参数,使得铁基纳米晶软磁合金有良好的抗摔、抗碰性,在2m高自由落体,电磁性能基本不发生变化,可用于小尺寸、大功率电磁产品制造生产。
附图说明
附图1为本发明实施例1所制备铁基纳米软磁合金的磁滞回曲线。
附图2为本发明实施例1所制备铁基纳米软磁合金的饱合磁强度曲线。
附图3为本发明实施例1所制备铁基纳米软磁合金从2m高处落下后的饱合磁强度曲线。
具体实施方式
下面结合具体的实施方式来对本发明的技术方案做进一步的限定,但要求保护的范围不仅局限于所作的描述。
实施例1铁基纳米晶软磁合金
铁基纳米晶软磁合金的化学成分及其原子百分含量:Fe 72.5%、Cu 0.89%、Si8.2%、Al 3.31%、Mn 2.2%、Mo 2.4%、Ti 3.2%、Co 2.3%Nb、3.1%、B 1.9%。
铁基纳米晶软磁合金的制备方法:
(1)材料处理:按照上述化学成分及其原子百分含量配制原材料,将原材料混合粉碎至5cm以下;
(2)熔融:将粉碎后的原材料加入到熔化炉中加热到2800℃,保温30min,得熔融合金;
(3)抽带成形:熔融合金高速喷射到旋转速度为1m/s的金属辊轮表面,连续形成合金薄带;
(4)真空退火:将合金薄带放入真空度为1×10-1MPa的真空热处理炉中升温至300℃-650℃,保温1-8h后,自然冷却至室温,得到铁基纳米晶软磁合金。
实施例2铁基纳米晶软磁合金
铁基纳米晶软磁合金的化学成分及其原子百分含量:Fe 73.0%、Cu 0.90%、Si8.5%、Al 3.5%、Mn 2.1%、Mo 2.2%、Ti 3.1%、Co 2.1%Nb、3.1%、B 1.5%。
铁基纳米晶软磁合金的制备方法:
(1)材料处理:按照上述化学成分及其原子百分含量配制原材料,将原材料混合粉碎至5cm以下;
(2)熔融:将粉碎后的原材料加入到熔化炉中加热到2000℃,保温20min,得熔融合金;
(3)抽带成形:熔融合金高速喷射到旋转速度为0.8m/s的金属辊轮表面,连续形成合金薄带;
(4)真空退火:将合金薄带放入真空度为1×10-2MPa的真空热处理炉中升温至300℃-650℃,保温1-8h后,自然冷却至室温(25℃),得到铁基纳米晶软磁合金。
实施例3铁基纳米晶软磁合金
铁基纳米晶软磁合金的化学成分及其原子百分含量Fe 73.8%、Cu 0.91%、Si8.8%、Al 2.69%、Mn 2%、Mo 2.2%、Ti 3%、Co 2.1%、Nb3%、B 1.5%。
铁基纳米晶软磁合金的制备方法:
(1)材料处理:按照上述化学成分及其原子百分含量配制原材料,将原材料混合粉碎至5cm以下;
(2)熔融:将粉碎后的原材料加入到熔化炉中加热到1500℃,保温28min,得熔融合金;
(3)抽带成形:熔融合金高速喷射到旋转速度为0.8m/s的金属辊轮表面,连续形成合金薄带;
(4)真空退火:将合金薄带放入真空度为1×10-2MPa的真空热处理炉中升温至300℃-650℃,保温1-8h后,自然冷却至室温(25℃),得到铁基纳米晶软磁合金。
在此有必要指出的是,以上实施例和试验例仅限于对本发明的技术方案做进一步的阐述和理解,不能理解为对本发明的技术方案做进一步的限定,本领域技术人员作出的非突出实质性特征和显著进步的发明创造,仍然属于本发明的保护范畴。
Claims (8)
1.一种铁基纳米晶软磁合金,其化学成分及其原子百分含量为:Fe 72.5%-73.8%、Cu0.89%-0.91%、Si 8.2-8.8%、Al 2.5%-3.5%,其特征在于,还包含成分M15.1%-13.8%;所述M按原子百分含量计,由以下化学成分组成:Mn 2%-2.2%、Mo 2.2%-2.4%、Ti 3%-3.2%、Co 2.1%-2.3%Nb、3%-3.1%、B 1.5%-1.9%。
2.一种根据权利要求1所述的铁基纳米晶软磁合金的制备方法,其特征在于,包括以下步骤:
(1)材料处理:按照上述化学成分及其原子百分含量配制原材料,将原材料混合粉碎;
(2)熔融:将粉碎后的原材料加入到熔化炉中加热到熔化温度,保温20-30min,得熔融合金;
(3)抽带成形:熔融合金高速喷射到高速旋转的金属辊轮表面,连续形成非晶体态的合金薄带;
(4)真空退火:将合金薄带真空热处理炉中进行退火处理后,自然冷却至室温,得到铁基纳米晶软磁合金。
3.如权利要求2所述的铁基纳米晶软磁合金的制备方法,其特征在于,所述熔化温度为1500℃—2800℃。
4.如权利要求2所述的铁基纳米晶软磁合金的制备方法,其特征在于,所述退火处理,是将合金薄带放入真空度为1×10-1∽-2MPa的真空热处理炉中升温至300℃-650℃,保温1-8h。
5.如权利要求2所述的铁基纳米晶软磁合金的制备方法,其特征在于,所述步骤(4),铁基纳米晶软磁合金的组织状态为:在非晶体基体上均匀弥散分布着体心立方结构的铁素体晶粒,晶粒大小为8-50nm。
6.如权利要求2所述的铁基纳米晶软磁合金的制备方法,其特征在于,所述步骤(1),原材料粉碎至于5cm以下。
7.如权利要求2所述的铁基纳米晶软磁合金的制备方法,其特征在于,所述的金属辊轮采用铜制成,转速为0.5-1.5m/s,确保熔融合金的的冷却速度大于106K/S。
8.如权利要求2所述的铁基纳米晶软磁合金的制备方法,其特征在于,所述合金薄带的宽度为3-10mm,厚20-40um。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910501824.XA CN110218950B (zh) | 2019-06-11 | 2019-06-11 | 一种铁基纳米晶软磁合金及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910501824.XA CN110218950B (zh) | 2019-06-11 | 2019-06-11 | 一种铁基纳米晶软磁合金及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110218950A CN110218950A (zh) | 2019-09-10 |
CN110218950B true CN110218950B (zh) | 2021-05-25 |
Family
ID=67816355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910501824.XA Active CN110218950B (zh) | 2019-06-11 | 2019-06-11 | 一种铁基纳米晶软磁合金及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110218950B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115505792A (zh) * | 2022-09-20 | 2022-12-23 | 贵州鑫湄纳米科技有限公司 | 一种高钴基纳米晶软磁材料及其制备方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0140788B1 (ko) * | 1995-03-29 | 1998-07-15 | 김은영 | 극박형 철계 초미세 결정 합금 및 극박형 박대의 제조 방법 |
JP4120253B2 (ja) * | 2002-04-03 | 2008-07-16 | 日立金属株式会社 | ナノコンポジット磁石用急冷合金およびその製造方法 |
CN1321216C (zh) * | 2005-06-23 | 2007-06-13 | 安泰科技股份有限公司 | 具有改进的工艺性能的低成本铁基纳米晶合金及其制造方法 |
JP5316921B2 (ja) * | 2007-03-16 | 2013-10-16 | 日立金属株式会社 | Fe基軟磁性合金、およびこれを用いた磁性部品 |
CN101206943B (zh) * | 2007-11-16 | 2011-02-02 | 北京航空航天大学 | 一种具有高饱和磁感应强度及良好韧性的铁基非晶软磁合金 |
CN102732811A (zh) * | 2012-06-21 | 2012-10-17 | 四川大学苏州研究院 | 高饱和磁化强度铁基非晶纳米晶软磁合金及其制备方法 |
CN103060691A (zh) * | 2013-01-14 | 2013-04-24 | 青岛云路新能源科技有限公司 | 一种铁基纳米晶薄带及其制备方法 |
CN109468540A (zh) * | 2018-10-26 | 2019-03-15 | 佛山市安科非晶科技有限公司 | 一种铁基纳米晶软磁合金及其制备方法 |
-
2019
- 2019-06-11 CN CN201910501824.XA patent/CN110218950B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110218950A (zh) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mazaleyrat et al. | Ferromagnetic nanocomposites | |
Sort et al. | Cold-consolidation of ball-milled Fe-based amorphous ribbons by high pressure torsion | |
Alvarez et al. | Novel Fe-based amorphous and nanocrystalline powder cores for high-frequency power conversion | |
Fan et al. | Soft magnetic properties in Fe84− xB10C6Cux nanocrystalline alloys | |
CN110387500B (zh) | 一种高磁感高频铁基纳米晶软磁合金及其制备方法 | |
Wang et al. | New Fe-based amorphous compound powder cores with superior DC-bias properties and low loss characteristics | |
CN106917042A (zh) | 一种高频高磁感应强度铁基纳米晶软磁合金及其制备方法 | |
Jiang et al. | Unique influence of heating rate on the magnetic softness of Fe81. 5Si0. 5B4. 5P11Cu0. 5C2 nanocrystalline alloy | |
Zhang et al. | Effects of minor precipitation of large size crystals on magnetic properties of Fe-Co-Si-BP-Cu alloy | |
CN109930080A (zh) | 一种无铜纳米晶软磁合金及其制备方法 | |
Madugundo et al. | Improved soft magnetic properties in nanocrystalline FeCuNbSiB Nanophy® cores by intense magnetic field annealing | |
Pal et al. | Synthesis of nanocrystalline yttrium iron garnet by sol–gel route | |
Jin et al. | FePCCu nanocrystalline alloys with excellent soft magnetic properties | |
JP2016104900A (ja) | 金属軟磁性合金と磁心、およびその製造方法 | |
CN101792890B (zh) | 一种超高饱和磁感应强度铁基纳米晶薄带 | |
CN108431277A (zh) | 铁类软磁合金、其的制备方法及通过其的磁性部件 | |
CN110218950B (zh) | 一种铁基纳米晶软磁合金及其制备方法 | |
CN114496440B (zh) | 一种高磁感高频纳米晶软磁合金及其制备方法 | |
Zhang et al. | Microstructure and soft magnetic properties of (Fe0. 9Co0. 1) 73.5 Si13. 5B9− xNb3Cu1Gex nanocrystalline alloys | |
Li et al. | Formation, crystallization behavior, and soft magnetic properties of FeCSiBP bulk metallic glass fabricated using industrial raw materials | |
CN111739706A (zh) | 一种纳米晶磁粉芯、纳米晶合金带材及其制备方法 | |
CN111554465A (zh) | 一种纳米晶软磁合金及其制备方法和应用 | |
Zheng et al. | Enhanced Ms of Fe-rich Fe-B-Cu amorphous/nanocrystalline alloys achieved by annealing treatments | |
Liu et al. | Structure evolution and magnetization properties of FeSiBCCr amorphous alloys prepared by spark plasma sintering | |
CN110093565B (zh) | 晶化窗口宽、软磁性能可控的铁基纳米晶合金及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |