CN110218606A - 金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法 - Google Patents

金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法 Download PDF

Info

Publication number
CN110218606A
CN110218606A CN201910569014.8A CN201910569014A CN110218606A CN 110218606 A CN110218606 A CN 110218606A CN 201910569014 A CN201910569014 A CN 201910569014A CN 110218606 A CN110218606 A CN 110218606A
Authority
CN
China
Prior art keywords
titanium dioxide
nano
lubrication liquid
water lubrication
metal cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910569014.8A
Other languages
English (en)
Inventor
徐玉福
郑权
刘志超
陈星�
许吉敏
张强强
胡献国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201910569014.8A priority Critical patent/CN110218606A/zh
Publication of CN110218606A publication Critical patent/CN110218606A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/062Oxides; Hydroxides; Carbonates or bicarbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/085Phosphorus oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明公开了一种金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法。本发明采用研磨活化、剪切强化、表面修饰、超声分散等步骤即可获得均匀分散的高浓度纳米二氧化钛水润滑液。本发明的水润滑液中纳米二氧化钛浓度高,可达1%以上,分散工艺简便,制备条件温和,所制得水润滑液中纳米二氧化钛分布均匀、稳定时间长,可作为金属切削用润滑剂,可大幅度减小摩擦系数,提高加工效率。

Description

金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法
技术领域
本发明涉及一种水基润滑剂领域,具体的说是一种用于金属切削加工的高浓度纳米二氧化钛水润滑液的制备方法。
背景技术
金属切削加工过程中会存在大量的能量损耗,并且由于摩擦产生大量的切削热会对工件造成损伤,因此,降低金属切削过程中的摩擦具有非常重要的意义。传统金属加工过程中以油基切削液降低切削过程的摩擦磨损为主,但油基切削液的使用带来了环保问题,此外冷却性也不足。于是人们开始考虑用自然界中广泛存在的、冷却性能好的水基切削液来替代油基切削液,但由于水的粘度较低,润滑性不足,限制了其优势的发挥。为了解决此类问题,研究发现通过在水溶液中加入诸如二氧化钛纳米颗粒可以增强水的润滑性。然而,由于纳米二氧化钛尺寸小,比表面积大,本身具有强极性,粒子之间的范德华和库仑力的吸引等原因,在较高浓度条件下,难以形成稳定均匀分散的纳米二氧化钛水润滑液。
中国发明专利申请(CN101367547)公开了一种制备纳米二氧化钛水分散液的方法,该方法经过混合液的配置、水热晶化处理、固-液分离等步骤获得纳米二氧化钛水分散液,但其中涉及到pH调节,高温处理等苛刻条件。Gao等(Gao Y,Chen G,Oli Y,et al.Studyon tribological properties of oleic acid-modified TiO2nanoparticle in water[J].Wear,2002,252(5-6):454-458.)利用油酸对纳米二氧化钛表面进行修饰,然而从其电镜图可以发现分散效果并不理想,团聚依然严重。总体而言,现有纳米二氧化钛水润滑液的制备中存在二氧化钛含量低、需要调节pH或高温等苛刻条件、分散效果不佳、减摩润滑效果不足等问题。随着金属切削加工效率要求的提升,现有的二氧化钛水润滑液难以满足对润滑液减摩性能的需求,因此有必要发展新的金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法。
发明内容
本发明针对现有技术的不足,为了解决纳米二氧化钛水润滑液中二氧化钛含量低、需要调节pH或高温等苛刻条件、分散效果不佳、减摩润滑效果不足的问题,提出一种金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法。本发明的具体实施方案包括以下步骤:
(1)研磨活化:将粒径20~30nm的纳米二氧化钛加入玛瑙研钵,在接触压力25~35N,往复速度0.01~0.03m/s下研磨20min活化;
(2)剪切强化:将研磨活化好的纳米二氧化钛以质量比为1:90~1:98.9加入去离子水中,然后以2000~2200r/min速度剪切强化15~25min,得到纳米二氧化钛悬浮液;
(3)表面修饰:在纳米二氧化钛悬浮液中加入表面修饰剂,以500~650r/min磁力搅拌15~20min,其中,表面修饰剂含量为纳米二氧化钛质量的8%~10%;
(4)超声分散:将上述混合液在25~45℃超声15~20min,即得到金属切削加工用高浓度纳米二氧化钛水润滑液。
其中,所述的表面修饰剂为:十二烷基磺酸钠,或六偏磷酸钠和十二烷基磺酸钠质量比为1:4~1:7的混合物。
相对于现有技术,本发明具有以下优势:
1.本发明制备的金属切削加工用高浓度纳米二氧化钛水润滑液的减摩润滑性能好,可以大幅度降低金属切削加工时的摩擦系数,相对于纯水润滑下的摩擦系数降低幅度可达55%以上。
2.本发明制备的金属切削加工用高浓度纳米二氧化钛水润滑液的二氧化钛浓度高,可达到1%以上,润滑时效长,切削加工过程无需频繁更换润滑液,换液周期长。
3.本发明制备的金属切削加工用高浓度纳米二氧化钛水润滑液的工艺步骤安排合理,操作简单快捷,分散效果好,分散后的纳米颗粒尺寸分布区间窄,分散液稳定时间长,易于存储运输。
4.本发明制备的金属切削加工用高浓度纳米二氧化钛水润滑液不需要调节溶液的pH值,也不需要高温等苛刻条件,制备方法环保可控,在中性以及较温和的条件下即可进行。
附图说明
图1(a)是经过常规超声处理的1wt%纳米二氧化钛的粒度分布图;
图1(b)是具体实施例分散后的1wt%纳米二氧化钛的粒度分布图。
具体实施例
以下通过具体实施例来说明本发明的制备方法,其中所使用的二氧化钛晶型为锐钛型,粒径为25纳米。
取1.5g纳米二氧化钛加入到玛瑙研钵中,在接触压力30N,往复速度0.02m/s研磨20min活化;将1g研磨活化好的二氧化钛加入98.9g去离子水中,然后以2000r/min速度持续剪切强化20min,得到二氧化钛悬浮液;再在悬浮液中加入0.1g十二烷基磺酸钠,以600r/min磁力搅拌20min,得到混合液;最后将上述混合液在45℃超声15min,即得金属切削加工用高浓度纳米二氧化钛水润滑液。
从图1(a)和图1(b)的对比,可以看出,采用本发明方法比常规方法分散后粒度分布更加均匀,分散效果更好。
将上述实施例中得到的1wt%纳米二氧化钛水润滑液与纯水润滑液润滑性能进行对比,数据见表1。需要指出的是,由于不同摩擦条件下的摩擦系数绝对值难以直接比较,因此,纳米二氧化钛水润滑液相对于纯水在相同条件下的摩擦系数降低幅度更能真实反映润滑液的实际润滑效果。从表中可以看出,采用本发明得到的纳米二氧化钛水润滑液相对于纯水润滑时摩擦系数降低55.6%,远超过现有技术30%以内的降低幅度,具有显著的减摩润滑效果。
其中,模拟金属切削加工时的摩擦实验条件为:采用球盘往复摩擦试验,上试件为Φ6mm的316L不锈钢球,下试件为316L不锈钢盘,平均滑动速度为50mm/s,载荷为10N。
表1润滑性能的比较

Claims (2)

1.一种金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法,其特征在于,包括如下步骤:
(1)研磨活化:将粒径20~30nm的纳米二氧化钛加入玛瑙研钵,在接触压力25~35N,往复速度0.01~0.03m/s下研磨20min活化;
(2)剪切强化:将研磨活化好的纳米二氧化钛以质量比为1:90~1:98.9加入去离子水中,然后以2000r/min速度剪切强化20min,得到纳米二氧化钛悬浮液;
(3)表面修饰:在纳米二氧化钛悬浮液中加入表面修饰剂,以500~650r/min磁力搅拌15~20min,其中,表面修饰剂含量为纳米二氧化钛质量的8%~10%;
(4)超声分散:将上述混合液在25~45℃超声15~20min,即得到金属切削加工用高浓度纳米二氧化钛水润滑液。
2.根据权利要求1所述的一种金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法,其特征在于:所述的表面修饰剂为十二烷基磺酸钠,或六偏磷酸钠与十二烷基磺酸钠质量比为1:4~1:7的混合物。
CN201910569014.8A 2019-06-27 2019-06-27 金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法 Pending CN110218606A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910569014.8A CN110218606A (zh) 2019-06-27 2019-06-27 金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910569014.8A CN110218606A (zh) 2019-06-27 2019-06-27 金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法

Publications (1)

Publication Number Publication Date
CN110218606A true CN110218606A (zh) 2019-09-10

Family

ID=67814925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910569014.8A Pending CN110218606A (zh) 2019-06-27 2019-06-27 金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法

Country Status (1)

Country Link
CN (1) CN110218606A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116285916A (zh) * 2023-03-21 2023-06-23 西南石油大学 一种钻磨桥塞作业用金属减阻剂及其制备方法
CN116463161A (zh) * 2023-03-15 2023-07-21 哈尔滨工业大学 一种润滑油添加剂及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021073A (zh) * 2010-09-15 2011-04-20 合肥工业大学 一种将纳米二硫化钼分散在润滑油体系中的制备方法
CN102029551A (zh) * 2010-11-18 2011-04-27 长沙理工大学 一种对切削加工进行润滑和冷却的方法及其装置
CN104046462A (zh) * 2014-06-23 2014-09-17 青岛国强环保科技有限公司 一种冷却加工切削液
CN104450014A (zh) * 2014-10-22 2015-03-25 安徽荣达阀门有限公司 一种添加纳米二氧化钛的耐磨分散好的金属切削油及其制备方法
CN104862062A (zh) * 2015-04-29 2015-08-26 江苏理工学院 丝素水基润滑液的制备方法及其制备的丝素水基润滑液
CN105886086A (zh) * 2016-05-10 2016-08-24 合肥工业大学 一种金属加工用环保型高水基切削液
US20170009171A1 (en) * 2015-07-07 2017-01-12 Nanotech Industrial Solutions, Inc. Industrial lubricant including metal chalcogenide particles and phosphorus-based additive
CN108485765A (zh) * 2018-03-30 2018-09-04 天长市润达金属防锈助剂有限公司 一种含纳米颗粒的环保型微乳切削液
CN108998177A (zh) * 2018-09-08 2018-12-14 佛山市禅城区诺高环保科技有限公司 一种水性环保纳米切削液的制备方法
CN109370717A (zh) * 2018-10-29 2019-02-22 五河富强鑫金属制品有限公司 一种含不同粒径纳米二氧化钛的金属切削液及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102021073A (zh) * 2010-09-15 2011-04-20 合肥工业大学 一种将纳米二硫化钼分散在润滑油体系中的制备方法
CN102029551A (zh) * 2010-11-18 2011-04-27 长沙理工大学 一种对切削加工进行润滑和冷却的方法及其装置
CN104046462A (zh) * 2014-06-23 2014-09-17 青岛国强环保科技有限公司 一种冷却加工切削液
CN104450014A (zh) * 2014-10-22 2015-03-25 安徽荣达阀门有限公司 一种添加纳米二氧化钛的耐磨分散好的金属切削油及其制备方法
CN104862062A (zh) * 2015-04-29 2015-08-26 江苏理工学院 丝素水基润滑液的制备方法及其制备的丝素水基润滑液
US20170009171A1 (en) * 2015-07-07 2017-01-12 Nanotech Industrial Solutions, Inc. Industrial lubricant including metal chalcogenide particles and phosphorus-based additive
CN105886086A (zh) * 2016-05-10 2016-08-24 合肥工业大学 一种金属加工用环保型高水基切削液
CN108485765A (zh) * 2018-03-30 2018-09-04 天长市润达金属防锈助剂有限公司 一种含纳米颗粒的环保型微乳切削液
CN108998177A (zh) * 2018-09-08 2018-12-14 佛山市禅城区诺高环保科技有限公司 一种水性环保纳米切削液的制备方法
CN109370717A (zh) * 2018-10-29 2019-02-22 五河富强鑫金属制品有限公司 一种含不同粒径纳米二氧化钛的金属切削液及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
任瑞晨 等: "《金属矿与非金属矿加工技术》", 31 March 2018, 中国矿业大学出版社 *
姜兆华 等: "《应用表面化学》", 31 August 2018, 哈尔滨工业大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116463161A (zh) * 2023-03-15 2023-07-21 哈尔滨工业大学 一种润滑油添加剂及其制备方法和应用
CN116285916A (zh) * 2023-03-21 2023-06-23 西南石油大学 一种钻磨桥塞作业用金属减阻剂及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding
Zhang et al. Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil
Huang et al. Water-based nanosuspensions: Formulation, tribological property, lubrication mechanism, and applications
CN110218606A (zh) 金属切削加工用高浓度纳米二氧化钛水润滑液的制备方法
He et al. Superior lubrication performance of MoS2-Al2O3 composite nanofluid in strips hot rolling
Amrita et al. Experimental investigation on application of emulsifier oil based nano cutting fluids in metal cutting process
CN109468162B (zh) 一种含六方氮化硼纳米粒子的水基轧制液及制备方法
Yanan et al. Recycling prospect and sustainable lubrication mechanism of water-based MoS2 nano-lubricant for steel cold rolling process
CN112375602A (zh) 一种离子液体基纳米流体切削液及其制备方法
CN111171936A (zh) 一种纳米二氧化钛修饰的氧化石墨烯轧制液及制备方法
CN108624389B (zh) 一种氧化石墨烯水基纳米润滑剂及其制备方法
CN105969478A (zh) 一种硼酸钙/氧化石墨烯纳米复合润滑材料的制备方法
CN108517240A (zh) 一种高减摩耐磨润滑油及其制备方法
Gong et al. Surface integrity evaluation when turning Inconel 718 alloy using sustainable lubricating-cooling approaches
Zhang et al. Tribological performances of multilayer-MoS2 nanoparticles in water-based lubricating fluid
CN1632081A (zh) 一种纳米碳材润滑添加剂
Solomon et al. Lubrication mechanisms of dispersed carbon microspheres in boundary through hydrodynamic lubrication regimes
Hegab et al. Tribological mechanisms of nano-cutting fluid minimum quantity lubrication: a comparative performance analysis model
Dhanola et al. Experimental analysis on stability and rheological behaviour of TiO2/canola oil nanolubricants
Gupta et al. Comparative performance of pure vegetable oil and Al2O3 based vegetable oil during MQL turning of AISI 4130
CN112940836B (zh) 一种高分散性纳米二硫化钼水基轧制液及其制备方法
CN106119814A (zh) 一种在黄铜上化学镀Ni‑P、Ni‑P‑PTFE复合涂层的表面自润滑技术
Patil et al. Tribological properties of SiO2 nanoparticles added in SN-500 base oil
CN111073726B (zh) 一种微纳米颗粒摩擦添加剂的制备方法及其应用
CN106147939A (zh) 一种基于少层石墨烯微片的润滑油抗磨添加剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190910

RJ01 Rejection of invention patent application after publication