CN110218080A - 原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法 - Google Patents

原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法 Download PDF

Info

Publication number
CN110218080A
CN110218080A CN201910473048.7A CN201910473048A CN110218080A CN 110218080 A CN110218080 A CN 110218080A CN 201910473048 A CN201910473048 A CN 201910473048A CN 110218080 A CN110218080 A CN 110218080A
Authority
CN
China
Prior art keywords
refractory material
nitridation
silicon nitride
carbon refractory
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910473048.7A
Other languages
English (en)
Inventor
丁军
曹桂莲
邓承继
王杏
余超
祝洪喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Wuhan University of Science and Technology WHUST
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN201910473048.7A priority Critical patent/CN110218080A/zh
Publication of CN110218080A publication Critical patent/CN110218080A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法。其技术方案是:所述氮化硅镁结合镁碳耐火材料的成分及其含量是:电熔镁砂颗粒为33~45wt%;电熔镁砂细粉为25~33wt%;鳞片石墨为5~8wt%;硅粉为15~20wt%;酚醛树脂为3.5~6wt%;氧化钇粉体为3~5wt%。其制备方法是:将氧化钇粉体加入酚醛树脂中,经磁力搅拌后与电熔镁砂颗粒、电熔镁砂细粉、鳞片石墨和硅粉置入混料机中,混合,压制成型,固化,然后置于高温管式炉中,在氮气气氛下以不同的速率先升温至800~900℃,再于1200~1400℃保温,随炉冷却至室温,制得原位氮化生成氮化硅镁结合镁碳耐火材料。本发明操作简单和烧成温度低,所制制品的耐压强度、抗折强度和抗热震性好。

Description

原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法
技术领域
本发明属于镁碳耐火材料技术领域。具体涉及一种原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法。
背景技术
镁碳耐火材料因具有优异的抗侵蚀性、抗热震性和热传导性,以及制备工艺简单,而被广泛用作电炉、转炉及精炼炉等的内衬材料。镁碳耐火材料中的碳容易被氧化是镁碳耐火材料在应用中的主要问题。随着冶炼技术的进步,含碳量低且具有优良的热震性及抗渣侵蚀性的镁碳砖已成为当前镁碳耐火材料发展的新方向。为达到上述目的需要改善镁碳耐火材料基质以提高材料的性能。
Liu等人(H Liu,F Meng,Q Li,et al.Phase behavior analysis of MgO–Crefractory at high temperature:Influence of Si powder additives[J].CeramicsInternational,2015,41(3):5186-5190.)以菱镁矿、鳞片石墨和硅粉等为原料制备了镁碳耐火材料,通过在镁碳耐火材料中生成β-SiC晶须以提高材料的抗氧化性。该方法中使用的菱镁矿在烧结过程中会生产大量气孔,损害镁碳砖的力学性能。
Zhu等人(T.B.Zhu,Y.W.Li,S.L.Jin,et al.Catalytic formation of one-dimensional nanocarbon and MgO whiskers in low carbon MgO-C refractories[J].Ceramics International,2015,41(3):3541-3548.)以电熔镁砂、镁铝尖晶石、铝粉和硝酸镍等为原料制备了低碳镁碳耐火材料,通过在镁碳耐火材料中原位催化形成氧化镁晶须以提高材料的物理性能。但该方法操作过程较为复杂,需要预先制备催化剂前驱体且晶须生长温度较高。该方法中需要预先制备催化剂前驱体,工艺较为复杂,且氧化镁晶须生长温度较高,不利于工业生产。
彭小艳等人(彭小艳,贺智勇,李林,等.镁碳材料中原位合成ZrB2的研究[J].耐火材料,2006,40(3):193-196.)以电熔镁砂细粉,鳞片石墨,氧化锆、硼酸、工业铝粉和酚醛树脂为原料制备镁碳耐火材料,通过在镁碳耐火材料中原位合成硼化锆包裹石墨的层状结构以提高材料的抗氧化性和抗渣侵蚀性。该方法采用微波合成法对设备要求较高且为达到较好的石墨包裹效果需要较高的反应温度。该方法采用的微波烧结技术对设备要求较高,不利于工业生产。
发明内容
本发明旨在克服现有技术的不足,目的在于提供一种操作简单和烧成温度低的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法。用该方法制备的原位氮化生成氮化硅镁结合镁碳耐火材料的耐压强度、抗折强度和抗热震性好。
为实现上述目的,本发明所采用的技术方案的步骤是:
步骤一、原位氮化生成氮化硅镁结合镁碳耐火材料的成分及其含量是:电熔镁砂颗粒为33~45wt%,电熔镁砂细粉为25~33wt%,鳞片石墨为5~8wt%,硅粉为15~20wt%,酚醛树脂为3.5~6wt%,氧化钇粉体为3~5wt%。
步骤二、将所述氧化钇粉体加入所述酚醛树脂中,在磁力搅拌和40~50℃条件下,搅拌0.5~1h,得到混合料。
步骤三、将所述混合料与所述电熔镁砂颗粒、所述电熔镁砂细粉、所述鳞片石墨和所述硅粉置入混料机中,混合3~5h,再于200~300MPa条件下压制成型,在200~220℃条件下固化24~48h,得到固化后的坯体。
步骤四、将所述固化后的坯体置于高温管式炉中,先于氮气流量为0.5~1L/min的条件下,以5~10℃/min的速率升温至800~900℃,再于氮气流量为2~3.5L/min的条件下,以2~5℃/min的速率升温至1200~1400℃,保温2~4h,随炉冷却至室温,制得原位氮化生成氮化硅镁结合镁碳耐火材料。
所述电熔镁砂颗粒的MgO含量≥97wt%;所述电熔镁砂颗粒的粒度为1~3mm。
所述电熔镁砂细粉的MgO含量≥97wt%;所述电熔镁砂细粉的粒度为≤1mm。
所述鳞片石墨中的C含量≥97wt%;所述鳞片石墨的粒度≤0.15mm。
所述硅粉中的Si含量≥99wt%;所述硅粉的粒度≤0.075mm。
所述氧化钇中的Y2O3含量≥99.99wt%;所述氧化钇的粒度≤0.1μm。
所述氮气中的N2含量≥99vol%。
由于采用上述技术方案,本发明与现有技术相比具有如下积极效果:
本发明先将氧化钇粉体和酚醛树脂磁力搅拌,再加入电熔镁砂颗粒、电熔镁砂细粉、鳞片石墨和硅粉混合,成型,固化,然后在高温管式炉中于先升温至800~900℃,再于1200~1400℃条件下烧成,制得原位氮化生成氮化硅镁结合镁碳耐火材料(以下简称氮化硅镁结合镁碳耐火材料)。操作简单和烧成温度低。
本发明通过添加氧化钇促进了原位氮化过程中氮化硅镁的生成,生成的氮化硅镁能够促进烧结致密化,有利于改善氮化硅镁结合镁碳耐火材料的显微结构,提高氮化硅镁结合镁碳耐火材料的耐压强度、抗折强度和抗热震性。由于氮化硅镁具有的高热导特性,通过控制氮化硅镁的生成量能调控氮化硅镁结合镁碳耐火材料的导热率,提高了抗热震性。
本发明制备的原位氮化生成氮化硅镁结合镁碳耐火材料经检验:常温耐压强度为50~65MPa;常温抗折强度为11~17MPa;高温抗折强度为9~14MPa(1400℃保温30min);抗热震3~7次后产生裂纹(1000℃保温15min)。
本发明具有操作简单和烧成温度低的特点,所制备的原位氮化生成氮化硅镁结合镁碳耐火材料的耐压强度、抗折强度和抗热震性好。
具体实施方式
下面将结合具体实施方式对本发明作进一步描述,并非对其保护范围的限制。
本具体实施方式中:
所述电熔镁砂颗粒的MgO含量≥97wt%;所述电熔镁砂颗粒的粒度为1~3mm。
所述电熔镁砂细粉的MgO含量≥97wt%;所述电熔镁砂细粉的粒度为≤1mm。
所述鳞片石墨中的C含量≥97wt%;所述鳞片石墨的粒度≤0.15mm。
所述硅粉中的Si含量≥99wt%;所述硅粉的粒度≤0.075mm。
所述氧化钇中的Y2O3含量≥99.99wt%;所述氧化钇的粒度≤0.1μm。
所述氮气中的N2含量≥99vol%。
实施例中不再赘述。
实施例1
一种原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、原位氮化生成氮化硅镁结合镁碳耐火材料的成分及其含量是:电熔镁砂颗粒为33~36wt%,电熔镁砂细粉为31~33wt%,鳞片石墨为6.5~8wt%,硅粉为15~17wt%,酚醛树脂为5~6wt%,氧化钇粉体为4.5~5wt%。
步骤二、将所述氧化钇粉体加入所述酚醛树脂中,在磁力搅拌和40~50℃条件下,搅拌0.5~1h,得到混合料。
步骤三、将所述混合料与所述电熔镁砂颗粒、所述电熔镁砂细粉、所述鳞片石墨和所述硅粉置入混料机中,混合3~5h,再于200~225MPa条件下压制成型,在200~220℃条件下固化24~30h,得到固化后的坯体。
步骤四、将所述固化后的坯体置于高温管式炉中,先于氮气流量为0.5~1L/min的条件下,以5~10℃/min的速率升温至800~840℃,再于氮气流量为2~3.5L/min的条件下,以2~5℃/min的速率升温至1200~1250℃,保温2~4h,随炉冷却至室温,制得原位氮化生成氮化硅镁结合镁碳耐火材料。
本实施例制备的原位氮化生成氮化硅镁结合镁碳耐火材料经检验:常温耐压强度为50~56.3MPa;常温抗折强度为11~13.2MPa;高温抗折强度为9~11.2MPa(1400℃保温30min);抗热震5~7次后产生裂纹(1000℃保温15min)。
实施例2
一种原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、原位氮化生成氮化硅镁结合镁碳耐火材料的成分及其含量是:电熔镁砂颗粒为36~39wt%,电熔镁砂细粉为29~31wt%,鳞片石墨为6~7.5wt%,硅粉为17~19wt%,酚醛树脂为4.5~5.5wt%,氧化钇粉体为4~4.5wt%。
步骤二、将所述氧化钇粉体加入所述酚醛树脂中,在磁力搅拌和40~50℃条件下,搅拌0.5~1h,得到混合料。
步骤三、将所述混合料与所述电熔镁砂颗粒、所述电熔镁砂细粉、所述鳞片石墨和所述硅粉置入混料机中,混合3~5h,再于225~250MPa条件下压制成型,在200~220℃条件下固化30~36h,得到固化后的坯体。
步骤四、将所述固化后的坯体置于高温管式炉中,先于氮气流量为0.5~1L/min的条件下,以5~10℃/min的速率升温至820~860℃,再于氮气流量为2~3.5L/min的条件下,以2~5℃/min的速率升温至1250~1300℃,保温2~4h,随炉冷却至室温,制得原位氮化生成氮化硅镁结合镁碳耐火材料。
本实施例制备的原位氮化生成氮化硅镁结合镁碳耐火材料经检验:常温耐压强度为53.8~59.8MPa;常温抗折强度为12.4~14.3MPa;高温抗折强度为10.4~12.1MPa(1400℃保温30min);抗热震4~6次后产生裂纹(1000℃保温15min)。
实施例3
一种原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、原位氮化生成氮化硅镁结合镁碳耐火材料的成分及其含量是:电熔镁砂颗粒为39~42wt%,电熔镁砂细粉为27~29wt%,鳞片石墨为5.5~7wt%,硅粉为16~18wt%,酚醛树脂为4~5wt%,氧化钇粉体为3.5~4wt%。
步骤二、将所述氧化钇粉体加入所述酚醛树脂中,在磁力搅拌和40~50℃条件下,搅拌0.5~1h,得到混合料。
步骤三、将所述混合料与所述电熔镁砂颗粒、所述电熔镁砂细粉、所述鳞片石墨和所述硅粉置入混料机中,混合3~5h,再于250~275MPa条件下压制成型,在200~220℃条件下固化36~42h,得到固化后的坯体。
步骤四、将所述固化后的坯体置于高温管式炉中,先于氮气流量为0.5~1L/min的条件下,以5~10℃/min的速率升温至840~880℃,再于氮气流量为2~3.5L/min的条件下,以2~5℃/min的速率升温至1300~1350℃,保温2~4h,随炉冷却至室温,制得原位氮化生成氮化硅镁结合镁碳耐火材料。
本实施例制备的原位氮化生成氮化硅镁结合镁碳耐火材料经检验:常温耐压强度为57.9~62.3MPa;常温抗折强度为13.7~15.5MPa;高温抗折强度为11.3~12.8MPa(1400℃保温30min);抗热震3~5次后产生裂纹(1000℃保温15min)。
实施例4
一种原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法。本实施例所述制备方法的步骤是:
步骤一、原位氮化生成氮化硅镁结合镁碳耐火材料的成分及其含量是:电熔镁砂颗粒为42~45wt%,电熔镁砂细粉为25~27wt%,鳞片石墨为5~6.5wt%,硅粉为18~20wt%,酚醛树脂为3.5~4.5wt%,氧化钇粉体为3~3.5wt%。
步骤二、将所述氧化钇粉体加入所述酚醛树脂中,在磁力搅拌和40~50℃条件下,搅拌0.5~1h,得到混合料。
步骤三、将所述混合料与所述电熔镁砂颗粒、所述电熔镁砂细粉、所述鳞片石墨和所述硅粉置入混料机中,混合3~5h,再于275~300MPa条件下压制成型,在200~220℃条件下固化42~48h,得到固化后的坯体。
步骤四、将所述固化后的坯体置于高温管式炉中,先于氮气流量为0.5~1L/min的条件下,以5~10℃/min的速率升温至860~900℃,再于氮气流量为2~3.5L/min的条件下,以2~5℃/min的速率升温至1350~1400℃,保温2~4h,随炉冷却至室温,制得原位氮化生成氮化硅镁结合镁碳耐火材料。
本实施例制备的原位氮化生成氮化硅镁结合镁碳耐火材料经检验:常温耐压强度为60.6~65MPa;常温抗折强度为14.9~17MPa;高温抗折强度为12.6~14MPa(1400℃保温30min);抗热震3~4次后产生裂纹(1000℃保温15min)。
本具体实施方式与现有技术相比具有如下积极效果:
本具体实施方式先将氧化钇粉体和酚醛树脂磁力搅拌,再加入电熔镁砂颗粒、电熔镁砂细粉、鳞片石墨和硅粉混合,成型,固化,然后在高温管式炉中于先升温至800~900℃,再于1200~1400℃条件下烧成,制得原位氮化生成氮化硅镁结合镁碳耐火材料(以下简称氮化硅镁结合镁碳耐火材料)。操作简单和烧成温度低。
本具体实施方式通过添加氧化钇促进了原位氮化过程中氮化硅镁的生成,生成的氮化硅镁能够促进烧结致密化,有利于改善氮化硅镁结合镁碳耐火材料的显微结构,提高氮化硅镁结合镁碳耐火材料的耐压强度、抗折强度和抗热震性。由于氮化硅镁具有的高热导特性,通过控制氮化硅镁的生成量能调控氮化硅镁结合镁碳耐火材料的导热率,提高了抗热震性。
本具体实施方式制备的原位氮化生成氮化硅镁结合镁碳耐火材料经检验:常温耐压强度为50~65MPa;常温抗折强度为11~17MPa;高温抗折强度为9~14MPa(1400℃保温30min);抗热震3~7次后产生裂纹(1000℃保温15min)。
本具体实施方式具有操作简单和烧成温度低的特点,所制备的原位氮化生成氮化硅镁结合镁碳耐火材料的耐压强度、抗折强度和抗热震性好。

Claims (8)

1.一种原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法,其特征在于所述制备方法的步骤是:
步骤一、原位氮化生成氮化硅镁结合镁碳耐火材料的成分及其含量是:电熔镁砂颗粒为33~45wt%,电熔镁砂细粉为25~33wt%,鳞片石墨为5~8wt%,硅粉为15~20wt%,酚醛树脂为3.5~6wt%,氧化钇粉体为3~5wt%;
步骤二、将所述氧化钇粉体加入所述酚醛树脂中,在磁力搅拌和40~50℃条件下,搅拌0.5~1h,得到混合料;
步骤三、将所述混合料与所述电熔镁砂颗粒、所述电熔镁砂细粉、所述鳞片石墨和所述硅粉置入混料机中,混合3~5h,再于200~300MPa条件下压制成型,在200~220℃条件下固化24~48h,得到固化后的坯体;
步骤四、将所述固化后的坯体置于高温管式炉中,先于氮气流量为0.5~1L/min的条件下,以5~10℃/min的速率升温至800~900℃,再于氮气流量为2~3.5L/min的条件下,以2~5℃/min的速率升温至1200~1400℃,保温2~4h,随炉冷却至室温,制得原位氮化生成氮化硅镁结合镁碳耐火材料。
2.按照权利要求1所述的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法,其特征在于所述电熔镁砂颗粒的MgO含量≥97wt%;所述电熔镁砂颗粒的粒度为1~3mm。
3.按照权利要求1所述的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法,其特征在于所述电熔镁砂细粉的MgO含量≥97wt%;所述电熔镁砂细粉的粒度为≤1mm。
4.按照权利要求1所述的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法,其特征在于所述鳞片石墨中的C含量≥97wt%;所述鳞片石墨的粒度≤0.15mm。
5.按照权利要求1所述的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法,其特征在于所述硅粉中的Si含量≥99wt%;所述硅粉的粒度≤0.075mm。
6.按照权利要求1所述的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法,其特征在于所述氧化钇中的Y2O3含量≥99.99wt%;所述氧化钇的粒度≤0.1μm。
7.按照权利要求1所述的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法,其特征在于所述氮气中的N2含量≥99vol%。
8.一种原位氮化生成氮化硅镁结合镁碳耐火材料,其特征在于所述的原位氮化生成氮化硅镁结合镁碳耐火材料是根据权利要求1~7中任一项所述的原位氮化生成氮化硅镁结合镁碳耐火材料的制备方法所制备的原位氮化生成氮化硅镁结合镁碳耐火材料。
CN201910473048.7A 2019-05-31 2019-05-31 原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法 Pending CN110218080A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910473048.7A CN110218080A (zh) 2019-05-31 2019-05-31 原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910473048.7A CN110218080A (zh) 2019-05-31 2019-05-31 原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法

Publications (1)

Publication Number Publication Date
CN110218080A true CN110218080A (zh) 2019-09-10

Family

ID=67819363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910473048.7A Pending CN110218080A (zh) 2019-05-31 2019-05-31 原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110218080A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666752A (zh) * 2021-08-05 2021-11-19 陕西中钒昌盛新材料科技有限公司 一种用废镁质耐材生产氮化硅镁新技术
CN115465845A (zh) * 2022-08-15 2022-12-13 武汉科技大学 基于高硅菱镁矿的氧化镁@氮化硅镁粉体及其制备方法
CN115974564A (zh) * 2022-12-30 2023-04-18 东北大学 一种原位增强的低碳镁碳耐火材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904583A (zh) * 2017-03-24 2017-06-30 武汉科技大学 一种氮化硅镁粉体及其制备方法
CN109775674A (zh) * 2019-04-02 2019-05-21 青岛瓷兴新材料有限公司 一种氮化硅镁粉体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904583A (zh) * 2017-03-24 2017-06-30 武汉科技大学 一种氮化硅镁粉体及其制备方法
CN109775674A (zh) * 2019-04-02 2019-05-21 青岛瓷兴新材料有限公司 一种氮化硅镁粉体的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IAN J. DAVIES等人: "Physical and Mechanical Properties of Sintered Magnesium Silicon Nitride Compacts with Yttrium Oxide Addition", 《INORGANIC MATERIALS》 *
XIAOJUN ZHANG等人: "Investigate of phase composition and microstructure of MgO-C through In-situ nitride", 《ADVANCED MATERIALS RESEARCH》 *
赵万国等人: "Y2O3纳米颗粒催化氮化Si粉制备Si3N4粉体", 《稀有金属材料与工程》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666752A (zh) * 2021-08-05 2021-11-19 陕西中钒昌盛新材料科技有限公司 一种用废镁质耐材生产氮化硅镁新技术
CN115465845A (zh) * 2022-08-15 2022-12-13 武汉科技大学 基于高硅菱镁矿的氧化镁@氮化硅镁粉体及其制备方法
CN115465845B (zh) * 2022-08-15 2023-10-20 武汉科技大学 基于高硅菱镁矿的氧化镁@氮化硅镁粉体及其制备方法
CN115974564A (zh) * 2022-12-30 2023-04-18 东北大学 一种原位增强的低碳镁碳耐火材料及其制备方法

Similar Documents

Publication Publication Date Title
CN110218080A (zh) 原位氮化生成氮化硅镁结合镁碳耐火材料及其制备方法
Chen et al. Effect of Si powder-supported catalyst on the microstructure and properties of Si3N4-MgO-C refractories
CN105622121B (zh) 一种高温下陶瓷结合的低碳镁铝碳砖及其制备方法
CN102276273B (zh) 氮化硅结合刚玉透气砖及制备方法
CN106187225B (zh) 一种抗侵蚀镁碳砖及其制备方法
CN110372342A (zh) 一种撇渣器预制件用无水泥铁沟浇注料
CN107522485B (zh) 一种尖晶石纤维强化氧化锆耐火材料及其制备工艺
CN101555150B (zh) 一种含纳米氧化锌的低碳镁碳砖
CN113354423A (zh) 一种碳复合耐火材料配方及制备方法
CN108558416A (zh) 一种陶瓷烧成窑具及制备方法
CN109320217A (zh) 一种中频感应炉用刚玉质干式捣打料及其制备方法
CN111704443A (zh) 一种中频炉用铝镁质捣打料及其制备方法
CN106966739A (zh) 一种改良的rh喷补料
CN111484347A (zh) 一种高强Al2O3-SiC-C耐火浇注料及其制备方法
CN108218444A (zh) 一种含锆红柱石增韧匣钵及制备方法
CN112028642B (zh) 氧化锆耐火材料及其制备方法
CN105859297A (zh) 一种碳化硅复合耐火材料及其制备方法
CN117164348A (zh) 一种碳硅化铝晶须增强的氧化铝-碳化硅-碳免烧耐火材料及其制备方法和应用
CN1323051C (zh) 一种硼酸铝复合多孔陶瓷及其制备方法
CN111732417A (zh) 一种抗氧化性能优异的耐冲刷超低碳镁碳砖及其制备方法
CN105152663B (zh) 一种氮化硅结合氮化硅铁材料的制备方法
CN101337822B (zh) 基于镁橄榄石-C的MgO-SiC-C质耐火浇注料及其制备方法
CN114956829B (zh) 一种干熄焦斜道用氮化硅结合碳化硅砖及其制备方法
CN106565250A (zh) 一种高强度、耐碱性的赛隆‑刚玉复合耐火材料及其制备方法
CN110255970A (zh) 一种免烧低碳镁碳砖及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190910