CN110212068A - 基于GaN六棱台阵列的全彩发射LED外延结构及制备方法 - Google Patents

基于GaN六棱台阵列的全彩发射LED外延结构及制备方法 Download PDF

Info

Publication number
CN110212068A
CN110212068A CN201910417476.8A CN201910417476A CN110212068A CN 110212068 A CN110212068 A CN 110212068A CN 201910417476 A CN201910417476 A CN 201910417476A CN 110212068 A CN110212068 A CN 110212068A
Authority
CN
China
Prior art keywords
gan
layer
terrace
full
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910417476.8A
Other languages
English (en)
Inventor
贾伟
张利繁
党随虎
李天保
董海亮
许并社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910417476.8A priority Critical patent/CN110212068A/zh
Publication of CN110212068A publication Critical patent/CN110212068A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

基于GaN六棱台阵列的全彩发射LED外延结构及制备方法,属于半导体技术领域,可解决现有技术中荧光粉转换效率、原位沉积掩膜难以准确控制GaN微/纳米阵列尺寸及分布的问题,包括:蓝宝石衬底、形核层、非掺杂GaN层、n型GaN层、图形化SiO2掩膜层;和在图形化SiO2掩膜层空隙处的n型GaN六棱台阵列,以及位于六棱台顶面处的量子点、棱上的量子线和在顶面(0001)晶面和六个半极性(10‑11)晶面上的多量子阱层,最后是p型GaN层。所述结构可准确控制GaN微/纳米阵列的尺寸及分布,能够解决二维GaN基薄膜LED中存在的量子阱限制斯塔克效应、效率骤降、发光波长单一等问题,实现全彩发射。

Description

基于GaN六棱台阵列的全彩发射LED外延结构及制备方法
技术领域
本发明属于半导体技术领域,具体涉及一种基于GaN六棱台阵列的全彩发射LED外延结构及制备方法。
背景技术
LED作为新一代照明设备,具有亮度高、成本低、寿命长、体积小、节能环保等诸多优点。目前,白光LED主要通过以下三种方式实现:第一种是通过紫外LED激发荧光粉的方式获得白光,这种方式与荧光灯的原理相似,紫外LED可通过有机或无机荧光粉来产生波长较长的光,可得到从蓝光到红光范围的可见光,因而可实现白光发射。第二种是通过蓝光激发荧光粉的方式实现。一部分蓝光通过荧光粉传输出来,另一部分则被荧光粉吸收后发红光和绿光,三种颜色的光组合即可实现白光发射。紫光、紫外光或蓝光激发荧光粉时,光被相应的荧光粉吸收,通过下转换的方式发出波长较长的光,通过斯托克斯位移可知这种转换效率较低;而且荧光粉会随使用时间得延长出现光衰现象。第三种是采用三种LED芯片发射红、绿和蓝三基色混合产生白光。这类LED灯具有红、蓝、绿三个独立偏置的芯片和四个铅电极,包括一个公共负极和三个分立的正极,在每个芯片上注入合适的电流,通过混合不同波长和强度的光进而实现全彩发射。但是由于绿光发射率低导致很难达到照明要求,而且将三个芯片封装在一个单元中会增加封装难度,也限制芯片的尺寸。因此如何充分利用图形化衬底,研发一种制备成本低、显色性好、无荧光粉的全彩LED外延结构对本行业进一步的发展具有重大意义。
发明内容
本发明针对现有技术中荧光粉转换效率、原位沉积掩膜难以准确控制GaN微/纳米阵列尺寸及分布的问题,提供一种基于GaN六棱台阵列的全彩发射LED外延结构及制备方法。
本发明采用如下技术方案:
一种基于GaN六棱台阵列的全彩发射LED外延结构,包括自下而上的蓝宝石衬底、形核层、非掺杂GaN层、n型GaN层、图形化SiO2掩膜层和p型GaN层,其中,图形化SiO2掩膜层的空隙处设有n型GaN六棱台阵列,n型GaN六棱台顶面处生长有富In的量子点,n型GaN六棱台的棱上生长有富In的量子线,n型GaN六棱台的顶面(0001)晶面和六个半极性(10-11)晶面上生长有多量子阱层。
所述非掺杂GaN层的厚度为2μm-3μm,所述n型GaN层的厚度为1μm-3μm。
所述图形化SiO2掩膜层为无定型SiO2,厚度为300nm-600nm;SiO2掩膜层的图形化采用光刻和ICP刻蚀工艺,将所述SiO2掩膜层刻蚀为可露出n型GaN层的孔洞,孔洞直径为2μm-10μm,间距为2μm-10μm的周期性模板结构,孔洞的深度为300nm-600nm。
所述n型GaN六棱台均为Si掺杂,高度为200nm-1300nm,直径为2μm-10μm。
所述多量子阱层为InGaN/GaN多量子阱层,其中,InGaN阱层厚度为2nm-10nm,GaN垒层厚度为10nm-30nm,周期为3-10。
所述p型GaN层为Mg掺杂的p型GaN层,厚度为300nm-1000nm。
一种基于GaN六棱台阵列的全彩发射LED外延结构的制备方法,包括如下步骤:
第一步,在蓝宝石衬底上形成形核层、非掺杂GaN层和n型GaN层;
第二步,在n型GaN层上形成SiO2掩膜层;
第三步,将第二步形成的样品进行刻蚀,形成图形化SiO2掩膜层;
第四步,在图形化SiO2掩膜层的空隙处形成n型GaN六棱台阵列;
第五步,在第四步得的样品上形成InGaN/GaN多量子阱层;
第六步,在InGaN/GaN多量子阱层上形成p型GaN层。
第一步中,所述形核层、非掺杂GaN层和n型GaN层的镓源均为TMGa,氮源均为NH3,n型GaN层的硅源为SiH4;形核层的生长温度为520~570℃,非掺杂GaN层的生长温度为1000-1100℃,n型GaN层的生长温度为1000-1100℃。
第四步中,所述n型GaN六棱台阵列的生长条件为:镓源为TMGa,硅源为SiH4,氮源为NH3,H2为载气,生长温度为980-1100℃,压力为600mbar,Ⅴ/Ⅲ比为10-200,生长时间为300-800s。
第五步中,所述多量子阱层的生长方法为:镓源为TEGa,氮源为NH3,N2为载气,生长温度为800-860℃,反应室压力为400mbar,生长100-200s后,得到GaN垒层;以TEGa为镓源,TMIn为铟源,NH3为氮源,N2为载气,生长温度为690-760℃,反应室压力为400mbar,生长40-100s后,得到InGaN阱层;量子点和量子线在多量子阱层生长过程中在六棱台顶面和棱上分别形成。
第六步中,所述p型GaN层的生长方法为:以TMGa为镓源,NH3为氮源,Cp2Mg为镁源,H2为载气,生长温度为900-1000℃,反应室压力为400mbar,生长时间为900-2700s,退火时间为900s,退火温度为930℃。
本发明的有益效果如下:
1. 本发明所述的基于GaN六棱台阵列的全彩发射LED外延结构,自下而上包括:蓝宝石衬底、形核层、非掺杂GaN层、n型GaN层、图形化SiO2掩膜层;以及在图形化SiO2掩膜层空隙处的n型GaN六棱台阵列,以及位于六棱台顶面处的量子点、棱上的量子线和在顶面(0001)晶面和六个半极性(10-11)晶面上的多量子阱层,最后是p型GaN层。与传统的二维LED外延结构相比,六棱台具有更大的发光面积,能减少全反射损失,有效避免效率骤降的问题。
2. 本发明所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,所述图形化SiO2掩膜层空隙处的n型GaN六棱台阵列,以及位于六棱台顶面处的量子点、棱上的量子线和在顶面(0001)晶面和六个半极性(10-11)晶面上的多量子阱层可解决二维GaN基薄膜LED发光波长单一等问题,实现全彩发射。
3. 本发明所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,所述图形化SiO2掩膜层可阻挡位错继续向上穿透,有效降低该结构的贯穿位错密度,从而减少有源区的非辐射复合中心,提高LED外延结构的内量子效率。
4. 本发明所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,所述图形化SiO2掩膜层为采用PECVD工艺沉积的非晶态SiO2层,;所述掩膜层图形采用光刻和ICP刻蚀工艺,将所述n型GaN层表面的SiO2掩膜层刻蚀成为周期性模板结构,能够准确控制GaN微/纳米阵列的尺寸及分布,表现出更强的室温发光强度、更小的表面粗糙度。
5. 本发明所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,所述n型GaN六棱台阵列与所述p型GaN中间形成的空隙不仅可以中断位错延伸,降低结构的位错密度;而且能够进一步减少出光的反射损失,增加光通量。
6. 本发明所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,从生产实用性的角度考虑,用p型GaN覆盖整个三维结构,最后长成平面,这就可以直接利用现成的平面LED结构的镀电极及封装步骤,为最终制备器件奠定了基础。
附图说明
图1为本发明所述的基于GaN六棱台阵列的全彩发射LED外延结构示意图;
图2为单个GaN六棱台结构示意图;
其中:1-蓝宝石衬底;2-形核层;3-非掺杂GaN层;4-n型GaN层;5-图形化SiO2掩膜层;6-n型GaN六棱台阵列;7-p型GaN层;8-多量子阱层;9-量子线;10-量子点;
图3为GaN六棱台阵列的SEM图;
图4为GaN六棱台阵列的微区PL图;
图5为GaN六棱台阵列结构的点亮测试图。
具体实施方式
本实施例提供一种基于GaN六棱台阵列的全彩发射LED外延结构,如图1所示,从下至上包括蓝宝石衬底1、形核层2、非掺杂GaN层3、n型GaN层4、图形化SiO2掩膜层5;在图形化掩膜层的空隙处的n型GaN六棱台阵列6,以及位于六棱台顶面(0001)六个半极性(10-11)晶面上的多量子阱层8、棱上的量子线9和顶面处的量子点10,最后是p型GaN层7。
GaN六棱台阵列与其每个外表面上的多量子阱层8、量子线9和量子点10构成的三维结构,发光面积大,相比薄膜材料,在相同的电流密度下可以产生更多的光子数,提高了LED外延结构的内量子效率。
图形化SiO2掩膜层5不但能够作为n型GaN六棱台阵列6的生长模板,还能够有效降低该结构的位错密度及位错的继续生长,从而减少有源区的非辐射复合中心,提高LED外延结构的内量子效率。
多量子阱层8生长在六棱台顶面(0001)晶面和六个半极性(10-11)晶面上,量子线9生长在六棱台的棱上,量子点10则生长在顶面上,由于生长过程中In的扩散长度较大,三者In的含量也有区别,发光波长按照量子阱/线/点的顺序依次增大,我们可以通过合理控制实现全彩发射。
p型GaN层7覆盖整个三维结构,最后长成了平面,方便了后续的镀电极及封装工艺。
作为本发明的一个实施例,本实施例中,非掺杂GaN层3厚度为2μm,所述n型GaN层4厚度为2μm。作为本发明的可变换实施例,非掺杂GaN层3厚度还可以为2μm-3μm,所述n型GaN层4厚度还可以为1μm-3μm,均可以实现本发明的目的,属于本发明的保护范围。
作为本发明的一个实施例,本实施例中,图形化SiO2掩膜层5为非晶态SiO2层,厚度为500nm,图案为圆形的周期性模板结构,孔洞直径为6μm,间距为2μm,孔洞深度为500nm。作为本发明的可变换实施例,图形化SiO2掩膜层5厚度还可以为300nm-600nm,孔洞直径还可以为2μm-10μm,间距还可以为2μm-10μm,均可以实现本发明的目的,属于本发明的保护范围。
作为本发明的一个实施例,本实施例中,所述GaN六棱台均为Si掺杂,高度为500nm,直径为6μm。作为本发明的可变换实施例,GaN六棱台高度还可以为200nm-1300nm,直径还可以为2μm-10μm。均可以实现本发明的目的,属于本发明的保护范围。作为本发明的一个实施例,本实施例中,多量子阱层8为InGaN/GaN多量子阱层,InGaN阱层厚度为2nm,GaN垒层厚度为10nm,周期为5。为作为本发明的可变换实施例,InGaN阱层厚度还可以为2nm-10nm,GaN垒层厚度还可以为10nm-30nm,周期为3-10。均可以实现本发明的目的,属于本发明的保护范围。
作为本发明的一个实施例,本实施例中,p型GaN层7为Mg掺杂的p型GaN层,厚度为500nm;作为本发明的可变换实施例,生长厚度还可以为300nm-1000nm,均可实现本发明的目的,属于本发明的保护范围。
一种基于GaN六棱台阵列的全彩发射LED外延结构,包括如下步骤:
S1、在衬底1上生长形核层2,非掺杂GaN层3和n型GaN层4;
衬底1选用商用2英寸蓝宝石衬底,形核层2的生长温度为520℃-570℃,压力为400mbar-800mbar,时间为200s-250s,非掺杂GaN层3的生长温度为1000℃-1100℃,压力为200mbar-400mbar,时间为4000s-5000s,厚度为2μm-3μm;n型GaN层3的生长温度为1000℃-1100℃,压力为100mbar-200mbar,时间为1000s-2000s,厚度为1μm-3μm。作为本发明的一个实施例,本实施例中,形核层2生长温度为580℃,压力为600mbar,时间为230s,非掺杂GaN层3的生长温度为1055℃,压力为300mbar,时间为4800s,n型GaN层4生长温度为1060℃,压力为150mbar,时间为1600s。
S2、在所述n型GaN层4上形成图形化SiO2掩膜层5;
图形化SiO2掩膜层5厚度为300nm-600nm非晶态SiO2层,孔洞直径为2μm-10μm,间距为2μm-10μm的周期性图形模板结构。作为本发明的一个实施例,本实施例中,图形化SiO2掩膜层5厚度为500nm,图形为圆形,孔洞直径为6μm,间距为2μm,孔洞深度为500nm。
S3、在所述图形化SiO2掩膜层5空隙处生长n型GaN六棱台阵列6;
镓源为TMGa,硅源为SiH4,氮源为NH3,H2为载气,生长温度为980℃-1100℃,压力为600mbar,Ⅴ/Ⅲ比为10-200,生长时间为300s-800s。作为本发明的一个实施例,本实施例中,生长时间为1075℃,Ⅴ/Ⅲ比为150,生长时间为400s。
S4、在六棱台的各个面上生长多量子阱层8,量子线9和量子点10;
镓源为TEGa,氮源为NH3,N2作为载气,生长温度为800℃-860℃,反应室压力为400mbar,生长100s-200s,得到GaN垒层;以TEGa为镓源,TMIn为铟源,NH3为氮源,N2为载气,生长温度为690℃-760℃,压力为400mbar,生长时间为40s-100s,周期为3-10。作为本发明的一个实施例,本实施例中,垒层生长温度为840℃,时间为150s,阱层生长温度为740℃,生长时间为60s,周期为5。
S5、用p型GaN层7覆盖六棱台顶部,最后长成平面。
以TMGa作为镓源、 NH3作为氮源、H2作为载气,生长温度为900℃-1000℃,反应室压力为400mbar,生长时间为900s-2700s。退火过程时间为900s,退火温度为930℃。作为本发明的一个实施例,本实施例中,生长温度为920℃,生长时间为1300s。
本发明所述的基于GaN六棱台阵列的全彩发射LED外延结构的制备方法简单易实施,形成的六棱台阵列晶体结构性好,能够有效保证产品良率。

Claims (10)

1.一种基于GaN六棱台阵列的全彩发射LED外延结构,其特征在于:包括自下而上的蓝宝石衬底、形核层、非掺杂GaN层、n型GaN层、图形化SiO2掩膜层和p型GaN层,其中,图形化SiO2掩膜层的空隙处设有n型GaN六棱台阵列,n型GaN六棱台顶面处生长有富In的量子点,n型GaN六棱台的棱上生长有富In的量子线,n型GaN六棱台的顶面(0001)晶面和六个半极性(10-11)晶面上生长有多量子阱层。
2.根据权利要求1所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,其特征在于:所述非掺杂GaN层的厚度为2μm-3μm,所述n型GaN层的厚度为1μm-3μm。
3.根据权利要求1所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,其特征在于:所述图形化SiO2掩膜层为无定型SiO2,厚度为300nm-600nm;SiO2掩膜层的图形化采用光刻和ICP刻蚀工艺,将所述SiO2掩膜层刻蚀为可露出n型GaN层的孔洞,孔洞直径为2μm-10μm,间距为2μm-10μm的周期性模板结构,孔洞的深度为300nm-600nm。
4.根据权利要求1所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,其特征在于:所述n型GaN六棱台均为Si掺杂,高度为200nm-1300nm,直径为2μm-10μm。
5.根据权利要求1所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,其特征在于:所述多量子阱层为InGaN/GaN多量子阱层,其中,InGaN阱层厚度为2nm-10nm,GaN垒层厚度为10nm-30nm,周期为3-10。
6.根据权利要求1所述的一种基于GaN六棱台阵列的全彩发射LED外延结构,其特征在于:所述p型GaN层为Mg掺杂的p型GaN层,厚度为300nm-1000nm。
7.一种如权利要求1~6任意一项基于GaN六棱台阵列的全彩发射LED外延结构的制备方法,其特征在于:包括如下步骤:
第一步,在蓝宝石衬底上形成形核层、非掺杂GaN层和n型GaN层;
第二步,在n型GaN层上形成SiO2掩膜层;
第三步,将第二步形成的样品进行刻蚀,形成图形化SiO2掩膜层;
第四步,在图形化SiO2掩膜层的空隙处形成n型GaN六棱台阵列;
第五步,在第四步得的样品上形成InGaN/GaN多量子阱层;
第六步,在InGaN/GaN多量子阱层上形成p型GaN层。
8.根据权利要求7所述的一种基于GaN六棱台阵列的全彩发射LED外延结构的制备方法,其特征在于:第一步中,所述形核层、非掺杂GaN层和n型GaN层的镓源均为TMGa,氮源均为NH3,n型GaN层的硅源为SiH4;形核层的生长温度为520~570℃,非掺杂GaN层的生长温度为1000-1100℃,n型GaN层的生长温度为1000-1100℃。
9.根据权利要求7所述的一种基于GaN六棱台阵列的全彩发射LED外延结构的制备方法,其特征在于:第四步中,所述n型GaN六棱台阵列的生长条件为:镓源为TMGa,硅源为SiH4,氮源为NH3,H2为载气,生长温度为980-1100℃,压力为600mbar,Ⅴ/Ⅲ比为10-200,生长时间为300-800s。
10.根据权利要求7所述的一种基于GaN六棱台阵列的全彩发射LED外延结构的制备方法,其特征在于:第五步中,所述多量子阱层的生长方法为:镓源为TEGa,氮源为NH3,N2为载气,生长温度为800-860℃,反应室压力为400mbar,生长100-200s后,得到GaN垒层;以TEGa为镓源,TMIn为铟源,NH3为氮源,N2为载气,生长温度为690-760℃,反应室压力为400mbar,生长40-100s后,得到InGaN阱层;量子点和量子线在多量子阱层生长过程中在六棱台顶面和棱上分别形成;
第六步中,所述p型GaN层的生长方法为:以TMGa为镓源,NH3为氮源,Cp2Mg为镁源,H2为载气,生长温度为900-1000℃,反应室压力为400mbar,生长时间为900-2700s,退火时间为900s,退火温度为930℃。
CN201910417476.8A 2019-05-20 2019-05-20 基于GaN六棱台阵列的全彩发射LED外延结构及制备方法 Pending CN110212068A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910417476.8A CN110212068A (zh) 2019-05-20 2019-05-20 基于GaN六棱台阵列的全彩发射LED外延结构及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910417476.8A CN110212068A (zh) 2019-05-20 2019-05-20 基于GaN六棱台阵列的全彩发射LED外延结构及制备方法

Publications (1)

Publication Number Publication Date
CN110212068A true CN110212068A (zh) 2019-09-06

Family

ID=67787781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910417476.8A Pending CN110212068A (zh) 2019-05-20 2019-05-20 基于GaN六棱台阵列的全彩发射LED外延结构及制备方法

Country Status (1)

Country Link
CN (1) CN110212068A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111864020A (zh) * 2020-07-24 2020-10-30 武汉大学 一种InGaN图形衬底模板及其制备方法和在红光Micro-LED芯片中的应用
CN112838152A (zh) * 2019-11-25 2021-05-25 山东浪潮华光光电子股份有限公司 一种具有特定图形的发光二极管外延结构及其制备方法
CN116093216A (zh) * 2023-02-20 2023-05-09 江苏第三代半导体研究院有限公司 一种外延结构及其制备方法和双色led器件
WO2024021158A1 (zh) * 2022-07-27 2024-02-01 北京大学 一种全彩氮化物半导体Micro-LED阵列的单片集成制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062660A1 (en) * 2011-09-14 2013-03-14 Ricoh Company, Ltd. Group 13 nitride crystal and substrate thereof
CN106283174A (zh) * 2012-09-17 2017-01-04 株式会社理光 第13族氮化物晶体、所述晶体衬底及所述晶体制备方法
CN107316922A (zh) * 2017-05-24 2017-11-03 太原理工大学 基于GaN六棱锥阵列的LED外延结构及其制备方法
CN108389941A (zh) * 2018-04-08 2018-08-10 中国科学院半导体研究所 显指可调的无荧光粉单芯片白光led器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130062660A1 (en) * 2011-09-14 2013-03-14 Ricoh Company, Ltd. Group 13 nitride crystal and substrate thereof
CN106283174A (zh) * 2012-09-17 2017-01-04 株式会社理光 第13族氮化物晶体、所述晶体衬底及所述晶体制备方法
CN107316922A (zh) * 2017-05-24 2017-11-03 太原理工大学 基于GaN六棱锥阵列的LED外延结构及其制备方法
CN108389941A (zh) * 2018-04-08 2018-08-10 中国科学院半导体研究所 显指可调的无荧光粉单芯片白光led器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
仝广运等: "类金字塔状GaN微米锥的形貌及发光性能", 《发光学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112838152A (zh) * 2019-11-25 2021-05-25 山东浪潮华光光电子股份有限公司 一种具有特定图形的发光二极管外延结构及其制备方法
CN112838152B (zh) * 2019-11-25 2022-06-14 山东浪潮华光光电子股份有限公司 一种具有特定图形的发光二极管外延结构及其制备方法
CN111864020A (zh) * 2020-07-24 2020-10-30 武汉大学 一种InGaN图形衬底模板及其制备方法和在红光Micro-LED芯片中的应用
WO2024021158A1 (zh) * 2022-07-27 2024-02-01 北京大学 一种全彩氮化物半导体Micro-LED阵列的单片集成制备方法
CN116093216A (zh) * 2023-02-20 2023-05-09 江苏第三代半导体研究院有限公司 一种外延结构及其制备方法和双色led器件

Similar Documents

Publication Publication Date Title
CN110212068A (zh) 基于GaN六棱台阵列的全彩发射LED外延结构及制备方法
KR101196579B1 (ko) 화합물 반도체 발광 소자 및 이를 이용하는 조명 장치 및 화합물 반도체 발광 소자의 제조 방법
EP2254164B1 (en) Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element
CN103560190B (zh) 阻挡电子泄漏和缺陷延伸的外延生长方法及其结构
CN103190005A (zh) 基于结晶弛豫结构的固态发光器件
CN107316922B (zh) 基于GaN六棱锥阵列的LED外延结构及其制备方法
CN108389941A (zh) 显指可调的无荧光粉单芯片白光led器件及其制备方法
CN105932125A (zh) 一种GaN基绿光LED外延结构及其制备方法
CN109065681A (zh) 一种具有应变减少结构的量子阱绿光led外延结构
CN101582473B (zh) 通过应力调节led发光波长的方法及相应的白光led
CN111725371B (zh) 一种led外延底层结构及其生长方法
CN104868027B (zh) 一种无荧光粉GaN基白光LED外延结构及其制备方法
CN103956416A (zh) 氧化锌基白光led及其制备方法
CN104393131A (zh) 光泵浦白光led及其制备方法
CN107799631B (zh) 高亮度led制备工艺
CN109599466A (zh) 一种双波长led外延结构及其制作方法
CN101562222B (zh) 背面出光的单芯片白光发光二极管及其制备方法
CN102097554A (zh) 一种GaN基单芯片白光发光二极管及其制备方法
CN104752568B (zh) 一种改善晶体质量的GaN基LED外延结构的制备方法
CN108695417A (zh) 基于V形坑的无荧光粉GaN基白光LED外延结构及其制备方法
CN105552183A (zh) 白光发光二极管及其制作方法
CN202454604U (zh) 一种多量子阱tft-led阵列显示基板
CN114975710A (zh) 一种多色混合Micro-LED芯片及其制备方法
CN212085035U (zh) 一种生长在Si衬底上的GaN薄膜
CN114005911B (zh) 一种显示器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906

RJ01 Rejection of invention patent application after publication