CN104868027B - 一种无荧光粉GaN基白光LED外延结构及其制备方法 - Google Patents

一种无荧光粉GaN基白光LED外延结构及其制备方法 Download PDF

Info

Publication number
CN104868027B
CN104868027B CN201510285600.1A CN201510285600A CN104868027B CN 104868027 B CN104868027 B CN 104868027B CN 201510285600 A CN201510285600 A CN 201510285600A CN 104868027 B CN104868027 B CN 104868027B
Authority
CN
China
Prior art keywords
gan
layer
temperature
well layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510285600.1A
Other languages
English (en)
Other versions
CN104868027A (zh
Inventor
张恒
曲爽
王成新
徐现刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Inspur Huaguang Optoelectronics Co Ltd
Original Assignee
Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Inspur Huaguang Optoelectronics Co Ltd filed Critical Shandong Inspur Huaguang Optoelectronics Co Ltd
Priority to CN201510285600.1A priority Critical patent/CN104868027B/zh
Publication of CN104868027A publication Critical patent/CN104868027A/zh
Application granted granted Critical
Publication of CN104868027B publication Critical patent/CN104868027B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers

Abstract

一种无荧光粉GaN基白光LED外延结构及其制备方法,该外延结构包括自下而上依次设置的衬底、GaN缓冲层、N‑GaN层、紫外光波长的多量子阱层、非掺高低温GaN层、蓝光波长的多量子阱层及P‑GaN层;其制备方法,包括以下步骤:(1)在MOCVD设备中,在衬底上生长GaN缓冲层,(2)在GaN缓冲层上生长N‑GaN层,(3)在N‑GaN层上生长紫外光波长的多量子阱层,(4)首先生长非掺低温GaN层,随后生长非掺高温GaN层,(5)在非掺GaN层上生长蓝光波长的多量子阱层,(6)在蓝光波长的多量子阱层上生长P‑GaN层。本发明直接外延出完整的白光LED结构,有效的简化了工艺,提高了白光LED的光转换效率,降低了工艺成本,同时也大大提高了GaN基LED的发光效率。

Description

一种无荧光粉GaN基白光LED外延结构及其制备方法
技术领域
本发明涉及一种无荧光粉的GaN基白光LED的外延结构及其制备方法,属于白光LED技术领域。
背景技术
自1991年Nichia公司的Nakamura等人成功地研制出GaN基蓝光发光二极管(LED),以GaN、InN、AlN及其三元系和四元系材料为主的宽禁带III-V族半导体材料的迅猛发展使得高亮度发光二极管实现了从绿光到近紫外产品的商品化。氮化物半导体材料优异的物理、化学稳定性,高饱和电子迁移率等特性,成为GaN基激光器、发光二极管等光电子器件的优选材料。半导体白光发光二极管(白光 LED)作为照明的新型高效固体光源,是人类照明史上又一次飞跃,其经济和社会意义巨大。LED 采用固体封装、结构牢固、寿命可达10万小时以上。LED 还具有工作电压低、耗电量小、光效高、响应时间极短、光色纯、重量轻、体积小等一系列特性。尤其是大功率高亮度白光 LED 的发明,被业界称为继取火照明、爱迪生发明电灯之后的“照明领域第三次革命”。
利用III-V族氮化物半导体实现全色白光发射系统一直是氮化物研究与应用的前沿热点。目前的白光 LED 主要采用以下两种结构。一种是在蓝光 LED 上涂覆发黄光的荧光粉。所述蓝光 LED 发出的部分蓝光被荧光粉吸收发出黄光,另一部分蓝光与荧光粉发出的黄光混合,从而可以得到白光。然而,对于这种白光 LED 需要利用荧光粉进行二次量子转化才能混合出白光,所以这种结构的白光 LED 的发光效率较低。另一种是将红、绿、蓝三种基色的 LED 芯片层叠设置在一起。同时点亮所述三种基色的 LED,从而混合红、绿、蓝三种基色获得白光。 但这种白光 LED 需要将三种基色的 LED 芯片层叠在一起,故这种结构的白光 LED 的制备方法较为复杂且成本较高。
中国专利文献CN103367570 A公开的一种白光LED,包括:三个发光单元分别为红、绿、蓝三基色的发光单元,每一发光单元均具有一出光面,三个发光单元发出的光线汇聚于一个汇聚点;光栅结构设置于所述三个发光单元的汇聚点,该光栅结构具有一第一半导体层、一活性层以及一第二半导体层,第一半导体层、活性层以及第二半导体层依次层叠设置,光栅结构具有一出光面以及多个与出光面相交的入光面, 每一发光单元的出光面正对所述光栅结构的入光面, 光栅结构的出光面设置在第二半导体层远离活性层的表面。该方法结构繁琐且工艺比较复杂,因此在制作过程中要花费较长时间,这将造成白光 LED成本居高不下。
CN102290508A公开的一种无荧光粉的白光 LED,是在蓝宝石衬底上生长出发光二极管;在发光二极管生长的过程中进行相关颜色发光的离子注入。 通过发光二极管的发光激发注入的离子发出相应色彩的光,多种光混合生成白色光,实现无荧光粉的单器件白色发光二极管。该方法在工艺实现上较复杂且实行起来较难,极大增加了工艺难度和成本。
CN101714604A公开的一种宽光谱白光LED结构及生长方法。该结构包括:在蓝宝石衬底或硅衬底上生长具有GaN缓冲层、厚度在50-2000nm的GaN支撑层,厚度为20-1000nm的N型GaN,浓度为5*1018cm-1;在N型GaN上一次生长蓝光波长量子阱材料、蓝绿或绿光量子阱材料以及红黄光或红光量子阱材料。通过三种不同量子阱材料发出的颜色进行叠加后得到一种三色GaN基白光LED结构。该方法利用MOCVD( Metal Organic Chemical VapourDeposition,金属有机物化学气相沉积)进行较长时间的生长程序,MOCVD设备价格极为昂贵,长时间的生长增加了设备折旧在单片外延片成本的比例。
发明内容
本发明针对现有白光LED的制备技术存在的不足,提供一种无需利用荧光粉进行二次量子转化、光能转换效率及寿命高、发光稳定性和产品重复性好、具有高发光效率的无荧光粉GaN基白光LED外延结构,同时提供一种该无荧光粉白光LED的制备方法。
本发明的无荧光粉GaN基白光LED外延结构,包括自下而上依次设置的衬底、GaN缓冲层、N-GaN层、紫外光波长的多量子阱层、非掺高低温GaN层、蓝光波长的多量子阱层及P-GaN层。
所述衬底为蓝宝石、硅或SiC衬底。
所述GaN缓冲层的厚度3-10μm。
所述N-GaN层的厚度为2μm-4μm,掺杂浓度为3*1018cm-1—2*1019cm-1
所述非掺高低温GaN层包括非掺低温GaN层和非掺高温GaN层,厚度均为50-200nm。
所述紫外光波长的多量子阱层是厚度为2.5-5nm的InxGa1-xN阱层和厚度为8-10nm的AlxGa1-xN垒层周期性交替叠加构成,周期为5-15,In的占比为10%-20%,Al的占比为2%-8%。
所述蓝光波长的多量子阱层是厚度为2.5-5nm的InxGa1-xN阱层和厚度为8-15nm的GaN垒层周期性交替叠加构成,周期为5-15,In的占比为10%-20%。
所述P-GaN层的厚度为150-300nm。
上述无荧光粉白光LED的外延结构的制备方法,包括以下步骤:
(1)在MOCVD设备中,先在1000-1100℃氢气环境下对衬底(蓝宝石、硅或SiC)进行高温清洗;再调整温度为500-650℃,在衬底上生长3-10μm厚的GaN缓冲层;
(2)通入流量为30-100L/分钟的NH3,通入时间为2分钟-5分钟;调整MOCVD反应室温度为1000-1200℃,在GaN缓冲层上直接生长2μm-4μm厚的N-GaN层,掺杂浓度为3*1018cm-1—2*1019cm-1
(3)在N-GaN层上生长紫外光波长的多量子阱层,具体是在750-850℃温度下生长厚度为2.5-5nm的InxGa1-xN阱层,在800-900℃温度下生长厚度为8-10nm的AlxGa1-xN垒层,Al的占比为2%-8%,阱层和垒层周期性交替叠加,周期为5-15;
(4)以氮气为载气,三甲基镓为镓源,生长非掺高低温GaN层,非掺高低温GaN层分为非掺低温GaN层和非掺高温GaN层,厚度均为50-200nm;首先生长非掺低温GaN层,得到质量较差的GaN层,从而使紫外光激发出最大的黄带发光,随后生长非掺高温GaN层,为后续蓝光多量子阱提供缓冲层;低温非掺GaN层的生长温度为650-750℃,生长时间为100-300秒;高温非掺GaN层的生长温度为850-930℃,生长时间100-300秒;
(5)在非掺GaN层上生长蓝光波长的多量子阱层,具体是在700-800℃的温度下生长厚度为2.5-5nm的InxGa1-xN阱层,800-900℃的温度下生长厚度为8-15nm的GaN垒层,阱层和垒层周期性交替叠加,周期为5-15;
(6)在800-900℃的温度下,在蓝光波长的多量子阱层上生长厚度为150-300nm的P-GaN层。
上述方法采用MOCVD方法,在蓝宝石、Si或SiC衬底上生长紫外光多量子阱结构、非掺高低温GaN层和蓝光多量子阱结构,借用底层紫外光多量子阱部分的紫外光激发低温非掺GaN层的黄带发光,并于顶层的蓝光多量子阱结构发出的蓝光相结合从而发射出白光,这样一种无荧光粉白光LED的外延结构不仅提高了白光LED的发光效率,简化工艺步骤,而且节省MOCVD程序时间,提高设备利用率,降低GaN基白光LED的成本。
本发明利用MOCVD技术直接外延出完整的白光LED结构,而不是通过激发荧光粉发光来近一步得到白光,有效的简化了工艺,提高了白光LED的光转换效率,不仅缩短了工艺制备时间,降低了工艺成本,同时也大大提高了GaN基LED的发光效率。
本发明制备的白光LED,无需荧光粉,提高了LED能量转换效率及寿命,改善了出射光的质量、发光稳定性和产品重复性;出射光由紫外光激发中间层低温生长的GaN层的黄带发光,并与蓝色光混合而成,提高白光LED的显色指数,降低了其色温。
附图说明
图1是本发明无荧光粉白光LED的外延结构的示意图。
图中:1、衬底,2、GaN缓冲层,3、N-GaN层,4、紫外光波长的多量子阱层,5、非掺高低温GaN层,6、蓝光波长的多量子阱层,7、P-GaN层。
具体实施方式
实施例1
如图1所示,本发明的无荧光粉GaN基白光LED的外延结构,包括自下而上依次设置的衬底1、GaN缓冲层2、N-GaN层3、紫外光波长的多量子阱层4、非掺高低温GaN层5、蓝光波长的多量子阱层6及P-GaN层7。
本实施例中衬底1为蓝宝石衬底。GaN缓冲层2的厚度3μm。N-GaN层3的厚度为2μm,掺杂浓度为3*1018cm-1。紫外光波长的多量子阱层4是厚度分别为2.5nm和8nm的5个周期的InGaN/AlGaN多量子阱结构,所用镓源为二甲基镓。非掺高低温GaN层5中的镓源为三甲基镓,非掺低温GaN层和非掺高温GaN层的厚度均为50nm。蓝光波长的多量子阱层6是厚度2.5nm的InGaN阱层和厚度为8nm的GaN垒层5个周期的多量子阱结构。P-GaN层7的厚度为150nm。
上述无荧光粉的GaN基白光LED外延结构的制备方法,包括以下步骤:
(1)在MOCVD设备中,先对生长的蓝宝石衬底在1000℃氢气环境下进行高温清洗,再在500℃范围下生长3um的GaN缓冲层2;
(2)通入流量为30L/min的NH3,通入时间为5min;MOCVD反应室内温度为1000℃,在GaN缓冲层上直接生长2μm厚的N-GaN层3,掺杂浓度为3*1018cm-1
(3)在N-GaN层上生长紫外光波长的多量子阱层4,具体是在750℃温度下生长厚度为2.5nm的InGaN阱层,在800℃温度下生长厚度为8nm的AlGaN垒层,In的占比为10%, Al的占比为2%,阱层和垒层周期性交替叠加,周期为5个,所用镓源为二甲基镓;
所述紫外光波长的多量子阱层是厚度为2.5-5nm的InxGa1-xN阱层和厚度为8-10nm的AlxGa1-xN垒层周期性交替叠加构成,周期为5-15。
(4)以氮气为载气,三甲基镓为镓源,生长非掺高低温GaN层,非掺高低温GaN层分为非掺低温GaN层和非掺高温GaN层,厚度均为50nm;首先生长非掺低温GaN层,得到质量较差的GaN层,低温及三甲基镓源会增加GaN层的含碳量,从而可以最大程度地使紫外光激发出其最大的黄带发光,并最终结合所述蓝光多量子阱发出的蓝光最终发射出白光;随后生长非掺高温GaN层,为后续蓝光多量子阱提供缓冲层。
低温非掺GaN层的生长温度为650℃,生长时间为100秒;高温非掺GaN层的生长温度为850℃,生长时间100秒。
(5)在非掺GaN层上生长蓝光波长的多量子阱层6,具体是在700℃的温度下生长厚度为2.5nm的InGaN阱层, 800℃的温度下生长厚度为8nm的GaN垒层,In的占比为10,阱层和垒层周期性交替叠加,周期为5;
(6)在800℃的温度下,在蓝光波长的多量子阱层6上生长厚度为150nm的P-GaN层7。
实施例2
本实施例中衬底1为Si衬底。 GaN缓冲层2的厚度6μm。 N-GaN层厚度3为3μm,掺杂浓度为9*1018cm-1。紫外光波长的多量子阱层4是厚度分别为4nm和9nm的10个周期的InGaN/AlGaN多量子阱结构,所用镓源为二甲基镓。非掺高低温GaN层5中的镓源为三甲基镓,非掺低温GaN层和非掺高温GaN层的厚度均为120nm。蓝光波长的多量子阱层6是厚度4nm的InGaN阱层和厚度为12nm的GaN垒层10个周期的多量子阱结构。P-GaN层7的厚度为220nm。
上述无荧光粉GaN基白光LED外延结构的制备方法,包括以下步骤:
(1)在MOCVD设备中,先对生长的硅衬底在1050℃氢气环境下进行高温清洗,再在590℃范围下生长5um的GaN缓冲层2;
(2)通入流量为65L/min 的NH3,通入时间为3.5min;MOCVD反应室内温度为1100℃,在GaN缓冲层上直接生长3μm厚的N-GaN层3,掺杂浓度为9*1018cm-1
(3)在N-GaN层上生长紫外光波长的多量子阱层4,具体是在800℃温度下生长厚度为4nm的InGaN阱层,在850℃温度下生长厚度为9nm的AlGaN垒层,In的占比为15%,Al的占比为5%,阱层和垒层周期性交替叠加,周期为10个,所用镓源为二甲基镓;
(4)以氮气为载气,三甲基镓为镓源,生长非掺高低温GaN层5,其中非掺低温GaN层和非掺高温GaN层厚度均为120nm;首先生长非掺低温GaN层,生长温度为700℃,生长时间为200秒;随后生长非掺高温GaN层,生长温度为880℃,生长时间200秒。
(5)在非掺GaN层上生长蓝光波长的多量子阱层,具体是在750℃的温度下生长厚度为4nm的InGaN阱层,850℃的温度下生长厚度为12nm的GaN垒层,In的占比为15%,阱层和垒层周期性交替叠加,周期为10;
(6)在870℃的温度下,在蓝光波长的多量子阱层6上生长厚度为220nm的P-GaN层7。
实施例3
本实施例中衬底1为SiC衬底。GaN缓冲层2的厚度10μm。N-GaN层厚度3为4μm,掺杂浓度为2*1019cm-1。紫外光波长的多量子阱层4是厚度分别为5nm和10nm的12个周期的InGaN/AlGaN多量子阱结构。非掺高低温GaN层5中的镓源为三甲基镓,非掺低温GaN层和非掺高温GaN层的厚度均为200nm。蓝光波长的多量子阱层6是厚度5nm的InGaN阱层和厚度为15nm的GaN垒层15个周期的多量子阱结构。P-GaN层7的厚度为300nm。
上述无荧光粉GaN基白光LED外延结构的制备方法,包括以下步骤:
(1)在MOCVD系统中,先对生长的SiC衬底在1100℃氢气环境下进行高温清洗,再在650℃范围下生长10μm的GaN缓冲层2;
(2)通入流量为100L/min 的NH3,通入时间为2min;MOCVD反应室内温度为1200℃,在GaN缓冲层上直接生长4μm厚的N-GaN层3,掺杂浓度为2*1019cm-1
(3)在N-GaN层上生长紫外光波长的多量子阱层4,具体是在850℃温度下生长厚度为5nm的InGaN阱层,在900℃温度下生长厚度为10nm的AlGaN垒层,In的占比为20%,Al的占比为8%,阱层和垒层周期性交替叠加,周期为15个,所用镓源为二甲基镓;
(4)以氮气为载气,三甲基镓为镓源,生长非掺高低温GaN层5,其中非掺低温GaN层和非掺高温GaN层厚度均为200nm。首先生长非掺低温GaN层,生长温度为750℃,生长时间为300秒;随后生长非掺高温GaN层,生长温度为930℃,生长时间300秒。
(5)在非掺GaN层上生长蓝光波长的多量子阱层6,具体是在800℃的温度下生长厚度为5nm的InGaN阱层,900℃的温度下生长厚度为15nm的GaN垒层,In的占比为20%,阱层和垒层周期性交替叠加,周期为15;
(6)在900℃的温度下,在蓝光波长的多量子阱层6上生长厚度为300nm的P-GaN层7。

Claims (2)

1.一种无荧光粉GaN基白光LED外延结构,其特征是,包括自下而上依次设置的衬底、GaN缓冲层、N-GaN层、紫外光波长的多量子阱层、非掺高低温GaN层、蓝光波长的多量子阱层及P-GaN层;
所述紫外光波长的多量子阱层是厚度为2.5-5nm的InxGa1-xN阱层和厚度为8-10nm的AlxGa1-xN垒层周期性交替叠加构成,周期为5-15,In的占比为10%-20%,Al的占比为2%-8%;
所述蓝光波长的多量子阱层是厚度为2.5-5nm的InxGa1-xN阱层和厚度为8-15nm的GaN垒层周期性交替叠加构成,周期为5-15,In的占比为10%-20%。
2.一种权利要求1所述无荧光粉GaN基白光LED外延结构的制备方法,其特征是,包括以下步骤:
(1)在MOCVD设备中,先在1000-1100℃氢气环境下对衬底进行高温清洗;再调整温度为500-650℃,在衬底上生长3-10μm厚的GaN缓冲层;
(2)通入流量为30-100L/分钟的NH3,通入时间为2分钟-5分钟;调整MOCVD反应室温度为1000-1200℃,在GaN缓冲层上直接生长2μm-4μm厚的N-GaN层,掺杂浓度为3*1018cm-1—2*1019cm-1
(3)在N-GaN层上生长紫外光波长的多量子阱层,具体是在750-850℃温度下生长厚度为2.5-5nm的InxGa1-xN阱层,在800-900℃温度下生长厚度为8-10nm的AlxGa1-xN垒层,Al的占比为2%-8%,阱层和垒层周期性交替叠加,周期为5-15;
(4)以氮气为载气,三甲基镓为镓源,生长非掺高低温GaN层,非掺高低温GaN层分为非掺低温GaN层和非掺高温GaN层,厚度均为50-200nm;首先生长非掺低温GaN层,得到质量较差的GaN层,从而使紫外光激发出最大的黄带发光,随后生长非掺高温GaN层,为后续蓝光多量子阱提供缓冲层;低温非掺GaN层的生长温度为650-750℃,生长时间为100-300秒;高温非掺GaN层的生长温度为850-930℃,生长时间100-300秒;
(5)在非掺GaN层上生长蓝光波长的多量子阱层,具体是在700-800℃的温度下生长厚度为2.5-5nm的InxGa1-xN阱层,800-900℃的温度下生长厚度为8-15nm的GaN垒层,阱层和垒层周期性交替叠加,周期为5-15;
(6)在800-900℃的温度下,在蓝光波长的多量子阱层上生长厚度为150-300nm的P-GaN层。
CN201510285600.1A 2015-05-29 2015-05-29 一种无荧光粉GaN基白光LED外延结构及其制备方法 Active CN104868027B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510285600.1A CN104868027B (zh) 2015-05-29 2015-05-29 一种无荧光粉GaN基白光LED外延结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510285600.1A CN104868027B (zh) 2015-05-29 2015-05-29 一种无荧光粉GaN基白光LED外延结构及其制备方法

Publications (2)

Publication Number Publication Date
CN104868027A CN104868027A (zh) 2015-08-26
CN104868027B true CN104868027B (zh) 2018-04-13

Family

ID=53913724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510285600.1A Active CN104868027B (zh) 2015-05-29 2015-05-29 一种无荧光粉GaN基白光LED外延结构及其制备方法

Country Status (1)

Country Link
CN (1) CN104868027B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226150A (zh) * 2015-10-10 2016-01-06 山东大学 一种N-B双掺SiC衬底的GaN基无荧光粉的高效白光LED结构及其制备方法和应用
CN107681027B (zh) * 2017-09-30 2018-11-20 珠海宏光照明器材有限公司 白光led及其制作方法
CN109037405B (zh) * 2018-07-16 2020-11-13 厦门三安光电有限公司 微发光装置及其显示器
CN111370394B (zh) * 2020-05-28 2020-08-25 华引芯(武汉)科技有限公司 一种基于单峰深紫外led的多输出峰led器件及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684309A (en) * 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
CN1741290A (zh) * 2004-08-27 2006-03-01 中国科学院半导体研究所 蓝光、黄光量子阱堆叠结构白光发光二极管及制作方法
CN102244171A (zh) * 2011-06-20 2011-11-16 复旦大学 一种无荧光粉高显色性能白光led芯片
CN103107253A (zh) * 2013-02-04 2013-05-15 中国科学院物理研究所 一种发光二极管外延结构
CN104157762A (zh) * 2014-08-25 2014-11-19 清华大学 一种无荧光粉白光led及led发光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684309A (en) * 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
CN1741290A (zh) * 2004-08-27 2006-03-01 中国科学院半导体研究所 蓝光、黄光量子阱堆叠结构白光发光二极管及制作方法
CN102244171A (zh) * 2011-06-20 2011-11-16 复旦大学 一种无荧光粉高显色性能白光led芯片
CN103107253A (zh) * 2013-02-04 2013-05-15 中国科学院物理研究所 一种发光二极管外延结构
CN104157762A (zh) * 2014-08-25 2014-11-19 清华大学 一种无荧光粉白光led及led发光模块

Also Published As

Publication number Publication date
CN104868027A (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
CN105609606B (zh) 发光装置及其制造方法
JP5145120B2 (ja) 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法
AU2005322570A1 (en) High efficiency light-emitting diodes
CN101540361B (zh) 硅衬底上生长的铝镓铟磷发光二极管的制备方法
CN105932125A (zh) 一种GaN基绿光LED外延结构及其制备方法
CN105742415B (zh) 紫外GaN基LED外延结构及其制造方法
CN104900771B (zh) 一种无荧光粉的高效白光led外延结构及其生长方法
CN104868027B (zh) 一种无荧光粉GaN基白光LED外延结构及其制备方法
CN101257081A (zh) 一种双波长单芯片发光二极管
CN106328777A (zh) 一种发光二极管应力释放层的外延生长方法
CN101582473B (zh) 通过应力调节led发光波长的方法及相应的白光led
CN103296164A (zh) 半导体发光结构
TWM277111U (en) Vertical electrode structure for white-light LED
CN103681997B (zh) 一种所需颜色发光二极管芯片的制造方法
CN110212068A (zh) 基于GaN六棱台阵列的全彩发射LED外延结构及制备方法
CN109065681A (zh) 一种具有应变减少结构的量子阱绿光led外延结构
CN101562222B (zh) 背面出光的单芯片白光发光二极管及其制备方法
CN109888071B (zh) 一种GaN基LED外延层结构及其制备方法
CN105576090B (zh) 发光二极管外延片的制备方法及发光二极管外延片
CN102148300A (zh) 一种紫外led的制作方法
CN109638129B (zh) 发光二极管外延结构的制备方法
CN105098008A (zh) 一种含三元超晶格的GaN基LED外延结构及其制备方法
KR20080026882A (ko) 질화물 반도체 발광소자 및 그 제조 방법
CN101556983B (zh) 一种单芯片白光发光二极管及其制备方法
CN105226150A (zh) 一种N-B双掺SiC衬底的GaN基无荧光粉的高效白光LED结构及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant