CN110205605A - 一种原子层沉积二硫化铼薄膜的方法 - Google Patents

一种原子层沉积二硫化铼薄膜的方法 Download PDF

Info

Publication number
CN110205605A
CN110205605A CN201910521110.5A CN201910521110A CN110205605A CN 110205605 A CN110205605 A CN 110205605A CN 201910521110 A CN201910521110 A CN 201910521110A CN 110205605 A CN110205605 A CN 110205605A
Authority
CN
China
Prior art keywords
rhenium
source
carrier gas
hydrogen sulfide
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910521110.5A
Other languages
English (en)
Inventor
刘磊
马克坚
吕俊
朱松阳
焦松龙
杨俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201910521110.5A priority Critical patent/CN110205605A/zh
Publication of CN110205605A publication Critical patent/CN110205605A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种原子层沉积二硫化铼薄膜的方法,包括以下步骤:将铼源装入源瓶并加热,加热放置有基底样品的的反应腔;利用载气将铼源吹入反应腔,使铼源与基底样品表面发生自限制化学吸附,铼源吹入结束后,继续通入载气,将反应副产物和残余的铼源冲洗掉;利用载气将硫化氢吹入反应腔,使硫化氢与铼源发生自限制化学反应,在基底样品表面生成二硫化铼薄膜,硫化氢吹入结束后,继续通入载气将反应副产品和残余硫化氢冲洗掉。本发明制备的二硫化铼薄膜质量均匀、表面平整、厚度可以精确控制。

Description

一种原子层沉积二硫化铼薄膜的方法
技术领域
本发明涉及原子层沉积技术领域,具体涉及一种二硫化铼薄膜的制备方法。
技术背景
今年来,作为一种层状过渡金属硫化物的二硫化铼(ReS2),由于其具有许多层状过渡金属硫化物所不具有的低对称性晶格结构而引起了大家广泛关注并在场效应晶体管、光电探测器、柔性电子器件、光催化、锂电池等领域引起了一股研究热潮。二硫化铼(ReS2)是典型的层状结构,层内由三个原子层S-Re-S组成,其中Re和S以共价键的形式连接在一起,层间是由较弱的范德华力耦合在一起,层间的距离约为0.65nm。已有的研究表明体态的二硫化铼和单层的具有几乎完全一样的能带结构,这使得二硫化铼在柔性电子器件领域引起广泛的注意。
最初采用机械剥离块状单晶二硫化铼的方法来制备层状二硫化铼薄膜,可以得到单层二硫化铼薄膜并且由于原料是单晶结构,所以具有非常高的晶体结构,有优秀的光学和电学特性,但是该方法重复性低,厚度难控制,而且制备出的二硫化铼薄膜尺寸较小,故该方法很难工业化。人工合成生长大面积、高质量的二硫化铼薄膜显得尤为迫切。现在研究比较热门的人工合成二硫化铼薄膜的方法是化学气相沉积(CVD),其原理是以五氯化铼(ReCl5)为铼源,以硫化氢(H2S)或硫粉作为硫源,通过高温加热让两种源变成分子形式并发生反应生成二硫化铼分子,这些分子最终沉积在目标衬底表面而形成二维二硫化铼薄膜。该方法虽然可以得到大面积、高质量的二硫化铼薄膜,但是其存在有不足的地方:(1)合成生长的温度较高,而铼前体会在高温下融化,也限制在不耐高温衬底上的应用;(2)由于生长过程是连续的,使薄膜的厚度不容易精确控制;(3)对于一些高深宽比的结构,如孔和沟槽,CVD方法无法沉积均匀的薄膜,材料会沉积在开放的边缘处。
发明内容
发明目的:针对上述现有技术中存在的技术问题,本申请提供了一种通过原子层沉积法制备二硫化铼薄膜的方法。
技术方案:本发明所述的一种原子层沉积二硫化铼薄膜的方法,包括以下步骤:
(1)将铼源装入源瓶,加热到50~250℃并保持,将置有基底样品的反应腔加热到300~600℃并保持;
(2)利用载气将步骤(1)加热后的铼源送入加热后的反应腔,使铼源与基底样品表面发生自限制化学吸附,铼源蒸气送入结束后,继续通入载气将反应副产品和残余的铼源冲洗干净;
(3)利用载气将硫化氢送入反应腔,使硫化氢与铼源发生自限制化学反应,在基底样品上生成二硫化铼薄膜,硫化氢吹入结束后,继续通入载气将反应副产品和残余硫化氢冲洗掉。
步骤(1)中,所述铼源是五氯化铼、羰基铼或氟化铼。
步骤(1)中,所述源瓶和所述反应腔加热后均保持1~120min。
步骤(1)和步骤(2)中,所述基底样品为金属、蓝宝石、碳化硅、硅、云母、石英或氧化硅。
步骤(2)和步骤(3)中,所述载气是氮气或氩气,载气流量是10~500mL/min。
步骤(2)中,所述载气将铼源在0.1~300s内送入反应腔,步骤(3)中,所述载气将硫化氢在0.1~300s内送入反应腔。
步骤(2)和步骤(3)中,铼源蒸气送入结束后,硫化氢吹入结束后,均继续通入载气并保持1~500s。
该制备方法中包含了两个自限制化学反应,构成一个完整的循环,通过控制该循环数,可以精确的控制所生长二硫化铼薄膜的厚度。
原子层沉积工艺(ALD)依靠前驱体在基底样品表面的自限制化学反应沉积薄膜,通过交替通入前驱体脉冲,原子层沉积可以在高深宽比的结构上均匀沉积薄膜,而且薄膜的厚度可以通过循环次数来精确控制。由于沉积温度较低,对基底的耐高温性没有要求,该方法可以被广泛地应用。
有益效果:采用本发明方法生长的二硫化铼薄膜具有质量均匀,表面平整,厚度可以精确控制等优点;并且制备方法易操作,重复性好,对于复杂结构的衬底都可以生长,适合用于自动化、大规模制备生产二硫化铼薄膜。
附图说明
图1为本发明利用原子层沉积设备制备二硫化铼薄膜的示意图;
图中相关标注名称如下:1.真空泵;2.反应腔体;3.腔体加热丝;4.待沉积基底样品;5.V2气动阀;6.H2S源瓶;7.ReCl5源瓶加热丝;8.ReCl5源瓶;9.V1气动阀;10.防倒吸瓶;11.NaOH溶液瓶;12.CuSO4溶液瓶;
图2是ALD制得ReS2薄膜拉曼表征图。
具体实施方式
下面结合具体实施例对本申请作出详细说明。
本申请利用如图1所示的一种原子层沉积设备制备二硫化铼薄膜,如图1所示的原子层沉积设备,包括放置有待沉积基底样品4的反应腔体2,反应腔体2外设有腔体加热丝3,反应腔体2出口通过管道依次连接真空泵1、防倒吸瓶10、NaOH溶液瓶和CuSO4溶液瓶,反应腔体2入口处并列连接H2S源瓶6和ReCl5源瓶8,ReCl5源瓶8外设有ReCl5源瓶加热丝7,其中,ReCl5源瓶8和反应腔体2之间设有V1气动阀9,H2S源瓶和反应腔体2之间设有.V2气动阀5。
本申请利用上述原子层沉积设备制备二硫化铼薄膜的方法,包括以下步骤:
步骤S1.通过ReCl5源瓶加热丝7,将ReCl5源瓶8加热到50~250℃并保持1~120min,通过腔体加热丝3,将放置有待沉积基底样品4的反应腔体2加热到300~600℃并保持1~120min;
步骤S2.打开V1气动阀9,载气N2将ReCl5送入反应腔体2,ReCl5通过化学吸附沉积在待沉积基底样品4表面,关闭V1气动阀9,V1气动阀9从开启到关闭的时间为0.1~300s,继续通入载气N2并保持1~500s,将反应腔体2内残余的ReCl5和反应副产物冲洗干净;
步骤S3.打开V2气动阀5,载气N2将H2S送入反应腔体2,H2S通过化学吸附在ReCl5表面并与之反应生成ReS2,关闭V2气动阀5,V2气动阀5从开启到关闭的时间为0.1~300s,继续通入载气N2并保持1~500s,将反应腔体2内残余的H2S和反应副产物冲洗干净。
步骤S2和S3包含了两个自限制化学反应,他们构成一个完整的循环,通过控制该循环数目,可以精确地控制所生长ReS2薄膜的厚度,得到质量均匀,表面平整的ReS2薄膜。
防倒吸瓶10,NaOH溶液11和CuSO4溶液12用于清洗残余H2S。
采用共聚焦拉曼光谱仪(厂家:Horiba Jobin Yvon,型号:LabRAM HR UV-Visible)对上述制备所得ReS2薄膜进行拉曼测定和统计。结果如图2所示,根据图2拉曼所得表征图片可知,存在150cm-1Eg峰,210cm-1Ag峰,该峰与ReS2特征峰相一致,说明制得薄膜为ReS2,且结晶性良好。

Claims (7)

1.一种原子层沉积二硫化铼薄膜的方法,其特征在于,包括以下步骤:
(1)将铼源装入源瓶,加热到50~250℃并保持,将置有基底样品的反应腔加热到300~600℃并保持;
(2)利用载气将步骤(1)加热后的铼源送入加热后的反应腔,使铼源与基底样品表面发生自限制化学吸附,铼源蒸气送入结束后,继续通入载气将反应副产品和残余的铼源冲洗干净;
(3)利用载气将硫化氢送入反应腔,使硫化氢与铼源发生自限制化学反应,在基底样品上生成二硫化铼薄膜,硫化氢吹入结束后,继续通入载气将反应副产品和残余硫化氢冲洗掉。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述铼源是五氯化铼、羰基铼或氟化铼。
3.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述源瓶和所述反应腔加热后均保持1~120min。
4.根据权利要求1所述的方法,其特征在于,步骤(1)和步骤(2)中,所述基底样品为金属、蓝宝石、碳化硅、硅、云母、石英或氧化硅。
5.根据权利要求1所述的方法,其特征在于,步骤(2)和步骤(3)中,所述载气是氮气或氩气,载气流量是10~500mL/min。
6.根据权利要求1所述的方法,其特征在于,步骤(2)中,所述载气将铼源在0.1~300s内送入反应腔,步骤(3)中,所述载气将硫化氢在0.1~300s内送入反应腔。
7.根据权利要求1所述的方法,其特征在于,步骤(2)和步骤(3)中,铼源蒸气送入结束后,硫化氢吹入结束后,均继续通入载气并保持1~500s。
CN201910521110.5A 2019-06-17 2019-06-17 一种原子层沉积二硫化铼薄膜的方法 Pending CN110205605A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910521110.5A CN110205605A (zh) 2019-06-17 2019-06-17 一种原子层沉积二硫化铼薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910521110.5A CN110205605A (zh) 2019-06-17 2019-06-17 一种原子层沉积二硫化铼薄膜的方法

Publications (1)

Publication Number Publication Date
CN110205605A true CN110205605A (zh) 2019-09-06

Family

ID=67793023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910521110.5A Pending CN110205605A (zh) 2019-06-17 2019-06-17 一种原子层沉积二硫化铼薄膜的方法

Country Status (1)

Country Link
CN (1) CN110205605A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724931A (zh) * 2019-11-27 2020-01-24 上海纳米技术及应用国家工程研究中心有限公司 一种原子层沉积制备二硫化铼薄膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110991A1 (en) * 2001-02-13 2002-08-15 Micron Technology, Inc. Sequential pulse deposition
CN105839072A (zh) * 2016-04-19 2016-08-10 陕西师范大学 一种化学气相沉积制备二硫化铼薄膜的方法
US20180155832A1 (en) * 2016-12-02 2018-06-07 Asm Ip Holding B.V. Atomic layer deposition of rhenium containing thin films

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110991A1 (en) * 2001-02-13 2002-08-15 Micron Technology, Inc. Sequential pulse deposition
CN105839072A (zh) * 2016-04-19 2016-08-10 陕西师范大学 一种化学气相沉积制备二硫化铼薄膜的方法
US20180155832A1 (en) * 2016-12-02 2018-06-07 Asm Ip Holding B.V. Atomic layer deposition of rhenium containing thin films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724931A (zh) * 2019-11-27 2020-01-24 上海纳米技术及应用国家工程研究中心有限公司 一种原子层沉积制备二硫化铼薄膜的方法

Similar Documents

Publication Publication Date Title
CN107338422A (zh) 一种原子层沉积二硫化钼薄膜的方法
Su et al. Chemical vapor deposition of titanium nitride thin films: kinetics and experiments
CN104561937A (zh) 原子层沉积制备具有固体润滑作用的ws2薄膜方法
CN104389016A (zh) 一种快速制备大尺寸单晶石墨烯的方法
CN107445488A (zh) 一种制备大面积均匀单层过渡金属硫属化合物的方法
CN105039928B (zh) 一种金刚石/碳化硅三维复合结构的制备方法及其制备的产品
CN112663144A (zh) 二维In2S3/SnS异质结晶体材料的制备方法
CN110205605A (zh) 一种原子层沉积二硫化铼薄膜的方法
Fanni et al. Increasing polycrystalline zinc oxide grain size by control of film preferential orientation
Jung et al. Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM
CN110804731B (zh) 一种原子层沉积技术生长MnxN薄膜的方法
CN113322522B (zh) 一种外延大单畴大面积单层二硫化钨薄膜的制备方法
KR102139285B1 (ko) 산화물 박막 형성을 위한 기상 증착용 유기금속 전구체 화합물 및 이의 제조방법
Lisha et al. Research progress of laser-assisted chemical vapor deposition
KR100643637B1 (ko) 니켈 아미노알콕사이드 선구 물질을 사용하는 원자층침착법으로 니켈 산화물 박막을 제조하는 방법
KR101496149B1 (ko) 결정질 실리콘 제조 방법
CN114540793B (zh) 一种钴基氧化物薄膜的原子层沉积方法
JPS63256596A (ja) ダイヤモンドの気相合成法
Cheng et al. Hydrogen-driven boron nitride phase differentiation during the epitaxial nucleation on the diamond (001) surface
Pradhan et al. Study of atomic layer deposition of ZnO on a polar oxide substrate by in situ quartz crystal microbalance
Suilik et al. Experimental study of nucleation and quality of CVD diamond adopting two-step deposition approach using MPECVD
Chaliyawala et al. Synthesis of graphene by natural camphor
KR101184924B1 (ko) 금속층 형성 방법
Szczepanik et al. ZnO nanostructures by atomic layer deposition method
Tu et al. Epitaxial growth of copper film by MOCVD

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190906