CN110202148B - 一种激光增材制造高熵合金基多相增强梯度复合材料的方法 - Google Patents

一种激光增材制造高熵合金基多相增强梯度复合材料的方法 Download PDF

Info

Publication number
CN110202148B
CN110202148B CN201910587444.2A CN201910587444A CN110202148B CN 110202148 B CN110202148 B CN 110202148B CN 201910587444 A CN201910587444 A CN 201910587444A CN 110202148 B CN110202148 B CN 110202148B
Authority
CN
China
Prior art keywords
lower layer
composite material
laser
powder
mixed powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910587444.2A
Other languages
English (en)
Other versions
CN110202148A (zh
Inventor
李嘉宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201910587444.2A priority Critical patent/CN110202148B/zh
Publication of CN110202148A publication Critical patent/CN110202148A/zh
Application granted granted Critical
Publication of CN110202148B publication Critical patent/CN110202148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种激光增材制造高熵合金基多相增强梯度复合材料的方法。采用同轴送粉法在氩气环境中将Nimonic93‑Zn‑SiB2‑CeO2混合粉末激光熔化沉积于TA1钛合金表面形成下层;后将FeCoCrAlCu高熵合金‑TiC混合粉末激光熔化沉积于下层之上形成上层;上层与下层之间呈良好的冶金结合且都具有较好的耐磨性。试验结果表明,纳米晶产生会在一定程度上改善下层的耐磨性;韧性较好的非晶区也产生于下层,使该层对摩擦副产生强烈的缓冲效果,也在一定程度上改善了梯度复合材料的耐磨性。本发明能获得具有极高耐磨性的高熵合金基多相增强梯度复合材料,具有工艺简单方便、适用性强、便于推广应用等优点。关键词:梯度复合材料;激光增材制造;钛合金。

Description

一种激光增材制造高熵合金基多相增强梯度复合材料的方法
技术领域
本发明涉及一种激光增材制造高熵合金基多相增强梯度复合材料的方法,属于材料表面强化技术领域。特别涉及一种利用激光熔化沉积技术在钛合金表面制备高熵合金基非晶-纳米晶多相增强梯度复合材料的方法。
背景技术
激光熔化沉积(LMD)技术通过高能密度激光束使粉末及工件表面加热并熔化,经快速凝固后逐层沉积在工件表层形成熔覆层,从而强化工件表面性能;LMD技术可根据工件不同部位工作条件实现梯度复合材料的直接制造。梯度复合材料可有效缓解因温度梯度造成的热应力,并在一定程度上降低残余应力,进一步提高材料性能。非晶-纳米晶材料由于其耐高温、摩擦系数小、抗腐蚀等特点被广泛应用于航空航天领域,且激光熔池急冷特性有利于非晶-纳米晶等多物相形成;Nimonic93高温合金具有良好的耐磨性、韧性及抗热疲劳等性能,被广泛应用于表面强化技术领域;FeCoCrAlCu高熵合金(HEA)由于其混合熵极高,在激光熔池凝固过程中可有效抑制脆性相析出,具有高硬度、耐磨及抗腐蚀极强等性能。Zn可有效催生非晶-纳米晶相,还可与Nimonic93中Co在激光熔池中发生化学反应生成性能良好的纳米级金属间化合物颗粒;SiB2是一种耐磨及抗高温的陶瓷材料,利于非晶-纳米晶相生成;适量CeO2可有效提升液态金属流动性,减弱枝晶生长方向性,生成组织均匀致密的激光熔覆层。
发明内容
基于上述科学原理,本发明依据激光辐射金属表面所形成高温熔池的急冷特性,提出一种通过LMD技术制备高熵合金基多相增强梯度复合材料的方法,所制备高熵合金基多相增强梯度复合材料的组织结构见图1。
采用同轴送粉法在氩气环境中将Nimonic93-Zn-SiB2-CeO2混合粉末LMD于TA1钛合金表面形成下层,大量硼化物陶瓷相及共晶产生于下层,共晶利于LMD层中的非晶相产生(见图2a);由于激光熔池的急冷特性,许多晶体还未得到充分时间长大就已凝固,在Nimonic93基LMD层上形成许多纳米颗粒(见图2b);图2c为下层局部TEM测试结果,证明有非晶化区域在下层形成,利于改善下层耐磨性。
采用同轴送粉法在氩气环境中将FeCoCrAlCu-TiC混合粉末LMD于所制备下层表面形成组织均匀致密的上层(高熵合金基LMD层),且有许多颗粒状TiC分布于上层基底(见图3a);图3b为上层能谱面扫分析测试区域及EDS图谱,证明有该块状析出物为碳化物增强相。
采用MM200磨损试验机测定TA1钛合金表面高熵合金基多相增强梯度复合材料的耐磨性;选用尺寸Φ40×12 mm的YG6硬质合金磨轮,转速400 r/min,载荷10 kg。
如图4所示,所制备梯度复合材料的磨损体积随测试时间延长呈明显下降趋势,表明下层的耐磨性明显高于上层,下层的磨损体积约为TA1基材1/20;纳米晶产生会在一定程度上改善下层的耐磨性;韧性较好的非晶区也产生于下层,使该层对摩擦副产生了强烈的缓冲效果,也在一定程度上改善了梯度复合材料的耐磨性。
所制备梯度复合材料的摩擦系数(COF)随接触载荷变化如图5所示,上层的COF对所接触载荷较变化较为敏感,随着接触载荷从65 N增加到95 N,上层的COF从0.32增加到0.35;随着接触载荷从75 N增加到95 N,下层COF从0.35减少到0.34,表明下层具有较好的耐磨性。
综合分析,本发明采用激光增材制造技术,针对钛合金表面耐磨性较差的缺点,采用在TA1钛合金表面LMD Nimonic93-Zn-SiB2-CeO2 混合粉末的工艺方法制备下层;后在下层表面LMD FeCoCrAlCu-TiC混合粉末制备上层,形成梯度复合材料,达到钛合金表面增强的目的。
具体步骤:
(1)在LMD之前,将TA1钛合金表面用120号砂纸打磨平整,使表面粗糙度达Ra 2.5μm;后用体积百分比25%硫酸水溶液对钛合金表面进行清洗,酸洗时间5~10 min;后用清水冲洗、用酒精钛合金擦拭干净、吹干;
(2)将一定质量比例Nimonic93-Zn-SiB2-CeO2的混合粉末以同轴送粉方式LMD于钛合金表面形成下层;再将一定质量比例的FeCoCrAlCu-TiC混合粉末LMD于下层表面形成上层;所述Nimonic93 粉末尺寸10~150 μm,Zn粉末尺寸10~150 μm,SiB2粉末尺寸10~100 μm,CeO2粉末尺寸1~50 μm;
(3)在上、下层成形过程中,激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率1.2 kW,激光束扫描速度 2~9 mm/s,送粉速率30 g/min,光斑直径5 mm,氩气流速30 L/min,搭接率25%,上层与下层的工艺方法与参数相同。
步骤(1)所述TA1钛合金成分(wt.%):0.011C, 0.035Fe, 0.001 H, 0.002N,0.038O,余量Ti;
步骤(2)所述混合粉末各成分(wt.%):5Zn,4SiB2,1CeO2,余量 Nimonic93(下层);10TiC,余量FeCoCrAlCu(上层);Nimonic93中各化学元素成分(wt.%):0.13C,20Cr,15Co,1Al,2Ti,1Fe,0.02B,0.8Mn,0.8Si,0.015P,0.015S,0.2Cu,0.0025Pb,余量Ni;FeCoCrAlCu粉末各元素摩尔质量相同。
本发明是在氩气环境中对钛合金试样表面进行LMD处理,后关闭激光,等待2~3秒钟后关闭氩气保护,使保护气对试样进行充分保护,能够获得具有极高耐磨性的高熵合金基多相增强梯度复合材料。本发明具有工艺简单方便、适用性强、便于推广应用等优点。
一、具体实施方式
实施例1:
将TA1钛合金切成10 mm×10 mm×25 mm的长方体试样,在进行LMD之前,清理钛合金表面,并拭净、吹干;将90Nimonic93-5Zn-4SiB2-1CeO2(wt.%)混合粉LMD于TA1钛合金10mm×25 mm面形成下层,后将90FeCoCrAlCu-10TiC(wt.%)混合粉末LMD于下层之上,形成上层。
具体工艺步骤:
(1) 在LMD之前,将TA1钛合金表面用120号砂纸打磨平整,使其表面粗糙度达Ra2.5 μm;后用体积百分比25%硫酸水溶液对试样表面进行清洗,酸洗时间5~10 min;后用清水冲洗、用酒精将试样表面擦拭干净、吹干;
(2) 用电子天平分别称取Nimonic93粉末90 g,Zn粉末5 g,SiB2粉末4 g,CeO2粉末1 g,放入1号烧杯;用天平再称取FeCoCrAlCu粉末90 g,TiC粉末10 g,放入2号烧杯,其中Nimonic93粉末尺寸100 μm,Zn粉末尺寸100 μm,SiB2粉末尺寸50 μm,CeO2粉末尺寸10 μm;
(3) 用同轴送粉装置直接将1号烧杯中的混合粉末吹向试样待处理表面进行LMD,形成下层;工艺参数:激光功率1.2 kW,激光束扫描速度 4 mm/s,送粉速率30 g/min,光斑直径5 mm,搭接率25%,氩气流速30 L/min;
(4) 再用同轴送粉器将烧杯2中的混合粉末吹向下层表面进行LMD,形成上层;上层的工艺参数与之前制备下层相同,也采用氩气作为保护气体。
五、附图说明
图1 高熵合金基多相增强梯度复合材料的组织结构
图2 (a) 下层显微组织, (b) 下层中形成的纳米颗粒, (c) 下层TEM测试
图3 (a) 上层显微组织, (b) 上层能谱面扫分析区域及其结果
图4 LMD梯度复合材料磨损体积随时间延长变化图
图5 LMD梯度复合材料COF随载荷变化分布图

Claims (1)

1.一种激光增材制造高熵合金基多相增强梯度复合材料的方法,其特征是:
(1)将一定质量比例Nimonic93-Zn-SiB2-CeO2混合粉末充分混合并烘干;后用同轴送粉装置将Nimonic93-Zn-SiB2-CeO2混合粉末吹向TA1钛合金表面进行激光熔化沉积形成下层,采用激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率1.2 kW,扫描速度 2~9 mm/s,送粉速率30 g/min,光斑直径5 mm,氩气流速30 L/min,搭接率25%;下层混合粉末成分质量分数:5Zn,4SiB2,1CeO2,余量 Nimonic93;Nimonic93中各化学元素成分质量分数:0.13C,20Cr,15Co,1Al,2Ti,1Fe,0.02B,0.8Mn,0.8Si,0.015P,0.015S,0.2Cu,0.0025Pb,余量Ni;
(2)将一定质量比例FeCoCrAlCu-TiC混合粉末充分混合并烘干;后用同轴送粉装置将FeCoCrAlCu-TiC混合粉末吹向下层表面进行LMD形成上层;激光束垂直扫描并同轴吹送氩气保护熔池及镜筒,工艺参数:激光功率1.2 kW,扫描速度 2~9 mm/s,送粉速率30 g/min,光斑直径5 mm,氩气流速30 L/min,搭接率25%;上层混合粉末成分质量分数:10TiC,余量FeCoCrAlCu;FeCoCrAlCu粉末各元素摩尔质量相同。
CN201910587444.2A 2019-07-02 2019-07-02 一种激光增材制造高熵合金基多相增强梯度复合材料的方法 Active CN110202148B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910587444.2A CN110202148B (zh) 2019-07-02 2019-07-02 一种激光增材制造高熵合金基多相增强梯度复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910587444.2A CN110202148B (zh) 2019-07-02 2019-07-02 一种激光增材制造高熵合金基多相增强梯度复合材料的方法

Publications (2)

Publication Number Publication Date
CN110202148A CN110202148A (zh) 2019-09-06
CN110202148B true CN110202148B (zh) 2022-01-21

Family

ID=67795793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910587444.2A Active CN110202148B (zh) 2019-07-02 2019-07-02 一种激光增材制造高熵合金基多相增强梯度复合材料的方法

Country Status (1)

Country Link
CN (1) CN110202148B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760844A (zh) * 2019-12-09 2020-02-07 山东建筑大学 一种激光制备钛合金氧化石墨烯增强复合材料方法
CN111155083A (zh) * 2020-01-19 2020-05-15 珠海华瑞达电子科技有限公司 一种覆有涂层的热作模具钢及其制备方法
CN111590224B (zh) * 2020-05-29 2021-10-26 广东工业大学 一种激光辅助制备大块非晶合金的系统及方法
CN112195463A (zh) * 2020-07-31 2021-01-08 中北大学 一种激光熔覆AlCoCrFeNi/NbC梯度高熵合金涂层材料及方法
CN112226758B (zh) * 2020-09-17 2022-01-04 北京科技大学 一种耐磨抗氧化高熵合金涂层及其制备方法
CN112958783B (zh) * 2020-10-09 2022-08-12 山东大学 一种激光熔化沉积难熔高熵合金微叠层复合材料及其制备方法与应用
CN112222413B (zh) * 2020-10-15 2022-05-31 温州大学 一种梯度结构高熵合金的冷轧复合激光增材制造工艺方法
CN113981333B (zh) * 2021-10-15 2022-04-19 中国航发北京航空材料研究院 一种高熵增强非晶合金复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561996A (zh) * 2015-01-17 2015-04-29 山东建筑大学 一种冰环境下使钛合金表面激光熔覆涂层超细纳米化的方法
CN105671545A (zh) * 2016-01-26 2016-06-15 山东科技大学 一种高硬度单相高熵合金涂层及其制备方法和用途
CN106048380A (zh) * 2016-07-26 2016-10-26 沈阳大学 一种高熵合金基复合涂层及其制备方法
CN107142475A (zh) * 2017-04-22 2017-09-08 南京工程学院 一种激光熔敷用TiC增强新型AlFeCrCoNiTi合金基复合材料涂层及制备方法
DE102017213391A1 (de) * 2016-08-04 2018-02-08 Honda Motor Co., Ltd. Multimaterialkomponente und Verfahren zu deren Herstellung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905707B1 (fr) * 2006-09-08 2009-01-23 Centre Nat Rech Scient Procede pour deposer sur un substrat une couche mince d'alliage metallique et alliage metallique sous forme de couche mince.
CN104651828B (zh) * 2013-11-22 2017-06-06 沈阳工业大学 一种铁基合金表面制备高熵合金基复合材料改性层用粉料
CN107096923B (zh) * 2017-04-28 2019-04-12 西安交通大学 基于激光增材制造的高熔点高熵合金球形粉末的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561996A (zh) * 2015-01-17 2015-04-29 山东建筑大学 一种冰环境下使钛合金表面激光熔覆涂层超细纳米化的方法
CN105671545A (zh) * 2016-01-26 2016-06-15 山东科技大学 一种高硬度单相高熵合金涂层及其制备方法和用途
CN106048380A (zh) * 2016-07-26 2016-10-26 沈阳大学 一种高熵合金基复合涂层及其制备方法
DE102017213391A1 (de) * 2016-08-04 2018-02-08 Honda Motor Co., Ltd. Multimaterialkomponente und Verfahren zu deren Herstellung
CN107142475A (zh) * 2017-04-22 2017-09-08 南京工程学院 一种激光熔敷用TiC增强新型AlFeCrCoNiTi合金基复合材料涂层及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Microstructure and physical performance of laser-induction nanocrystals modified high-entropy alloy composites on titanium alloy;Jianing Li,Werner Craeghs,Cainian Jing,Shuili Gong;《Materials and Design》;20161206;全文 *

Also Published As

Publication number Publication date
CN110202148A (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
CN110202148B (zh) 一种激光增材制造高熵合金基多相增强梯度复合材料的方法
Wang et al. Improved mechanical properties of AlSi7Mg/nano-SiCp composites fabricated by selective laser melting
Sadhu et al. A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60% WC ceramic coating on Inconel 718
Meng et al. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites
CN103409749B (zh) 一种激光熔覆金属/陶瓷复合涂层及其制备工艺
Zhou et al. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding
Yin et al. High-temperature slide wear of Ni-Cr-Si metal silicide based composite coatings on copper substrate by laser-induction hybrid cladding
Hao et al. Microstructure and wear resistance of in-situ TiN/(Nb, Ti) 5Si3 reinforced MoNbTaWTi-based refractory high entropy alloy composite coatings by laser cladding
CN101144159A (zh) 一种纳米/亚微米TiB-TiC增强钛基复合材料(TiB+TiC)/Ti的制备方法
CN105112908A (zh) 激光熔覆碳化钨陶瓷颗粒增强金属基涂层及其加工方法
Xi et al. In-situ synthesis of aluminum matrix nanocomposites by selective laser melting of carbon nanotubes modified Al-Mg-Sc-Zr alloys
Liu et al. Rapid directionally solidified microstructure characteristic and fracture behaviour of laser melting deposited Nb–Si–Ti alloy
Li et al. Microstructures and mechanical properties of WCP/Ti-6Al-4V composite coatings by laser melt injection and laser-induction hybrid melt injection
Xu et al. Plasma remelting and injection method for fabricating metal matrix composite coatings reinforced with tungsten carbide
Niu et al. TiC ceramic coating reinforced 304 stainless steel components fabricated by WAAM-LC integrated hybrid manufacturing
CN112663050B (zh) 原位自生纳米核壳结构TiC/Ti5Si3颗粒增强复合涂层及其制备方法
CN110438493B (zh) 一种制备CNTs增强高熵合金激光沉积复合材料的方法
CN110184601B (zh) 一种激光制备不锈钢表面石墨烯增强防护层的方法
CN110760837A (zh) 钢铁表面激光熔覆陶瓷增强Ni基复合涂层及其制备方法
Wu et al. Defects in the in situ synthesized TiB2/Fe composite coatings during PTA process
Li et al. Influence of TiC content on microstructure and properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding
Yang et al. Influence of molybdenum on the microstructure and mechanical properties of TiC-TiB 2 reinforced metal matrix composite coatings
Zhou et al. Microstructure, mechanical properties, and tribological properties of laser assisted cold sprayed CuCrZr coatings: Influences of laser power and laser position
Zhong et al. Laser synthesizing NiAl intermetallic and TiC reinforced NiAl intermetallic matrix composite
ZHANG et al. Laser Cladding of Ceramics Reinforced Ni-based Amorphous/Nanocrystalline Composites.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant