CN110194653A - 一种铁尾矿吸热功能陶瓷材料及制备方法 - Google Patents

一种铁尾矿吸热功能陶瓷材料及制备方法 Download PDF

Info

Publication number
CN110194653A
CN110194653A CN201910491603.9A CN201910491603A CN110194653A CN 110194653 A CN110194653 A CN 110194653A CN 201910491603 A CN201910491603 A CN 201910491603A CN 110194653 A CN110194653 A CN 110194653A
Authority
CN
China
Prior art keywords
iron tailings
ceramic material
stage
follows
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910491603.9A
Other languages
English (en)
Other versions
CN110194653B (zh
Inventor
孟军平
王梓瑜
冯倩
梁金生
杨雅迪
高瑞雪
陈荣豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Publication of CN110194653A publication Critical patent/CN110194653A/zh
Application granted granted Critical
Publication of CN110194653B publication Critical patent/CN110194653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1324Recycled material, e.g. tile dust, stone waste, spent refractory material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明为一种铁尾矿吸热功能陶瓷材料及制备方法,该陶瓷材料的原料质量百分比为:铁尾矿37~42%,高岭土6~10%,石墨1~13.33%,钾长石5~12%,钠长石0.2~0.5%,碳酸钾1~3%,氧化镁1~4%,四氧化三铁26~35%,各组分之和100%。陶瓷材料的红外发射率不小于0.75,300℃导热系数在1.70W/(m·K)以上,抗压强度不小于70MPa,25次抗热震测试后表面无裂纹(室温到400℃),陶瓷材料为黑色。本发明利用铁尾矿生产了一种新型吸热功能陶瓷,可吸收太阳能,且能达到废物利用的目的。

Description

一种铁尾矿吸热功能陶瓷材料及制备方法
技术领域
本发明属于陶瓷技术领域,具体涉及一种铁尾矿吸热陶瓷材料及制备方法。
背景技术
矿产资源的开发利用是国民经济发展的重要保证,也是人类生存和社会发展的重要基础。我国是一个钢铁产量大国,随着我国钢铁业工业的发展,铁尾矿排放量也越来越大。近年来,我国铁尾矿累积堆存量已达169亿吨,铁尾矿占总量的三分之一以上。
大量铁尾矿堆积占用大量土地资源,带来环境污染和安全隐患。其主要危害包括下面几个方面:(1)巨大的堆放量占用大量耕地,覆盖了大量植被,加剧了人多地少的矛盾;(2)由于受到技术水平、装备性能和经济条件等因素的限制,导致了资源的严重浪费;(3)长期堆放尾矿,成为潜在的地质灾害源;(4)干旱季节易形成沙尘暴,对周边地区生态环境造成严重影响;(5)对自然景观和旅游资源的破坏,抑制了地方经济的发展。
目前,国内对于尾矿的再利用有王金忠等的强度烧结砖研究、张淑会等的SiC~Y3Al5O12复相陶瓷研究、高遇事等的塑性烧结砖研究,以及用于制备远红外陶瓷的研究等,其他还仅仅是局限在有价金属的再提取和一些基础性、低技术含量的研究上,而对于吸热陶瓷领域的研究还有待发展。无法在较低成本条件下,提高铁尾矿资源的综合利用水平。其中铁尾矿为主原料制备陶瓷的研究多数在远红外陶瓷领域,在太阳能吸热材料领域并未见应用。
同时随着我国经济的迅猛发展,对于能源的需求越来越大,而我国70%以上的能源是由煤炭发电提供的,随着有限煤炭资源的消耗,寻求新的能源替代品成为各国竞相发展的重点,此时作为清洁、无限性的太阳能成为世界瞩目的焦点。为了将铁尾矿综合资源化,本发明将铁尾矿作为主要原料,并且将制备的吸热功能陶瓷应用于太阳能吸热材料领域,以达到既环保又能开拓新的太阳能吸热材料的目的。
发明内容
本研究旨在利用铁尾矿生产一种新型吸热功能陶瓷,可吸收太阳能,以便于达到废物利用的目的。目前,陶瓷吸热体的发展瓶颈在于材料的高温强度和性能,对于原材料研究仍是重点。吸热体的材质必须满足以下几个条件:耐高温;具有良好的抗热震性;良好的导热性和吸热、放热速率;具有较大的密度和比热容;耐化学腐蚀,具有较好的抗渣性、抗氧化性;具有足够的机械强度;寿命长、价格适中、成本低。
为实现上述目的,本发明采用的技术方案是:
一种铁尾矿吸热功能陶瓷材料,该陶瓷材料的原料质量百分比为:铁尾矿37~42%,高岭土6~10%,石墨1~13.33%,钾长石5~12%,钠长石0.2~0.5%,碳酸钾1~3%,氧化镁1~4%,四氧化三铁26~35%,各组分之和100%。
一种铁尾矿吸热功能陶瓷材料的制备方法,该制备方法采用上述铁尾矿吸热陶瓷材料的重量百分比组成和以下工艺步骤:
A、将铁尾矿与球和水以1:2:1.5的比例放入球磨机中球磨180分钟以上,球磨后过200目筛,获得铁尾矿粉体;
B、取37~42%质量分数的步骤A中得到的铁尾矿粉体及其余所有原料与球以1:2的比例放入球磨机中,球磨40分钟至一个小时,将各种原料混合均匀,过筛;
C、采用半干压成型法制得陶瓷胚体;
D、将制得的陶瓷胚体进行烧制,烧结制度是:第一阶段:室温~900℃,升温速率为5℃/min;第二阶段为:900℃保温120min;第三阶段为:900℃~1000℃,升温速率为5℃/min;第四阶段,1000℃保温60分钟;第五阶段为:1000℃~1100℃,升温速率为3℃/min;第六阶段为:在1100℃,保温60min;第七阶段为:1100~烧结温度(1100~1200℃),升温速率为3℃/min;第八阶段为:在烧结温度,保温120min,第九阶段:随炉冷却至室温。
与现有技术相比,本发明的有益效果是:
本发明基于充分发挥铁尾矿中有效成分的作用,同时降低了生产成本,设计将废弃铁尾矿替换传统陶瓷中粘土页岩等矿物原料成分,通过改善原料组成配方,来制备一种铁尾矿吸热陶瓷材料,降低了生产对优质矿物资源的依赖,提高了资源的利用效率,减少了固体废物的排放,大大降低了陶瓷制品的生产成本,适于工业化应用;由于铁尾矿中硅、铁和铝的成分较多,有助于和其他碱土金属形成固溶体,利于颗粒之间的相互靠拢,加速陶瓷烧结的致密化程度,节省了粘土成分的使用,降低了陶瓷生产成本;
与现有技术相比,本发明吸热功能陶瓷利用废弃铁尾矿中有效的氧化物成分,经过大量实验改善了原料配方组成,并制定了相应的烧结工艺,其中红外发射率最高达0.80(可更多的吸收太阳辐射的热量),300℃导热系数可达1.75W/(m·K),抗压强度可达78MPa,25次抗热震测试后表面无裂纹(室温到400℃)。本发明制备方法工艺简单,相较于传统金属类太阳能吸热材料,如铜管、铝合金等成本低廉,难被腐蚀,吸热性能与力学性能良好,且原料中大量使用了铁尾矿,经济环保,并为尾矿的再利用提供了一种可行性思路,适于工业化应用。
本发明配方中钾、钠长石是熔剂,有助于降低烧成温度;碳酸钾与石墨共同促进成分中氧化铁还原成四氧化三铁增加黑度,氧化镁增加其力学性能,同时配方中加入了大量四氧化三铁,有助于提高铁尾矿的利用率,降低白度与透明度,达到更好的吸热效果。
本发明方法中优选1140℃的烧结温度,烧结制度充分考虑了陶瓷整体烧结过程发生的各类反应,能保证陶瓷不被熔化且能烧结成功。
附图说明
图1为本发明实施例2的配方的铁尾矿吸热功能陶瓷材料烧结后的XRD图,烧结后的功能陶瓷材料的主晶相是锌铁尖晶石。
具体实施方式
下面结合实施例及附图进一步叙述本发明,但并不以此作为对本申请保护范围的限定:
本发明铁尾矿吸热功能陶瓷材料,该陶瓷材料的原料质量百分比为:铁尾矿37~42%,高岭土6~10%,石墨1~13.33%,钾长石5~12%,钠长石0.2~0.5%,碳酸钾1~3%,氧化镁1~4%,四氧化三铁26~35%,各组分之和100%。
一种铁尾矿吸热功能陶瓷材料的制备方法,该制备方法采用上述铁尾矿吸热陶瓷材料的重量百分比组成和以下工艺步骤:
A、将铁尾矿与球和水以1:2:1.5的比例放入球磨机中球磨180分钟以上,球磨后过200目筛,获得铁尾矿粉体;
B、取37~42%质量分数的步骤A中得到的铁尾矿粉体及其余所有原料与球以1:2的比例放入球磨机中,球磨40分钟至一个小时,将各种原料混合均匀,过筛;
C、采用半干压成型法制得陶瓷胚体;
将上述步骤B中制备的陶瓷粉体加入占重量比8%的水混合均匀后放入模具中,压制成具有一定厚度的湿坯,放入100℃烘干箱中烘干1小时即为所需坯体;
D、将制得的陶瓷胚体进行烧制,烧结制度是:第一阶段:室温~900℃,升温速率为5℃/min;第二阶段为:900℃保温120min;第三阶段为:900℃~1000℃,升温速率为5℃/min;第四阶段,1000℃保温60分钟;第五阶段为:1000℃~1100℃,升温速率为3℃/min;第六阶段为:在1100℃,保温60min;第七阶段为:1100~烧结温度(1100~1200℃),升温速率为3℃/min;第八阶段为:在烧结温度,保温120min,第九阶段:随炉冷却至室温,即可烧制出目标陶瓷。
所述陶瓷材料的红外发射率不小于0.75,300℃导热系数在1.70W/(m·K)以上,抗压强度不小于70MPa,25次抗热震测试后表面无裂纹(室温到400℃),陶瓷材料为黑色。
所述烧结温度优选1140~1170℃。
实施例1
本实施例铁尾矿吸热功能陶瓷材料原料质量百分比称取原料为:铁尾矿40%,高岭土8%,石墨6.37%,钾长石10%,钠长石0.33%,碳酸钾1.33%,氧化镁3.67%,四氧化三铁30.3%。
本实施例中所述铁尾矿为滦平铁尾矿,其主要成分为:铁元素7.88%,二氧化硅44.87%,磷元素0.061%,氧化锰0.148%,氧化镁14.579%,氧化钙15.486%,二氧化钛1.060%,各组分之和为100%。
A、铁尾矿粉体制备:
先将铁尾矿放入球磨机中球磨180min,球磨后干燥,过200目筛即制得铁尾矿粉体。
B、按表中实施例1的比例称取铁尾矿、高岭土、石墨、二氧化硅、钾长石、钠长石、碳酸钾、氧化镁、四氧化三铁一起放入球磨机球磨40min,混合料过20目筛后所得的粉末即为所需陶瓷粉体;
C、制备陶瓷坯体:
将上述步骤B中制备的陶瓷粉体加入占重量比8%的水混合均匀后放入模具中,压制成具有一定厚度的湿坯,放入100℃烘干箱中烘干1小时即为所需坯体;
D、产品制备及烧成的方法:
第一阶段:室温~900℃,升温速率为5℃/min;第二阶段为:900℃保温120min;第三阶段为:900℃~1000℃,升温速率为5℃/min;第四阶段,1000℃保温60分钟;第五阶段为:烧结温度1000℃~1100℃,升温速率为3℃/min;第六阶段为:1100℃保温60min;第七阶段为:1100℃~烧结温度,升温速率为3℃/min;第八阶段:在烧结温度保温120min;第九阶段:随炉冷却至室温,即可烧制出目标陶瓷。烧结温度为1170℃。
对制备出的陶瓷材料进行性能测试,平均红外发射率为0.76,在300摄氏度其导热系数为1.70W/(m·K),抗压强度可达71MPa,25次抗热震测试后表面无裂纹(室温到500℃)。
实施例2
本实施例原料种类来源及制备方法同实施例1,不同之处在于,本实施例中石墨的质量分数为3.34%,四氧化三铁的质量分数为33.33%。烧结温度为1140℃。
对制备出的陶瓷材料进行性能测试,平均红外发射率为0.80,在300摄氏度其导热系数为1.75W/(m·K),抗压强度可达78MPa,25次抗热震测试后表面无裂纹(室温到500℃)。
实施例3~4
对实施例1~4进行相关性能测试,均能满足红外发射率要求及抗热震测试要求,抗压强度为70MPa以上,在300摄氏度其导热系数在1.70W/(m·K)以上,且陶瓷材料整体呈现黑色。
本发明未述及之处适用于现有技术。

Claims (4)

1.一种铁尾矿吸热功能陶瓷材料,该陶瓷材料的原料质量百分比为:铁尾矿37~42%,高岭土6~10%,石墨1~13.33%,钾长石5~12%,钠长石0.2~0.5%,碳酸钾1~3%,氧化镁1~4%,四氧化三铁26~35%,各组分之和100%。
2.根据权利要求2所述的制备方法,其特征在于,所述陶瓷材料的红外发射率不小于0.75,300℃导热系数在1.70W/(m·K)以上,抗压强度不小于70MPa,25次抗热震测试后表面无裂纹(室温到400℃),陶瓷材料为黑色。
3.一种权利要求1或2所述的铁尾矿吸热功能陶瓷材料的制备方法,该制备方法采用上述铁尾矿吸热陶瓷材料的重量百分比组成和以下工艺步骤:
A、将铁尾矿与球和水以1:2:1.5的比例放入球磨机中球磨180分钟以上,球磨后过200目筛,获得铁尾矿粉体;
B、取37~42%质量分数的步骤A中得到的铁尾矿粉体及其余所有原料与球以1:2的比例放入球磨机中,球磨40分钟至一个小时,将各种原料混合均匀,过筛;
C、采用半干压成型法制得陶瓷胚体;
D、将制得的陶瓷胚体进行烧制,烧结制度是:第一阶段:室温~900℃,升温速率为5℃/min;第二阶段为:900℃保温120min;第三阶段为:900℃~1000℃,升温速率为5℃/min;第四阶段,1000℃保温60分钟;第五阶段为:1000℃~1100 ℃,升温速率为3℃/min;第六阶段为:在1100℃,保温60min;第七阶段为:1100~烧结温度,升温速率为3℃/min;第八阶段为:在烧结温度,保温120min,第九阶段:随炉冷却至室温。
4.根据权利要求3所述的制备方法,其特征在于,所述烧结温度为1140~1170℃。
CN201910491603.9A 2019-04-04 2019-06-06 一种铁尾矿吸热功能陶瓷材料及制备方法 Active CN110194653B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910269297 2019-04-04
CN2019102692974 2019-04-04

Publications (2)

Publication Number Publication Date
CN110194653A true CN110194653A (zh) 2019-09-03
CN110194653B CN110194653B (zh) 2022-03-15

Family

ID=67754074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910491603.9A Active CN110194653B (zh) 2019-04-04 2019-06-06 一种铁尾矿吸热功能陶瓷材料及制备方法

Country Status (1)

Country Link
CN (1) CN110194653B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746941A (zh) * 2019-12-11 2020-02-04 北京交通大学 一种新型的定形导热增强型复合相变储能材料及其制备方法
CN115849878A (zh) * 2022-10-25 2023-03-28 中国地质大学(北京) 一种利用钒钛磁铁矿尾矿提高刚玉质陶瓷性能的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261901A (ja) * 2006-03-29 2007-10-11 Mino Shigen Kaihatsu:Kk 廃棄物を主材としたセラミックスおよびその製造方法
CN103979937A (zh) * 2014-05-19 2014-08-13 河北工业大学 含稀土的铁尾矿远红外陶瓷材料及其制备方法
CN103979936A (zh) * 2014-05-19 2014-08-13 河北工业大学 一种铁尾矿远红外陶瓷材料及其制备方法
CN105198393A (zh) * 2015-09-30 2015-12-30 盐城工学院 高发射率红外节能复相陶瓷材料及其制备方法
CN106242281A (zh) * 2016-08-01 2016-12-21 武汉理工大学 一种宽光谱高吸收率黑色玻璃及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261901A (ja) * 2006-03-29 2007-10-11 Mino Shigen Kaihatsu:Kk 廃棄物を主材としたセラミックスおよびその製造方法
CN103979937A (zh) * 2014-05-19 2014-08-13 河北工业大学 含稀土的铁尾矿远红外陶瓷材料及其制备方法
CN103979936A (zh) * 2014-05-19 2014-08-13 河北工业大学 一种铁尾矿远红外陶瓷材料及其制备方法
CN105198393A (zh) * 2015-09-30 2015-12-30 盐城工学院 高发射率红外节能复相陶瓷材料及其制备方法
CN106242281A (zh) * 2016-08-01 2016-12-21 武汉理工大学 一种宽光谱高吸收率黑色玻璃及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《矿产资源工业要求手册》编委会: "《矿产资源工业要求手册 2014修订版》", 31 March 2014, 地质出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746941A (zh) * 2019-12-11 2020-02-04 北京交通大学 一种新型的定形导热增强型复合相变储能材料及其制备方法
CN110746941B (zh) * 2019-12-11 2020-09-08 北京交通大学 一种定形导热增强型复合相变储能材料及其制备方法
CN115849878A (zh) * 2022-10-25 2023-03-28 中国地质大学(北京) 一种利用钒钛磁铁矿尾矿提高刚玉质陶瓷性能的方法

Also Published As

Publication number Publication date
CN110194653B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
Altwair et al. Green concrete structures by replacing cement with pozzolanic materials to reduce greenhouse gas emissions for sustainable environment
CN103288426B (zh) 一种利用工业废料制备页岩气专用压裂支撑剂的方法
CN102731138A (zh) 一种粉煤灰基高强度高气孔率泡沫陶瓷及制备方法
CN104892019A (zh) 一种全部以固体废物为原料制备的超轻陶粒
CN113512408B (zh) 一种基于钢渣-煤矸石的复合储热材料及其制备方法
CN105198394B (zh) 高红外发射率的堇青石‑尖晶石陶瓷材料及其制备方法
CN104529518B (zh) 一种铅锌矿尾矿-赤泥-粉煤灰基泡沫陶瓷及其制备方法
WO2020057094A1 (zh) 一种利用工业硅基废渣制备碳化硅闭孔陶瓷及其制备方法
CN115432993B (zh) 一种固体蓄热材料及其制备方法与应用
CN102167618A (zh) 一种粉煤灰-铁尾矿基多孔保温材料及其制备方法
CN110194653A (zh) 一种铁尾矿吸热功能陶瓷材料及制备方法
CN103288420A (zh) 一种利用粉煤灰制备页岩气专用压裂支撑剂的方法
CN103553556A (zh) 一种利用煤泥、城市污泥和脱硫灰生产建筑陶粒的方法
CN109678462A (zh) 一种超轻质淤泥陶粒及其制备方法
Zhang et al. Resource utilization of solid waste in the field of phase change thermal energy storage
CN102515820A (zh) 一种环保型轻质多孔莫来石陶瓷及其制备方法
Meng et al. Preparation and properties of endothermic functional ceramics with iron tailings as raw materials
CN101717834B (zh) 一种利用电炉钢渣制备蓄热球的方法
CN105293907A (zh) 释放负离子和发射远红外功能泡沫微晶玻璃及其制备方法和应用
CN110483016A (zh) 一种废旧玻璃粉增强的煤系废弃物多孔陶瓷及制备方法
CN103922786B (zh) 一种建筑外墙保温泡沫陶瓷材料
CN105801093B (zh) 一种粉煤灰耐高温绝缘材料及其制备与用途
CN104876626A (zh) 一种外墙保温泡沫陶瓷材料的制备方法
CN114702299A (zh) 一种利用脱碱赤泥生产的储热陶瓷及其制备方法
CN107176848A (zh) 一种致密化蓄热铁砖及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant