CN110171979B - 一种大尺寸个性化生物活性陶瓷植入体的制备方法 - Google Patents

一种大尺寸个性化生物活性陶瓷植入体的制备方法 Download PDF

Info

Publication number
CN110171979B
CN110171979B CN201910432001.6A CN201910432001A CN110171979B CN 110171979 B CN110171979 B CN 110171979B CN 201910432001 A CN201910432001 A CN 201910432001A CN 110171979 B CN110171979 B CN 110171979B
Authority
CN
China
Prior art keywords
bioactive ceramic
printing
personalized
size
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910432001.6A
Other languages
English (en)
Other versions
CN110171979A (zh
Inventor
王迎军
刁静静
赵娜如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Kangrui Medical Equipment Co ltd
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910432001.6A priority Critical patent/CN110171979B/zh
Publication of CN110171979A publication Critical patent/CN110171979A/zh
Application granted granted Critical
Publication of CN110171979B publication Critical patent/CN110171979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/12Materials or treatment for tissue regeneration for dental implants or prostheses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Dermatology (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种大尺寸个性化生物活性陶瓷植入体的制备方法。该制备方法包括如下步骤:(1)高固相含量、低有机添加剂生物活性陶瓷浆料的制备;(2)自主设计定制成型环境控制系统,进行成型‑固化匹配打印;(3)支架干燥和烧结,得大尺寸个性化生物活性陶瓷植入体。本发明通过采用高固相含量陶瓷浆料,结合定制的适用于无机陶瓷打印的成型环境控制系统进行挤出式打印。本发明解决了常温下挤出成型工艺对于高度大于10cm的大尺寸、不规则形状陶瓷支架难以成型的问题,而且可以实现100μm小孔结构的精确控制,得到高强度的生物活性陶瓷植入体。本发明对于推进3D打印陶瓷植入体的临床应用具有重要意义。

Description

一种大尺寸个性化生物活性陶瓷植入体的制备方法
技术领域
本发明涉及陶瓷植入体领域,具体涉及一种大尺寸个性化生物活性陶瓷植入体的制备方法。
背景技术
3D打印技术可以为患者个性化订制采用传统加工方法无法实现的具有复杂结构设计的医疗器械。以前针对解剖学个体差异,主刀医生只能根据患处断层图像选择尺寸相近的植入体,植入体的外观尺度形状与替代部位存在误差,严重影响术后效果。另外,采用传统工艺制备的植入体,修复效果也不理想。个性化设计是3D打印技术最大的优势,它不仅体现在对于植入体外形的个性化,而且也可以实现内部结构的个性化设计。激光打印技术(激光烧结/激光熔融)相对比较成熟,所以目前在骨科临床上应用较成熟的主要是金属植入物,像脊椎植入物和髋臼杯已经被越来越多的医生应用于临床。
与金属材料相比,陶瓷材料具有极好的耐磨性和抗腐蚀性。磷酸三钙生物活性陶瓷材料不仅具有良好的生物活性,而且还具有促进骨组织再生和新生血管形成的作用。Vorndran等报道了一种以5wt%羟丙基甲基纤维素改性β-TCP为基体材料,以水为粘结剂制备多孔β-TCP支架的干粉粘结剂喷射方法,该方法最终制备的支架分辨率低、比表面积小、最大抗压强度为1.2±0.2Mpa(Vorndran E,Klarner M,Klammert U,et al.AdvancedEngineering Materials,2008,10(12):B67-B71;)。Tarafder等报道了微波烧结和孔尺寸对粘结剂喷射法制备的多孔β-TCP支架力学和生物学性能的影响,设计孔尺寸为500μm,孔隙率为27%,1250℃微波烧结后支架的体积密度为42.95±1.60%,最大抗压强度为10.95±1.28MPa(Tarafder S,Balla V K,Davies N M,et al.Journal of Tissue Engineeringand Regenerative Medicine,2013,7(8):631-641;)。Felzmann等报道了利用光固化技术打印β-TCP支架,它的浆料固相含量为45wt%,支架最终致密度为88%,强度为30MPa,内部孔尺寸在300μm左右(Felzmann R,Gruber S,Mitteramskogler G,et al.AdvancedEngineering Materials,2012,14(12):1052-1058;)。Yuan等利用robocasting技术制备了一种用于抗结核药物释放的多孔β-TCP支架(Yuan J,Zhen P,Zhao H,et al.Journal ofMaterials Science,2015,50(5):2138-2147;)。除此之外,间接3D打印方法也可用于制造复杂结构的TCP支架。Bose等报道了一种通过祛除FDM制备的聚合物模具最终得到多孔β-TCP支架的方法(Bose S,Darsell J,Kintner M,et al.Materials Science&EngineeringC-Biomimetic and Supramolecular Systems,2003,23(4):479-486;)。利用类似的方法,Limpanuphap制备了孔尺寸为460μm的多孔TCP支架(Limpanuphap S,Derby B.Journal ofMaterials Science-Materials in Medicine,2002,13(12):1163-1166)。
采用这些3D打印技术可以实现具有定向结构的支架,但由于成型工艺的原因,目前的陶瓷打印依然存在以下几个问题:
1、纯陶瓷打印困难,支架机械强度低;
2、有机添加剂用量高,后处理不彻底增加生物安全性隐患;
3、成型精度低,<300μm的小孔结构支架难以成型;
4、大尺寸,不规则形状陶瓷支架难以成型。
因此,对于大尺寸个性化生物活性陶瓷植入体的打印目前还是一个亟需解决的难题。
发明内容
本发明的目的在于采用高固相含量生物活性陶瓷浆料结合定制的适用于无机材料打印的成型环境控制系统,制备出具有大尺寸个性化外形和精细内部结构的高强度生物活性陶瓷植入体,解决目前生物陶瓷打印存在的问题,具有重要的应用价值和市场前景。
本发明的目的通过以下技术方案实现。
一种大尺寸个性化生物活性陶瓷植入体的制备方法,包括以下步骤:
(1)高固相含量生物活性陶瓷浆料的制备:将溶剂和生物活性陶瓷粉体混合,再球磨均匀,然后加入流变助剂,球磨混合后超声震荡,再低温静置,得固相含量为45vt%-60vt%的生物活性陶瓷浆料;
(2)大尺寸个性化生物活性陶瓷植入体的打印:将步骤(1)的生物活性陶瓷浆料置于打印喷头中,并校准针头的高度;然后加载个性化的打印模型,并编辑模型的尺寸;根据成型尺寸大小、浆料固相含量和打印速度编辑并运行成型环境控制系统的温度和湿度制度;成型环境达到预设参数时开始进行挤出打印,得大尺寸个性化生物活性陶瓷植入体;所述成型环境控制系统温度范围为4℃-50℃,湿度范围为30%-60%;
(3)植入体的干燥和烧结:将步骤(2)打印得到的大尺寸个性化生物活性陶瓷植入体干燥、烧结,最终得到具有高强度的大尺寸个性化生物活性陶瓷植入体。
优选的,步骤(1)所述溶剂为水和分散剂,所述分散剂为聚丙烯酸铵,分散剂用量为生物活性陶瓷粉体质量的0.5%-3%,溶剂的PH值为7-10。
优选的,步骤(1)所述生物活性粉体包括球形或类球形的磷酸钙基或硅酸钙基生物活性陶瓷粉体。
优选的,步骤(1)所述流变助剂为黄原胶、琼脂糖、甲基纤维素或聚乙烯醇,用量为陶瓷粉体0.3wt%-3wt%。
优选的,步骤(1)所述超声震荡的频率为80-150Hz,时间为10-30min,温度为25℃-50℃;所述低温静置的时间为3-50h,温度为4℃-30℃。
优选的,步骤(2)所述选择直径为0.16-1.2mm的TT斜式针头打印;其中,挤出压力为0.1-0.6MPa,打印速度为4-30mm/s。
优选的,步骤(2)中所述打印模型高度为5mm-300mm,打印模型为规则形状或不规则形状的解剖模型。
优选的,步骤(3)中所述烧结是以2-6℃/min升至1000-1200℃保温1-5h,然后再以2-6℃/min冷却至常温。
由以上所述的制备方法制得的一种大尺寸个性化生物活性陶瓷植入体,所得植入体具有大尺寸、个性化外形及精细的内部结构,且抗压强度大于80MPa。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明采用的陶瓷浆料固相含量高,可打印性能好。
(2)本发明通过研究支架固化与打印参数之间的关系,得出成型尺寸-打印参数-环境参数相匹配的一套体系并自主设计开发成型环境控制系统,实现成型-固化可调控打印。
(3)本发明通过对成型-固化匹配性调控,可以精确控制支架的外形尺寸和内部微观结构,得到大尺寸个性化的生物活性陶瓷植入体。
(4)本发明利用高固相含量陶瓷浆料,成型-固化匹配打印,高温处理后的植入体内部缺陷少,获得的机械强度高。
附图说明
图1为本发明实施例1的大尺寸(高度为10cm)生物活性陶瓷支架。
图2a,图2b,图2c为实施例2的3D打印小孔结构(孔尺寸为100μm)的生物活性陶瓷支架俯视图、侧视图和断面图。
图3a,图3b为实施例3中3D打印小孔结构(孔尺寸为100μm)的生物活性陶瓷支架俯视图和断面图。
图4为实施例4的3D打印生物活性陶瓷牙槽模型图。
图5为实施例5的3D打印生物活性股骨模型图。
图6为实施例6的3D打印生物活性陶瓷桡骨模型图。
图7为实施例7的3D打印生物活性陶瓷鼻子模型图。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
一种大尺寸(高度为10cm)生物活性陶瓷的制备如下所述:
步骤一:高固含量浆料的制备(固含量为50vt%)
(1)将9ml去离子水加入0.421g的聚丙烯酸铵中作为溶剂;
(2)用氨水调节聚丙烯酸铵溶液的PH值为9;
(3)将聚丙烯酸铵溶液与28.08gβ-磷酸三钙(β-TCP)粉体混合,使用行星球磨机球磨12h(频率30Hz),得浆料;
(4)向浆料中加入羟丙基甲基纤维素为流变助剂,加入量是β-TCP粉体的1.0wt%,使用行星球磨机高速球磨(频率40Hz)混合3h,然后将浆料移入料筒中。通过超声震荡(频率100Hz,时间30min,温度30℃)、低温静置(时间12h,温度4℃)的方式,制备可以用于三维打印成型的生物活性陶瓷浆料;
步骤二:大尺寸生物活性陶瓷的打印
(1)将步骤一中配制的生物活性陶瓷浆料置于打印喷头,选择直径为0.40mm的TT斜式针头,并校准针头的高度;
(2)加载设计的正六边形打印模型,并编辑模型的尺寸为24*24*100mm。使用挤出压力0.35MPa,打印速度为15mm/s,在环境温度为28℃、湿度为45%的成型环境下进行挤出打印。
步骤三:支架的后期干燥和烧结
(1)将步骤二中打印的支架先常温干燥5天,然后50℃烘箱干燥24h
(2)使用1400℃高温炉,支架的烧结温度为1150℃,保温时间为3h,升温速率为3℃/min,降温速率为3℃/min,最终得到高度为10cm的生物活性陶瓷支架,如图1所示。
实施例2
一种小孔结构(孔尺寸为100μm)生物活性陶瓷支架的制备如下所述:
步骤一:高固含量浆料的制备(固含量为45vt%)
(1)将9ml去离子水加入0.3446g的聚丙烯酸铵中作为溶剂;
(2)用氨水调节聚丙烯酸铵溶液的PH值为8;
(3)将聚丙烯酸铵溶液与22.9745gβ-磷酸三钙(β-TCP)粉体混合,使用行星球磨机球磨6h(频率35Hz),得浆料;
(4)向浆料中加入黄原胶为流变助剂,加入量是β-TCP粉体的1.5wt%,使用行星球磨机高速球磨(频率42Hz)混合3h,然后将浆料移入料筒中。通过超声震荡(频率120Hz,时间25min,温度25℃)、低温静置(时间6h,温度25℃)的方式,制备可以用于三维打印成型的生物活性陶瓷浆料;
步骤二:小孔结构(孔尺寸为100μm)生物活性陶瓷支架的打印
(1)将步骤一中配制的生物活性陶瓷浆料置于打印喷头,选择直径为0.21mm的TT斜式针头,并校准针头的高度;
(2)加载设计的圆柱打印模型,并编辑模型的尺寸为10*10*20mm,纤维间距为0.3mm。使用挤出压力0.4MPa,打印速度为10mm/s,在环境温度为25℃、湿度为50%的成型环境下进行挤出打印。
步骤三:支架的后期干燥和烧结
(1)将步骤二中打印的支架先常温干燥2天,然后50℃烘箱干燥24h
(2)使用1400℃高温炉,支架的烧结温度为1100℃,保温时间为3h,升温速率为3℃/min,降温速率为3℃/min,得到高度为2cm,内部孔尺寸为100μm的生物活性陶瓷支架。如图2a所示为支架的俯视图,图2b为支架侧视图,图2c为截面图,采用万能力学试验机对尺寸为Φ10mm×20mm的打印支架进行力学性能测试,5个平行样,最后取平均值所得支架的抗压强度为85.26±2.71MPa。
实施例3
一种小孔结构(孔尺寸为100μm)生物活性陶瓷支架的制备如下所述:
步骤一:高固含量浆料的制备(固含量为48vt%)
(1)将9ml去离子水加入0.3446g的聚丙烯酸铵中作为溶剂;
(2)用氨水调节聚丙烯酸铵溶液的PH值为8;
(3)将聚丙烯酸铵溶液与27.12g羟基磷灰石(HA)粉体混合,使用行星球磨机球磨6h(频率35Hz),得浆料;
(4)向浆料中加入甲基纤维素为流变助剂,加入量是HA粉体的1.0wt%,使用行星球磨机高速球磨(频率42Hz)混合3h,然后将浆料移入料筒中。通过超声震荡(频率120Hz,时间25min,温度25℃)、低温静置(时间6h,温度25℃)的方式,制备可以用于三维打印成型的生物活性陶瓷浆料;
步骤二:小孔结构(孔尺寸为250μm)生物活性陶瓷支架的打印
(1)将步骤一中配制的生物活性陶瓷浆料置于打印喷头,选择直径为0.21mm的TT斜式针头,并校准针头的高度;
(2)加载设计的圆柱打印模型,并编辑模型的尺寸为10*10*20mm,纤维间距为0.3mm。使用挤出压力0.46MPa,打印速度为10mm/s,在环境温度为25℃、湿度为56%的成型环境下进行挤出打印。
步骤三:支架的后期干燥和烧结
(1)将步骤二中打印的支架先常温干燥2天,然后50℃烘箱干燥24h
(2)使用1400℃高温炉,支架的烧结温度为1100℃,保温时间为3h,升温速率为3℃/min,降温速率为3℃/min,得到高度为2cm,内部孔尺寸为100μm的生物活性陶瓷支架。如图3a所示为3D光学显微镜拍的支架的俯视图,图3b为3D光学显微镜拍的支架的断面图,采用万能力学试验机对尺寸为Φ10mm×20mm的打印支架进行力学性能测试,5个平行样,最后取平均值所得支架的抗压强度为89.23±1.68MPa。
实施例4
一种生物活性陶瓷牙槽骨模型的制备如下所述:
步骤一:高固含量浆料的制备(固含量为55vt%)
(1)将9ml去离子水加入0.5148g的聚丙烯酸铵中作为溶剂;
(2)用氨水调节聚丙烯酸铵溶液的PH值为9;
(3)将聚丙烯酸铵溶液与34.32g羟基磷灰石(HA)粉体混合,使用行星球磨机球磨12h(频率30Hz),得浆料;
(4)向浆料中加入琼脂糖为流变助剂,加入量是β-TCP粉体的0.5wt%,使用行星球磨机高速球磨(频率40Hz)混合3h,然后将浆料移入料筒中。通过超声震荡(频率100Hz,时间30min,温度30℃)、低温静置(时间12h,温度4℃)的方式,制备可以用于三维打印成型的生物活性陶瓷浆料;
步骤二:生物活性陶瓷牙槽骨模型的打印
(1)将步骤一中配制的生物活性陶瓷浆料置于打印喷头,选择直径为0.21mm的TT斜式针头,并校准针头的高度;
(2)加载设计的牙槽骨模型,编辑模型尺寸并设置纤维填充间距。使用挤出压力0.35MPa,打印速度为8mm/s,在环境温度为28℃、湿度为50%的成型环境下进行挤出打印。
步骤三:支架的后期干燥和烧结
(1)将步骤二中打印的支架先常温干燥2天,然后50℃烘箱干燥24h
(2)使用1400℃高温炉,支架的烧结温度为1100℃,保温时间为3h,升温速率为3℃/min,降温速率为3℃/min,最终得到生物活性陶瓷牙槽骨的模型,如图4所示。
实施例5
一种生物活性陶瓷股骨模型的制备如下所述:
步骤一:高固含量浆料的制备(固含量为60vt%)
(1)将9ml去离子水加入0.4212g的聚丙烯酸铵中作为溶剂;
(2)用氨水调节聚丙烯酸铵溶液的PH值为10;
(3)将聚丙烯酸铵溶液与42.12g羟基磷灰石(HA)粉体混合,使用行星球磨机球磨12h(频率30Hz),得浆料;
(4)向浆料中加入聚乙烯醇为流变助剂,加入量是β-TCP粉体的0.3wt%,使用行星球磨机高速球磨(频率40Hz)混合3h,然后将浆料移入料筒中。通过超声震荡(频率150Hz,时间30min,温度30℃)、低温静置(时间12h,温度4℃)的方式,制备可以用于三维打印成型的生物活性陶瓷浆料;
步骤二:生物活性陶瓷股骨模型的打印
(1)将步骤一中配制的生物活性陶瓷浆料置于打印喷头,选择直径为0.4mm的TT斜式针头,并校准针头的高度;
(2)加载设计的股骨模型,编辑模型尺寸并设置纤维填充间距。使用挤出压力0.53MPa,打印速度为10mm/s,在环境温度为30℃、湿度为50%的成型环境下进行挤出打印。
步骤三:支架的后期干燥和烧结
(1)将步骤二中打印的支架先常温干燥4天,然后50℃烘箱干燥24h
(2)使用1400℃高温炉,支架的烧结温度为1150℃,保温时间为3h,升温速率为3℃/min,降温速率为3℃/min,最终得到生物活性陶股骨的模型,如图5所示。
实施例6
一种生物活性陶瓷桡骨模型的制备如下所述:
步骤一:高固含量浆料的制备(固含量为60vt%)
(1)将9ml去离子水加入0.4212g的聚丙烯酸铵中作为溶剂;
(2)用氨水调节聚丙烯酸铵溶液的PH值为10;
(3)将聚丙烯酸铵溶液与42.12gβ-磷酸三钙(β-TCP)粉体混合,使用行星球磨机球磨12h(频率30Hz),得浆料;
(4)向浆料中加入甲基纤维素为流变助剂,加入量是β-TCP粉体的0.3wt%,使用行星球磨机高速球磨(频率40Hz)混合3h,然后将浆料移入料筒中。通过超声震荡(频率150Hz,时间30min,温度30℃)、低温静置(时间12h,温度4℃)的方式,制备可以用于三维打印成型的生物活性陶瓷浆料;
步骤二:生物活性陶瓷桡骨模型的打印
(1)将步骤一中配制的生物活性陶瓷浆料置于打印喷头,选择直径为0.25mm的TT斜式针头,并校准针头的高度;
(2)加载设计的桡骨模型,编辑模型尺寸并设置纤维填充间距。使用挤出压力0.6MPa,打印速度为10mm/s,在环境温度为26℃、湿度为50%的成型环境下进行挤出打印。
步骤三:支架的后期干燥和烧结
(1)将步骤二中打印的支架先常温干燥4天,然后50℃烘箱干燥24h
(2)使用1400℃高温炉,支架的烧结温度为1150℃,保温时间为3h,升温速率为3℃/min,降温速率为3℃/min,最终得到生物活性陶桡骨的模型,如图6所示。
实施例7
一种生物活性陶瓷鼻子模型的制备如下所述:
步骤一:高固含量浆料的制备(固含量为50vt%)
(1)将9ml去离子水加入0.4212g的聚丙烯酸铵中作为溶剂;
(2)用氨水调节聚丙烯酸铵溶液的PH值为10;
(3)将聚丙烯酸铵溶液与28.08gβ-磷酸三钙(β-TCP)粉体混合,使用行星球磨机球磨12h(频率30Hz),得浆料;
(4)向浆料中加入黄原胶为流变助剂,加入量是β-TCP粉体的1.2wt%,使用行星球磨机高速球磨(频率40Hz)混合3h,然后将浆料移入料筒中。通过超声震荡(频率150Hz,时间30min,温度30℃)、低温静置(时间12h,温度4℃)的方式,制备可以用于三维打印成型的生物活性陶瓷浆料;
步骤二:生物活性陶瓷鼻子模型的打印
(1)将步骤一中配制的生物活性陶瓷浆料置于打印喷头,选择直径为0.21mm的TT斜式针头,并校准针头的高度;
(2)加载设计的桡骨模型,编辑模型尺寸并设置纤维填充间距。使用挤出压力0.45MPa,打印速度为8mm/s,在环境温度为25℃、湿度为50%的成型环境下进行挤出打印。
步骤三:支架的后期干燥和烧结
(1)将步骤二中打印的支架先常温干燥4天,然后50℃烘箱干燥24h
(2)使用1400℃高温炉,支架的烧结温度为1100℃,保温时间为3h,升温速率为3℃/min,降温速率为3℃/min,最终得到生物活性陶桡骨的模型,如图7所示。

Claims (5)

1.一种大尺寸个性化生物活性陶瓷植入体的制备方法,其特征在于,包括以下步骤:
(1)生物活性陶瓷浆料的制备:将溶剂和生物活性陶瓷粉体混合,再球磨均匀,然后加入流变助剂,球磨混合后超声震荡,再低温静置,得固相含量为60vt%的生物活性陶瓷浆料;
(2)大尺寸个性化生物活性陶瓷植入体的打印:将步骤(1)的生物活性陶瓷浆料置于打印喷头中,并校准针头的高度;然后加载个性化的打印模型,并编辑模型的尺寸;根据成型尺寸大小、浆料固相含量和打印速度编辑并运行成型环境控制系统的温度和湿度制度;成型环境达到预设参数时开始进行挤出打印,得大尺寸个性化生物活性陶瓷植入体;所述成型环境控制系统温度范围为4℃-50℃,湿度范围为30%-60%;
(3)生物活性陶瓷植入体的干燥和烧结:将步骤(2)打印得到的大尺寸个性化生物活性陶瓷植入体干燥、烧结,最终得到大尺寸个性化生物活性陶瓷植入体;
步骤(1)所述溶剂为水和分散剂,所述分散剂为聚丙烯酸铵,分散剂用量为生物活性陶瓷粉体质量的1%,溶剂的PH值为10;
步骤(1)所述生物活性陶瓷粉体包括球形或类球形的磷酸钙基或硅酸钙基生物活性陶瓷粉体;
步骤(1)所述流变助剂为黄原胶、琼脂糖、甲基纤维素或聚乙烯醇;所述流变助剂的用量为生物活性陶瓷粉体的0.3wt%-3wt%;
步骤(2)中选择直径为0.16-1.2 mm的TT斜式针头打印;其中,挤出压力为0.1-0.6MPa,打印速度为4-30 mm/s;
步骤(2)中所述打印模型高度为10mm-300mm,打印模型为规则形状或不规则形状的解剖模型。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述超声震荡的频率为80-150 Hz,时间为10-30 min,温度为25℃-50℃;所述低温静置的时间为3-50 h,温度为4℃-30℃。
3.根据权利要求1所述的制备方法,其特征在于,步骤(3)中所述烧结是以2-6℃/min升至1000-1200℃保温1-5 h,然后再以2-6℃/min冷却至常温。
4.由权利要求1-3任一项所述大尺寸个性化生物活性陶瓷植入体的制备方法制得的一种大尺寸个性化生物活性陶瓷植入体。
5.根据权利要求4所述的一种大尺寸个性化生物活性陶瓷植入体,其特征在于,所述大尺寸个性化生物活性陶瓷植入体的孔尺寸为100 um,抗压强度大于80MPa。
CN201910432001.6A 2019-05-23 2019-05-23 一种大尺寸个性化生物活性陶瓷植入体的制备方法 Active CN110171979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910432001.6A CN110171979B (zh) 2019-05-23 2019-05-23 一种大尺寸个性化生物活性陶瓷植入体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910432001.6A CN110171979B (zh) 2019-05-23 2019-05-23 一种大尺寸个性化生物活性陶瓷植入体的制备方法

Publications (2)

Publication Number Publication Date
CN110171979A CN110171979A (zh) 2019-08-27
CN110171979B true CN110171979B (zh) 2021-11-19

Family

ID=67691908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910432001.6A Active CN110171979B (zh) 2019-05-23 2019-05-23 一种大尺寸个性化生物活性陶瓷植入体的制备方法

Country Status (1)

Country Link
CN (1) CN110171979B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2729761C1 (ru) * 2019-08-29 2020-08-12 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения керамического образца на основе β-трикальцийфосфата с использованием метода стереолитографии для восстановления костной ткани
CN110694109A (zh) * 2019-09-30 2020-01-17 季华实验室 一种复合载药高分子微球的磷酸钙骨水泥支架及应用
CN111298193A (zh) * 2020-02-26 2020-06-19 上海交通大学医学院附属第九人民医院 支架及其制备方法和在乳腺癌治疗和骨修复中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103980397B (zh) * 2014-04-30 2016-02-24 中国科学院化学研究所 一种3d打印用组合物及其配制和使用方法以及制品
CN104076773B (zh) * 2014-06-13 2018-04-27 华南理工大学 一种应用于3d打印设备的模块化zigbee监控系统
CN105232179A (zh) * 2015-08-27 2016-01-13 华南理工大学 一种整形外科植入材料的快速成型制备方法
CN105196398B (zh) * 2015-09-16 2017-12-01 华南理工大学 用于气压挤出式三维打印的陶瓷浆料及生物陶瓷支架的制备方法
US10377076B2 (en) * 2017-07-31 2019-08-13 City University Of Hong Kong System and method for four-dimensional printing of ceramic origami structures
CN107839240A (zh) * 2017-11-16 2018-03-27 杭州捷诺飞生物科技股份有限公司 实时监测的三维打印方法及装置

Also Published As

Publication number Publication date
CN110171979A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
CN110171979B (zh) 一种大尺寸个性化生物活性陶瓷植入体的制备方法
EP1305056B1 (en) Porous synthetic bone graft and method of manufacture thereof
US6537574B1 (en) Soft tissue augmentation material
EP0631499B1 (en) Soft tissue augmentation material
US7060287B1 (en) Tissue augmentation material and method
AU2001275715A1 (en) Porous synthetic bone graft and method of manufacture thereof
CN109650872A (zh) 一种基于自由挤出式3d打印技术的磷酸钙多孔生物陶瓷支架及其制备方法
AU6905100A (en) Tissue augmentation material and methods
Li et al. Fabrication of bioceramic scaffolds with pre-designed internal architecture by gel casting and indirect stereolithography techniques
CN110668807B (zh) 降解性能及强度可控的生物复合陶瓷支架及其制备方法
CN110882419A (zh) 一种自固化磷酸钙骨水泥支架及其制备方法和应用
CN113559326A (zh) 一种硅酸钙/硅酸镁生物骨多孔植入物及其制备方法和应用
CN107050513A (zh) 一种梯度浸涂HA制备ZrO2骨修复生物陶瓷支架材料的方法
CN110251279B (zh) 一种磷酸钙骨水泥涂覆的3d打印plga椎间融合器的制备方法
Cui et al. Bioceramics: Materials, properties, and applications
CN112043870A (zh) 一种3d打印聚乙烯醇/磷酸钙载药骨修复支架的制备及其产品和应用
Huang et al. Freeze extrusion fabrication of 13-93 bioactive glass scaffolds for repair and regeneration of load-bearing bones
Yang et al. Fabrication of β-TCP scaffold with pre-designed internal pore architecture by rapid prototyping of mask projection stereolithography
CN111921011B (zh) 一种包覆涂层的人工骨及制备方法
CN114259604A (zh) 一种3d打印促有序血管化的载药骨修复支架的制备方法及其产品和应用
CN109394394A (zh) 仿热狗结构生物活性支架及其制备方法和应用
KR100853635B1 (ko) 다공성 합성 뼈이식편과 그것의 제조방법
Cescon Topological Optimization Studies of Ceramic Scaffolds obtained by means of Advanced Additive Manufacturing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230425

Address after: Room 503, Building B, No. 190 Banhe Road, Huangpu District, Guangzhou City, Guangdong Province, 510535

Patentee after: Guangzhou Kangrui Medical Equipment Co.,Ltd.

Address before: 510640 No. five, 381 mountain road, Guangzhou, Guangdong, Tianhe District

Patentee before: SOUTH CHINA University OF TECHNOLOGY

TR01 Transfer of patent right