CN110158095B - 一种镀锌钢表面ldh的制备方法 - Google Patents

一种镀锌钢表面ldh的制备方法 Download PDF

Info

Publication number
CN110158095B
CN110158095B CN201910574059.4A CN201910574059A CN110158095B CN 110158095 B CN110158095 B CN 110158095B CN 201910574059 A CN201910574059 A CN 201910574059A CN 110158095 B CN110158095 B CN 110158095B
Authority
CN
China
Prior art keywords
galvanized steel
solution
ldh
steel sheet
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910574059.4A
Other languages
English (en)
Other versions
CN110158095A (zh
Inventor
刘富
商剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning University of Technology
Original Assignee
Liaoning University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University of Technology filed Critical Liaoning University of Technology
Priority to CN201910574059.4A priority Critical patent/CN110158095B/zh
Publication of CN110158095A publication Critical patent/CN110158095A/zh
Application granted granted Critical
Publication of CN110158095B publication Critical patent/CN110158095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/006Compounds containing, besides zinc, two ore more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种镀锌钢表面LDH的制备方法,包括以下步骤:a、将镀锌钢片置于碱液中,去除表面氧化物后,冲洗干净;b、将0.01~0.03mol硝酸锌、0.01~0.03mol硝酸铵、0.1~0.5mol偏铝酸钠、0.1~0.3mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌25~35min;c、调节步骤b所得溶液的pH值,使溶液的pH在12~13之间;d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,在室温条件下,反应时间为12~16h,得到镀锌钢表面Zn‑Al‑LDH层。本发明的有益效果是:无需加热,在室温下即可在镀锌钢表面制备出LDH结构,提高了镀锌钢的耐腐蚀性。

Description

一种镀锌钢表面LDH的制备方法
技术领域
本发明涉及一种镀锌钢的表面处理方法,尤其是一种镀锌钢表面LDH的制备方法。
背景技术
镀锌钢板在各个领域中应用广泛,是一种性能良好的钢铁材料。由于镀锌层在空气中特别是高湿热环境中易被腐蚀形成白锈,直接影响耐腐蚀性能。目前普遍采用铬酸盐钝化以提高其耐蚀性能,铬酸盐钝化膜有着致密性优良、稳定性高等特点。由于铬酸盐钝化膜所用到的六价铬是一种极毒且致癌性的物质,对人体的消化道、呼吸道、皮肤和粘膜都有很大的危害。美国EPA组织和欧盟ROHS六价铬定性高度危险剧毒物质,在电子产品材料或汽车产品材料等领域中不使用铬化合物。中国,为响应国家制造业环境保护指导意见,六价铬钝化工艺必须停止使用,因此,为了保护环境和人类的健康,绿色环保的新型镀锌板表面处理技术便迫在眉睫。
层状双金属氢氧化物(layered double hydroxide,LDH),是水滑石(Hydrotalcite,HT)和类水滑石类化合物(Hydrotalcite-Like Compounds,HTLCs)的统称。是一种能具有应用价值和发展前景的无机材料,其主体结构为两种金属氢氧化物。化合物插层组装的一系列超分子材料称为水滑石类插层材料(LDHs),其化学组成为
Figure BDA0002111598140000011
其中M2+为Zn2+、Ni2+、Co2+、Mg2+、Cu2+等二价金属阳离子,M3+为Al3+,Fe3+,Cr3+,Sc3+等三价金属阳离子,An-为CO3 2-,NO3-,Cl-,SO4 2-,OH-等阴离子。主体层板的化学组成可调变,层间客体阴离子的种类和数量可调变,插层组装体的粒径尺寸和分布可调控,具有很好的吸附性、离子交换性、催化性和耐腐蚀性能。
LDH具有独特的离子交换性,能够使无机或有机离子通过交换方式进入LDH层间,赋予了材料多样的性能,使其应用领域广泛包括:选择性吸附和分离、催化、医药、磁学和光学等方面,近年来,LDH在防腐领域得到广泛关注,无机材料插入有机材料层间,会使有机涂层形成“迷宫效应”可有效防止腐蚀介质在涂层中渗透,改善涂层的防护。LDH是一种缓蚀物质,可减缓材料的腐蚀,还可以实现材料的表面疏水化,使材料的耐腐蚀性能进一步提高。
发明内容
本发明的一个目的提供一种镀锌钢表面LDH的制备方法,能够在镀锌钢表面原位生长针状的LDH层,从而提高镀锌钢表面的抗腐蚀性能。
为实现上述目的,本发明提供一种镀锌钢表面LDH的制备方法,包括如下步骤:
a、将镀锌钢片置于碱液中,去除表面氧化物后,再用去离子水冲洗干净;
b、将0.01~0.03mol硝酸锌、0.01~0.03mol硝酸铵、0.1~0.5mol偏铝酸钠、0.1~0.3mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌25~35min;
c、调节步骤b所得溶液的pH值,使溶液的pH在12~13之间;
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,在室温条件下,反应时间为12~16h,得到镀锌钢表面Zn-Al-LDH层。
作为一种优选,步骤a中所述的碱液是质量分数为3%的氢氧化钠溶液,浸泡时间为3~5min。
作为一种优选,在步骤c中使溶液的pH在12.2~12.5之间。
作为一种优选,在步骤d中调节溶液pH值的方法为加入质量分数为1%的氨水溶液。
作为一种优选,在步骤d中,反应时将盛有溶液和镀锌钢片的容器密封。
作为一种优选,在步骤d中,反应时间为14h。
本发明的有益效果是:无需加热,在室温下即可在镀锌钢表面制备出LDH结构,有效地提高了镀锌钢的耐腐蚀性能。
具体实施方式
下面结合具体实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
实施例1
a、将镀锌钢片置于质量分数为3%的氢氧化钠溶液中,浸泡4min,以去除镀锌钢片表面的氧化物,再用去离子水冲洗干净。
b、将0.02mol硝酸锌、0.02mol硝酸铵、0.25mol偏铝酸钠、0.15mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌30min。
c、向步骤b所得溶液中加入质量分数为1%的氨水溶液,调节溶液的pH值,使溶液的pH在12.5。
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,密封容器,在室温条件下,反应时间为14h,得到镀锌钢表面Zn-Al-LDH层。
在此过程中,发生如下化学反应:
Zn+2OH-+2H2O→Zn(OH)4 2–
AlO2 -+2NH4 +→Al(OH)2 ++2NH3
Zn(OH)4 2–+Al(OH)2 ++NO3-+H2O→LDH-NO3
实施例2
a、将镀锌钢片置于质量分数为3%的氢氧化钠溶液中,浸泡3min,以去除镀锌钢片表面的氧化物,再用去离子水冲洗干净。
b、将0.03mol硝酸锌、0.01硝酸铵、0.5mol偏铝酸钠、0.1mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌25min;
c、向步骤b所得溶液中加入质量分数为1%的氨水溶液,调节溶液的pH值,使溶液的pH在12。
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,密封容器,在室温条件下,反应时间为16h,得到镀锌钢表面Zn-Al-LDH层。
实施例3
a、将镀锌钢片置于质量分数为3%的氢氧化钠溶液中,浸泡5min,以去除镀锌钢片表面的氧化物,再用去离子水冲洗干净。
b、将0.01mol硝酸锌、0.03mol硝酸铵、0.1mol偏铝酸钠、0.3mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌35min;
c、向步骤b所得溶液中加入质量分数为1%的氨水溶液,调节溶液的pH值,使溶液的pH在13;
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,密封容器,在室温条件下,反应时间为12h,得到镀锌钢表面Zn-Al-LDH层。
实施例4
a、将镀锌钢片置于质量分数为3%的氢氧化钠溶液中,浸泡3.5min,以去除镀锌钢片表面的氧化物,再用去离子水冲洗干净。
b、将0.015mol硝酸锌、0.025mol硝酸铵、0.3mol偏铝酸钠、0.18mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌28min;
c、向步骤b所得溶液中加入质量分数为1%的氨水溶液,调节溶液的pH值,使溶液的pH在12.2;
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,密封容器,在室温条件下,反应时间为13h,得到镀锌钢表面Zn-Al-LDH层。
实施例5
a、将镀锌钢片置于质量分数为3%的氢氧化钠溶液中,浸泡4.5min,以去除镀锌钢片表面的氧化物,再用去离子水冲洗干净。
b、将0.025mol硝酸锌、0.015mol硝酸铵、0.35mol偏铝酸钠、0.22mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌28min;
c、向步骤b所得溶液中加入质量分数为1%的氨水溶液,调节溶液的pH值,使溶液的pH在12.5;
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,密封容器,在室温条件下,反应时间为15h,得到镀锌钢表面Zn-Al-LDH层。
对比例1
a、将镀锌钢片置于质量分数为3%的氢氧化钠溶液中,浸泡4min,以去除镀锌钢片表面的氧化物,再用去离子水冲洗干净。
b、将0.02mol硝酸锌、0.02mol硝酸铵、0.25mol偏铝酸钠、0.15mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌30min;
c、向步骤b所得溶液中加入质量分数为1%的氨水溶液,调节溶液的pH值,使溶液的pH在14;
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,密封容器,在室温条件下,反应时间为14h。
对比例2
a、将镀锌钢片置于质量分数为3%的氢氧化钠溶液中,浸泡4min,以去除镀锌钢片表面的氧化物,再用去离子水冲洗干净。
b、将0.02mol硝酸锌、0.02mol硝酸铵、0.25mol偏铝酸钠、0.15mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌30min;
c、向步骤b所得溶液中加入质量分数为1%的氨水溶液,调节溶液的pH值,使溶液的pH在10;
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,密封容器,在室温条件下,反应时间为14h。
数据分析
1、扫描电镜测试
分别对由实施例1~5和对比例1~2处理后的镀锌钢表面进行扫描电镜测试。所得结果如图1-7。
由图1~5可以看出,按照本发明方法处理后的镀锌钢片表面放大10000倍表面形貌图中可清晰看到表面均匀生长的针状LDH层,LDH垂直基体表面生长,厚度为2~3μm。
由图6可以看出,按照对比例1的方法处理后的镀锌钢片表面放大10000倍表面形貌.图中可以看出,当步骤c中溶液pH超过13时,镀锌钢片不再有LDH层结构生成,并且镀锌钢片表面被腐蚀严重。
由图7可以看出,按照对比例2的方法处理后的镀锌钢片表面放大10000倍表面形貌,图中可以看出,当步骤c中溶液pH小于11时,镀锌钢片表面虽然没有被腐蚀严重,但也没有针状LDH层结构生成,并无防腐蚀的效果。
由此可以看出,当溶液pH在12~13之间,能够形成良好的针状LDH层,LDH垂直基体表面生长,厚度为2~3μm。
2、耐腐蚀性能测试
将经过实施例1处理后的镀锌钢与未经处理的镀锌钢进行耐腐蚀性能测试,得图8和表1。
由图8动电位极化曲线图可知,制备LDH后的样品稳定钝化区明显比镀锌钢基体大,稳定钝化区为电流变化缓慢而电压变化很快的区域,即制备LDH曲线的0.6V~-0.8V位置,稳定钝化区越大,材料的耐腐蚀性能越好,因此镀锌钢制备LDH层后具有很好的耐腐蚀性能,一方面,在镀锌钢表面制备一层LDH可以减缓和阻碍腐蚀介质进入基体,易腐蚀的镀锌层不能直接与腐蚀介质接触,起到很好的屏蔽作用,另一方面LDH是由阳离子主板层和阴离子插层组成的双层结构,Cl-离子不能置换NO3 -离子,不能有效的破坏LDH结构,进一步阻止腐蚀介质进入基体。镀锌钢表面制备的LDH垂直于基体生长,制备LDH后表面具有很好的超疏水现象使腐蚀介质与材料表面接触面积减小,更好的改善了镀锌钢的耐腐蚀性能。
用Cview软件拟合极化曲线数据拟合结果如下表1:自腐蚀电位衡量材料腐蚀的难易程度,而自腐蚀电流是衡量材料腐蚀程度或腐蚀速率的大小,一般认为,自腐蚀电位越大,自腐蚀电流越小材料的耐腐蚀性能越好。
表1
样品 镀锌钢 LDH
自腐蚀电位(V) -1.108 -0.914
自腐蚀电流(A/cm<sup>2</sup>) 5.8629×10<sup>-6</sup> 1.1263×10<sup>-6</sup>
由下表可知镀锌钢表面制备LDH后自腐蚀电位升高,自腐蚀电流降低,因此制备LDH层后的镀锌钢具有很好的耐腐蚀性能。
如上所述本发明一种镀锌钢表面LDH的制备方法,无需加热,在室温下即可在镀锌钢表面制备出LDH结构,有效地提高了镀锌钢的耐腐蚀性能。
尽管本发明的实施方案已公开如上,但其并不仅仅限于明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节。

Claims (6)

1.一种镀锌钢表面LDH的制备方法,其特征在于,包括如下步骤:
a、将镀锌钢片置于碱液中,去除表面氧化物后,再用去离子水冲洗干净;
b、将0.01~0.03mol硝酸锌、0.01~0.03mol硝酸铵、0.1~0.5mol偏铝酸钠、0.1~0.3mol硝酸钠按先后顺序依次加入到100ml去离子水中,搅拌25~35min;
c、调节步骤b所得溶液的pH值,使溶液的pH在12~13之间;
d、将经过步骤a处理的镀锌钢片,置于步骤c调配后的溶液中,在室温条件下,反应时间为12~16h,得到镀锌钢表面Zn-Al-LDH层。
2.如权利要求1所述的镀锌钢表面LDH的制备方法,其特征在于:步骤a中所述的碱液是质量分数为3%的氢氧化钠溶液,浸泡时间为3~5min。
3.如权利要求1或2所述的镀锌钢表面LDH的制备方法,其特征在于:在步骤c中使溶液的pH在12.2~12.5之间。
4.如权利要求1或2所述的镀锌钢表面LDH的制备方法,其特征在于:在步骤c中调节溶液pH值的方法为加入质量分数为1%的氨水溶液。
5.如权利要求1或2所述的镀锌钢表面LDH的制备方法,其特征在于:在步骤d中,反应时将盛有溶液和镀锌钢片的容器密封。
6.如权利要求1或2所述的镀锌钢表面LDH的制备方法,其特征在于:在步骤d中,反应时间为14h。
CN201910574059.4A 2019-06-28 2019-06-28 一种镀锌钢表面ldh的制备方法 Active CN110158095B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910574059.4A CN110158095B (zh) 2019-06-28 2019-06-28 一种镀锌钢表面ldh的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910574059.4A CN110158095B (zh) 2019-06-28 2019-06-28 一种镀锌钢表面ldh的制备方法

Publications (2)

Publication Number Publication Date
CN110158095A CN110158095A (zh) 2019-08-23
CN110158095B true CN110158095B (zh) 2021-11-30

Family

ID=67637267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910574059.4A Active CN110158095B (zh) 2019-06-28 2019-06-28 一种镀锌钢表面ldh的制备方法

Country Status (1)

Country Link
CN (1) CN110158095B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050539A (zh) * 2007-05-21 2007-10-10 北京化工大学 镁合金表面旋涂法制备均匀耐腐蚀水滑石膜及其制备方法
CN102630199A (zh) * 2009-11-26 2012-08-08 杰富意钢铁株式会社 镀锌系钢板
CN103695871A (zh) * 2013-08-22 2014-04-02 山东科技大学 一种镁合金表面水热沉积法制备的缓蚀性阴离子插层水滑石薄膜
EP2743377A1 (en) * 2011-08-11 2014-06-18 Universidade de Aveiro Conversion films based on lamellar double-hydroxides for active protection against corrosion
CN106086992A (zh) * 2016-06-07 2016-11-09 重庆大学 一种镁合金表面双羟基金属氧化物封闭膜层的制备方法
EP3272904A2 (en) * 2016-07-20 2018-01-24 The Boeing Company Corrosion inhibitor-incorporated layered double hydroxide and sol-gel coating compositions and related processes
CN108707889A (zh) * 2018-06-12 2018-10-26 西安交通大学 一种镁合金原位生长ldh转化膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101050539A (zh) * 2007-05-21 2007-10-10 北京化工大学 镁合金表面旋涂法制备均匀耐腐蚀水滑石膜及其制备方法
CN102630199A (zh) * 2009-11-26 2012-08-08 杰富意钢铁株式会社 镀锌系钢板
EP2743377A1 (en) * 2011-08-11 2014-06-18 Universidade de Aveiro Conversion films based on lamellar double-hydroxides for active protection against corrosion
CN103695871A (zh) * 2013-08-22 2014-04-02 山东科技大学 一种镁合金表面水热沉积法制备的缓蚀性阴离子插层水滑石薄膜
CN106086992A (zh) * 2016-06-07 2016-11-09 重庆大学 一种镁合金表面双羟基金属氧化物封闭膜层的制备方法
EP3272904A2 (en) * 2016-07-20 2018-01-24 The Boeing Company Corrosion inhibitor-incorporated layered double hydroxide and sol-gel coating compositions and related processes
CN108707889A (zh) * 2018-06-12 2018-10-26 西安交通大学 一种镁合金原位生长ldh转化膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties》;Zhou, M等;《APPLIED SURFACE SCIENCE》;20150515;第337卷;第172-177页 *

Also Published As

Publication number Publication date
CN110158095A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
Buchheit et al. Corrosion-resistant, chromate-free talc coatings for aluminum
US6068711A (en) Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements
Wang et al. Hydrophobic Mg–Al layered double hydroxide film on aluminum: Fabrication and microbiologically influenced corrosion resistance properties
CN106086992B (zh) 一种镁合金表面双羟基金属氧化物封闭膜层的制备方法
Suzuki et al. The synergistic inhibition effect of octylmercaptopropionate and 8-quinolinol on the corrosion of iron in an aerated 0.5 M Na2SO4 solution
Khadayeir et al. Effect of applying cold plasma on structural, antibacterial and self cleaning properties of α-Fe2O3 (HEMATITE) thin film
Zhao et al. Functional anti-corrosive and anti-bacterial surface coatings based on cuprous oxide/polyaniline microcomposites
EP3153552A1 (de) Korrosionsschutzbeschichtung
Walker et al. Molybdate based conversion coatings for zinc and zinc alloy surfaces: a review
Chen et al. A novel antiscaling and anti-corrosive polymer-based functional coating
EP0797691A1 (en) Method of increasing corrosion resistance of metals and alloys by treatment with rare earth elements
CN110158095B (zh) 一种镀锌钢表面ldh的制备方法
Yang et al. Preparation and corrosion resistance of Ni-Fe layer double hydroxides superhydrophobic film on carbon steel
Cenoui et al. Synergistic influence of molybdate ions with TDMTAA on corrosion inhibition of ordinary steel in cooling water system
US20100189997A1 (en) Stainless steel member for a fuel cell
Salih et al. Comparison of aggressiveness behavior of chloride and iodide solutions on 304 and 304L stainless steel alloys
Wang et al. Design and enhanced anticorrosion performance of a Zn 5 Mo 2 O 11· 5H 2 O/h-BN nanocomposite with labyrinth of nanopores
DE102020209052A1 (de) Korrosionsbeständige oxidfilme und anwendung für bipolare brennstoffzellenplatte
CN113073322A (zh) 镁合金表面耐蚀超疏水膜层及其制备方法与应用
CN111349884A (zh) 一种钢表面原位生长锌铝水滑石薄膜的制备方法
CN114163859B (zh) 一种氧化锌-羟基磷灰石复合防腐颜料的制备方法
CN107201513B (zh) 一种基于单宁酸为主要成膜物质的无磷环保的金属表面预处理液及其应用
EP1340839B1 (en) Whiskerless galvanized product having multi-layer rust prevention film and manufacturing method of whiskerless galvanized product having multi-layer rust prevention film
CN104342675A (zh) 一种镀锌层无铬钝化膜制备工艺
CN102876093B (zh) 一种复合金属涂层、其制备方法及其用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant