CN110147610A - 一种用于河流突发水污染事件的溯源方法 - Google Patents
一种用于河流突发水污染事件的溯源方法 Download PDFInfo
- Publication number
- CN110147610A CN110147610A CN201910419232.3A CN201910419232A CN110147610A CN 110147610 A CN110147610 A CN 110147610A CN 201910419232 A CN201910419232 A CN 201910419232A CN 110147610 A CN110147610 A CN 110147610A
- Authority
- CN
- China
- Prior art keywords
- harmony
- pollutant
- river
- source
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000011109 contamination Methods 0.000 title claims abstract description 11
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 40
- 231100000719 pollutant Toxicity 0.000 claims abstract description 39
- 238000009792 diffusion process Methods 0.000 claims abstract description 15
- 230000015556 catabolic process Effects 0.000 claims abstract description 4
- 238000006731 degradation reaction Methods 0.000 claims abstract description 4
- 238000004422 calculation algorithm Methods 0.000 claims description 10
- 238000007689 inspection Methods 0.000 claims description 7
- 101100177269 Arabidopsis thaliana HCAR gene Proteins 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 4
- 238000005457 optimization Methods 0.000 claims description 4
- 230000003044 adaptive effect Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 241000287196 Asthenes Species 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 238000010845 search algorithm Methods 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 2
- 238000003911 water pollution Methods 0.000 description 2
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000000246 remedial effect Effects 0.000 description 1
- 239000002453 shampoo Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/152—Water filtration
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Tourism & Hospitality (AREA)
- Educational Administration (AREA)
- Economics (AREA)
- Geometry (AREA)
- Development Economics (AREA)
- Evolutionary Computation (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种用于河流突发水污染事件的溯源方法。本发明将溯源河流抽象化为二维河道;假设二维河道的形状是规则的,本发明的技术方案是通过充分考虑河流污染物的降解系数、横纵向水流的平均速度以及污染物在水体的横向、纵向扩散系数等数据,对指定河流区域进行污染物排放的扩散模拟,并根据定点监测得到的观测值与实际扩散中的计算值进行计算,通过融合了局部搜索的和声搜索算法对污染物源点的个数、排放位置以及排放强度进行定量求解,最终确立了一种用于河流突发水污染事件的溯源方法。本发明具有开放性、灵活性以及计算复杂度低等特点。
Description
技术领域
本发明属于水质监测领域,涉及到自动化技术,尤其是涉及一种用于河流突发水污染事件的溯源方法。
背景技术
地表水是人类赖以生存和发展的重要自然资源之一,与人类社会息息相关,与此同时,我国也是一个严重缺乏淡水资源的国家。然而,随着现代工业生产领域和规模的日益扩大,各种化学品和危险品的生产、贮存、运输、使用等大量增加,事故潜在危险源也随之增加,一旦出现事故性泄漏,不仅破坏当地的水域环境,对人们的身体健康构成威胁,甚至还影响到社会稳定。
中国国家环境保护总局发布的信息显示,中国每年因道路交通事故、企业违法行为和意外污染物排放而发生的突发性水污染事故数以千计,占所有环境事故的50%-60%。为了将损失降到最低,应该在突发性水污染事件发生后的第一时间掌握污染源相关信息,以便采取针对性的补救措施。河流突发水污染事件的污染源识别一直都是水资源管理与应急救援中的一项重要而又困难的任务,而传统的直接法求解通过水质控制方程重建观测污染物的释放历史,从而解决反演问题,其需要依赖大量的数据和假设得到。
发明内容
本发明针对现有技术的不足,提出了一种用于河流突发水污染事件的溯源方法。
本发明将溯源河流抽象化为二维河道;假设二维河道的形状是规则的,本发明的技术方案是通过充分考虑河流污染物的降解系数、横纵向水流的平均速度以及污染物在水体的横向、纵向扩散系数等数据,对指定河流区域进行污染物排放的扩散模拟,并根据定点监测得到的观测值与实际扩散中的计算值进行计算,通过融合了局部搜索的和声搜索算法对污染物源点的个数、排放位置以及排放强度进行定量求解,最终确立了一种用于河流突发水污染事件的溯源方法。
本发明的有益效果:本发明结合河流中点源污染物的特性,提出以融合了局部搜索的和声搜索算法对污染源参数进行优化求解,考虑了水质相关参数和污染物参数对模型计算结果的影响。最终通过算法自适应增加污染源个数与原迭代结果目标函数进行误差比对,得到污染源的具体数量。本发明具有开放性、灵活性以及计算复杂度低等特点。
附图说明
图1为二维单点源连续排放扩散模型示意图。
图2为二维多点源连续排放扩散模型示意图。
图3为溯源事件中污染源及各监测点位置关系图。
图4为本发明溯源算法求解流程图。
图5为单点源连续排放下,污染源源点浓度随迭代次数变化图。
图6为单点源连续排放下,溯源算法自适应曲线图。
具体实施方式
本发明方法具体是:
步骤1:设定河流区域,并测量参数以及确立水质方程。
设定溯源实验区域(仿真假定河流区域宽200m,长100m)。
根据具体应用场景,测量计算河流的横纵向水流速度以及污染物的扩散系数等参数,确立如下水质方程。水质方程又称之为对流扩散方程。三维的水质运输方程如下:
式中,C是预测点在t时刻点(x,y,z)处的污染物浓度;t是时间;x,y,z是以污染物排放点为坐标原点的坐标;k为污染物的降解系数;ux,uy,uz分别是河流的纵向水流平均速度、横向水流平均速度、垂向水流平均速度;Dx,Dy,Dz分别是污染物在水体的纵向、横向和垂向扩散系数。当河流深度远远小于河流宽度,且污染物垂向扩散的时间远远短于横向扩散时间尺度时,可以将三维水质运输方程简化为二维水质运输方程如下:
上式中,M0是污染物的初始点排放量,是以污染物排放点为坐标原点的坐标浓度。当污染源的位置以及初始排放总量M0已知时,就可以正向求解出指定河流区域内任意点处的浓度。我们需要根据某一时刻不同观测点处的浓度监测值或不同时刻的某一地点的浓度监测值,求出污染源位置、排放浓度和时间以及其数量。
步骤2:具体溯源条件下污染物浓度的解析解分析。
若污染物排放方式为连续排放。污染物连续排放在时间趋近于无穷大时,流域中各点的浓度均已达到平衡,不在变化,故与时间无关。假设初始条件为:当初始污染物投放坐标x=0时,假定初始浓度C=M0;当limx→∞C=0,B为河流宽度,考虑一般有溯源需求的河流宽度都较宽,所以假设岸边的反射次数为一次,得连续排放条件下污染物浓度的解析解如下,扩散示意图如图1所示:
若污染物排放方式为瞬时排放。瞬时排放比连续排放多了个时间参数,假设初始条件为:当初始污染物投放坐标x=0时,假定初始浓度C=M0;当limx→∞C=0,B为河流宽度,考虑一般有溯源需求的河流宽度都较宽,所以假设岸边的反射次数为一次,得瞬时排放条件下污染物浓度的解析解如下,扩散示意图如图2所示:
步骤3:计算观测井处的浓度观测序列。
在步骤1设定的河流区域每隔一段距离(仿真中假设每隔100m)设定观测井,定点测量该点污染物浓度随时间的浓度时间序列,污染源与各观测井位置如图3所示。
步骤4:溯源算法参数初始化。
令为算法的优化目标函数,N是决策变量的数量,xi是每个决策变量(i=1,2,…,N),是包含所有xi的决策变量的向量,记做则优化问题可描述为:
使得在i=1,2,…,N内取得最大或最小值。
上式中,xmin,xmax分别是决策变量xi(i=1,2,…,N)的最小、最大边界值。使用HS算法进行优化求解,此步骤中需要初始化和声记忆库的大小(HMS)、和声记忆库取值概率(HMCR)、音调微调概率(PAR)、音调微调带宽(BW)、每条和声向量的决策变量个数(NVAR)、创作的次数(Tmax)。
根据每个决策变量的边界范围生成并初始化大小为HMS*(N+1)的和声矩阵。该矩阵包括和声库中所有的解向量与其对应的目标函数值。初始化生成的和声库(HM)如下所示:
步骤5:计算目标函数。
式中,C(xi,yi,Mi,t)是模型在观测井处的计算值,是在已知源点浓度下的观测井处的观测值,n是观测点的个数,T是观测计算总时间。
步骤6:迭代求解
1.随机生成一组新的和声
通过和声记忆库HM选择、片段调整和在HM内随机选择产生一组新的和声Xnew:
首先,随机生成一个0到1的数r1,若r1,小于等于HMCR,则新的决策变量Xnew从和声记忆库中随机选择一组和声生成,然后对这个变量进行微调;若r1大于HMCR,则新的决策变量Xnew利用HM初始化方法根据每个决策变量的边界范围生成。其即兴生成新和声的步骤如下:
式中,NVAR是和声库每组和声决策变量的个数,LB、UB分别为决策变量的取值上下界。经仿真验证,NVAR取值为10时,模型性能最佳。
2.更新和声组
若上一步骤的新的和声xnew是由和声记忆库HM中随机生成得到,则需要评估是否需要进行动态调整以获得适应度较高的一组新和声,类似于在音乐中调音过程要改变频率,意味着以这种方式获得一种略有不同的和声。此过程由PAR参数控制,这里提出一种动态调整PAR和BW的更新策略,当随机数小于等于0.5时,随机在当前和声库中选取2组和声进行与新生成的一组和声进行线性交叉组合;当随机数大于0.5时,则选用以往基于自适应的音调微调带宽更新。更新过程如下所示:
其中,单点源连续排放条件下,污染源源点浓度随迭代次数变化如图5所示,算法适应度值与迭代次数变化如图6所示。
步骤7:求解污染源源点个数。
迭代求解至达到迭代次数或目标函数达到误差允许范围内后,根据实际情况,自适应增加模型中污染源个数进行计算并与原目标函数做出比对,若误差小于原目标函数,则污染源源点个数加一,否则不变。溯源算法求解流程图如图4所示。
步骤8:溯源完成。
根据计算得出的污染源参数最优解作为模型输出。
Claims (3)
1.一种用于河流突发水污染事件的溯源方法,其特征在于该方法包括以下步骤:
步骤1:设定河流区域并测量参数以及确立水质方程;
测量所需要溯源河流区域的横纵向水流速度以及污染物的扩散系数,确立如下三维水质运输方程如下:
式中,C是预测点在t时刻点(x,y,z)处的污染物浓度;t是时间;x,y,z是以污染物排放点为坐标原点的坐标;k为污染物的降解系数;ux,uy,uz分别是河流的纵向水流平均速度、横向水流平均速度、垂向水流平均速度;Dx,Dy,Dz分别是污染物在水体的纵向、横向和垂向扩散系数;S是源项;
步骤2:具体溯源条件下污染物浓度的解析解分析;
(1)若污染物排放方式为连续排放:
污染物连续排放在时间趋近于无穷大时,流域中各点的浓度均已达到平衡,不在变化,故与时间无关;假设初始条件为:当初始污染物投放坐标x=0时,假定初始浓度C=M0,M0是污染物的初始点排放量;当limx→∞C=0,假设岸边的反射次数为一次,得连续排放条件下污染物浓度的解析解如下:
其中B为河流宽度
若污染物排放方式为瞬时排放:
瞬时排放比连续排放多了个时间参数,假设初始条件为:当初始污染物投放坐标x=0时,假定初始浓度C=M0;当limx→∞C=0,假设岸边的反射次数为一次,得瞬时排放条件下污染物浓度的解析解如下:
步骤3:计算观测井处的浓度观测序列;
在河流区域内每隔一段距离设定观测井,定点测量污染物浓度随时间的浓度时间序列;
步骤4:溯源算法参数初始化;
令为算法的优化目标函数,N是决策变量的数量,xi是每个决策变量,i=1,2,…,N,是包含所有xi的决策变量的向量,记做则优化问题可描述为:
使得在内取得最大或最小值;
上式中,xmin,xmax分别是决策变量xi的最小、最大边界值;使用HS算法进行优化求解,此步骤中需要初始化和声记忆库的大小HMS、和声记忆库取值概率HMCR、音调微调概率PAR、音调微调带宽BW、每条和声向量的决策变量个数NVAR以及创作的次数Tmax;
根据每个决策变量的边界范围生成并初始化大小为HMS*(N+1)的和声矩阵;
步骤5:计算目标函数;
式中,C(xi,yi,Mi,t)是模型在观测井处的计算值,是在已知源点浓度下的观测井处的观测值,n是观测点的个数,T是观测计算总时间;
步骤6:迭代求解
1.随机生成一组新的和声
通过和声记忆库HM选择、片段调整和在HM内随机产生一组新的和声Xnew:
首先,随机生成一个0到1的数r1,若r1,小于等于HMCR,则新的决策变量Xnew从和声记忆库中随机选择一组和声生成,然后对这个变量进行微调;若r1大于HMCR,则新的决策变量Xnew利用HM初始化方法根据每个决策变量的边界范围生成;
2.更新和声组
若上一步骤的新的和声xnew是由和声记忆库HM中随机生成得到,则进行动态调整以获得适应度较高的一组新和声,此过程由PAR参数控制,采用一种动态调整PAR和BW的更新策略,当随机数小于等于0.5时,随机在当前和声库中选取两组和声进行与新生成的一组和声进行线性交叉组合;当随机数大于0.5时,则选用以往基于自适应的音调微调带宽更新;
步骤7:求解污染源源点个数;
迭代求解至达到迭代次数或目标函数达到误差允许范围内后,根据实际情况,自适应增加模型中污染源个数进行计算并与原目标函数做出比对,若误差小于原目标函数,则污染源源点个数加一,否则不变;
步骤8:溯源完成;
根据计算得出的污染源参数最优解作为模型输出。
2.根据权利要1所述的一种用于河流突发水污染事件的溯源方法,其特征在于:
当河流深度远远小于河流宽度,且污染物垂向扩散的时间远远短于横向扩散时间尺度时,可将三维水质运输方程简化为二维水质运输方程如下:
上式中,M0是污染物的初始点排放量,是以污染物排放点为坐标原点的坐标浓度;当污染源的位置以及初始排放总量M0已知时,就可以正向求解出指定河流区域内任意点处的浓度。
3.根据权利要1所述的一种用于河流突发水污染事件的溯源方法,其特征在于:步骤4中所述的和声矩阵包括和声库中所有的解向量与其对应的目标函数值,初始化生成的和声记忆库如下所示:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910419232.3A CN110147610B (zh) | 2019-05-20 | 2019-05-20 | 一种用于河流突发水污染事件的溯源方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910419232.3A CN110147610B (zh) | 2019-05-20 | 2019-05-20 | 一种用于河流突发水污染事件的溯源方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110147610A true CN110147610A (zh) | 2019-08-20 |
CN110147610B CN110147610B (zh) | 2023-02-07 |
Family
ID=67592247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910419232.3A Active CN110147610B (zh) | 2019-05-20 | 2019-05-20 | 一种用于河流突发水污染事件的溯源方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110147610B (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110531043A (zh) * | 2019-08-29 | 2019-12-03 | 中水三立数据技术股份有限公司 | 一种流域水环境污染智能管理系统及其方法 |
CN110851981A (zh) * | 2019-11-12 | 2020-02-28 | 浙江量大智能科技有限公司 | 一种实现突发水污染快速溯源的方法 |
CN111091082A (zh) * | 2019-12-09 | 2020-05-01 | 北京空间机电研究所 | 一种基于高分辨率遥感数据的流域污染溯源方法 |
CN111855915A (zh) * | 2020-07-30 | 2020-10-30 | 中国科学院大气物理研究所 | 一种大气污染物的溯源方法 |
CN111949927A (zh) * | 2020-08-03 | 2020-11-17 | 浙江同济科技职业学院 | 一种基于四点对称应急监测网络的水污染溯源方法 |
CN111986064A (zh) * | 2020-08-26 | 2020-11-24 | 山东大学 | 一种水污染快速溯源方法及系统 |
CN112417721A (zh) * | 2020-11-11 | 2021-02-26 | 北京京航计算通讯研究所 | 基于二维有限元法扩散模型的水污染溯源方法及系统 |
CN112926172A (zh) * | 2019-12-06 | 2021-06-08 | 中国科学院沈阳计算技术研究所有限公司 | 一种突发性重金属水污染追踪溯源的方法 |
CN113128129A (zh) * | 2021-05-07 | 2021-07-16 | 大连理工大学 | 一种突发水污染正逆耦合溯源方法及系统 |
CN115330132A (zh) * | 2022-07-20 | 2022-11-11 | 中交上海航道局有限公司 | 一种用于突发污染事故中宽浅型河流的水质分布逆时反演的方法 |
CN115544919A (zh) * | 2022-11-24 | 2022-12-30 | 清华大学 | 一种气流体污染物排放源的溯源方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105956664A (zh) * | 2016-04-27 | 2016-09-21 | 浙江大学 | 一种河流点源突发污染事故溯源方法 |
CN107341341A (zh) * | 2017-06-08 | 2017-11-10 | 河海大学 | 一种河口点源突发性水污染事件溯源方法 |
WO2018086433A1 (zh) * | 2016-11-08 | 2018-05-17 | 江苏大学 | 一种医学图像分割方法 |
-
2019
- 2019-05-20 CN CN201910419232.3A patent/CN110147610B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105956664A (zh) * | 2016-04-27 | 2016-09-21 | 浙江大学 | 一种河流点源突发污染事故溯源方法 |
WO2018086433A1 (zh) * | 2016-11-08 | 2018-05-17 | 江苏大学 | 一种医学图像分割方法 |
CN107341341A (zh) * | 2017-06-08 | 2017-11-10 | 河海大学 | 一种河口点源突发性水污染事件溯源方法 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110531043A (zh) * | 2019-08-29 | 2019-12-03 | 中水三立数据技术股份有限公司 | 一种流域水环境污染智能管理系统及其方法 |
CN110851981A (zh) * | 2019-11-12 | 2020-02-28 | 浙江量大智能科技有限公司 | 一种实现突发水污染快速溯源的方法 |
CN110851981B (zh) * | 2019-11-12 | 2023-05-09 | 上一云联环境(金华)有限公司 | 一种实现突发水污染快速溯源的方法 |
CN112926172A (zh) * | 2019-12-06 | 2021-06-08 | 中国科学院沈阳计算技术研究所有限公司 | 一种突发性重金属水污染追踪溯源的方法 |
CN112926172B (zh) * | 2019-12-06 | 2024-02-09 | 中国科学院沈阳计算技术研究所有限公司 | 一种突发性重金属水污染追踪溯源的方法 |
CN111091082A (zh) * | 2019-12-09 | 2020-05-01 | 北京空间机电研究所 | 一种基于高分辨率遥感数据的流域污染溯源方法 |
CN111091082B (zh) * | 2019-12-09 | 2023-08-01 | 北京空间机电研究所 | 一种基于高分辨率遥感数据的流域污染溯源方法 |
CN111855915A (zh) * | 2020-07-30 | 2020-10-30 | 中国科学院大气物理研究所 | 一种大气污染物的溯源方法 |
CN111855915B (zh) * | 2020-07-30 | 2021-07-13 | 中国科学院大气物理研究所 | 一种大气污染物的溯源方法 |
CN111949927B (zh) * | 2020-08-03 | 2024-02-06 | 浙江同济科技职业学院 | 一种基于四点对称应急监测网络的水污染溯源方法 |
CN111949927A (zh) * | 2020-08-03 | 2020-11-17 | 浙江同济科技职业学院 | 一种基于四点对称应急监测网络的水污染溯源方法 |
CN111986064A (zh) * | 2020-08-26 | 2020-11-24 | 山东大学 | 一种水污染快速溯源方法及系统 |
CN111986064B (zh) * | 2020-08-26 | 2023-11-03 | 山东大学 | 一种水污染快速溯源方法及系统 |
CN112417721B (zh) * | 2020-11-11 | 2021-07-27 | 北京京航计算通讯研究所 | 基于二维有限元法扩散模型的水污染溯源方法及系统 |
CN112417721A (zh) * | 2020-11-11 | 2021-02-26 | 北京京航计算通讯研究所 | 基于二维有限元法扩散模型的水污染溯源方法及系统 |
CN113128129B (zh) * | 2021-05-07 | 2023-03-24 | 大连理工大学 | 一种突发水污染正逆耦合溯源方法及系统 |
CN113128129A (zh) * | 2021-05-07 | 2021-07-16 | 大连理工大学 | 一种突发水污染正逆耦合溯源方法及系统 |
CN115330132B (zh) * | 2022-07-20 | 2023-04-07 | 中交上海航道局有限公司 | 一种用于突发污染事故中宽浅型河流的水质分布逆时反演的方法 |
CN115330132A (zh) * | 2022-07-20 | 2022-11-11 | 中交上海航道局有限公司 | 一种用于突发污染事故中宽浅型河流的水质分布逆时反演的方法 |
CN115544919B (zh) * | 2022-11-24 | 2023-02-28 | 清华大学 | 一种气流体污染物排放源的溯源方法及装置 |
CN115544919A (zh) * | 2022-11-24 | 2022-12-30 | 清华大学 | 一种气流体污染物排放源的溯源方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110147610B (zh) | 2023-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110147610A (zh) | 一种用于河流突发水污染事件的溯源方法 | |
CN110346654B (zh) | 基于普通克里金插值的电磁频谱地图构建方法 | |
Zheng et al. | Assessment and prediction of carbon storage based on land use/land cover dynamics in the coastal area of Shandong Province | |
Viola et al. | Co-evolution of hydrological components under climate change scenarios in the Mediterranean area | |
CN110826244B (zh) | 模拟轨道交通影响城市生长的共轭梯度元胞自动机方法 | |
CN105549009A (zh) | 一种基于超像素的sar图像cfar目标检测方法 | |
CN105528753A (zh) | 一种基于网络病毒传播模型的空气污染溯源方法 | |
CN115019510A (zh) | 一种基于动态自适应生成对抗网络的交通数据修复方法 | |
Vizzari | Spatio-temporal analysis using urban-rural gradient modelling and landscape metrics | |
CN116596100A (zh) | 一种基于土地利用变化模拟的碳汇监测预警方法 | |
Sun et al. | Forecasting Carbon Dioxide Emissions in China Using Optimization Grey Model. | |
Wu et al. | Numerical computational modeling of random rough sea surface based on JONSWAP spectrum and Donelan directional function | |
Pyhälä et al. | Eutrophication status of the Baltic Sea 2007-2011 A concise thematic assessment | |
Courtat et al. | Stochastic simulation of urban environments. application to path-loss in wireless systems | |
CN105678844A (zh) | 一种基于地物散乱点逐点增加的轮廓构建算法 | |
CN117495628A (zh) | 一种树种空间隔离程度评价方法 | |
Avolio et al. | A Randomized Approach to Improve the Accuracy of Wildfire Simulations Using Cellular Automata. | |
CN110942504A (zh) | 一种众核平台上面向规则网格问题的结构化着色方法 | |
Kao et al. | Optimization models for siting water quality monitoring stations in a catchment | |
GB2596363A9 (en) | Hierarchical acceleration structures for use in ray tracing systems | |
Miyasaka et al. | An agent-based model for assessing effects of a Chinese PES programme on land-use change along with livelihood dynamics, and land degradation and restoration | |
Guan et al. | Rain fall predict and comparing research based on Arcgis and BP neural network | |
CN116499959B (zh) | 刹车线耐久性测试方法、装置和计算机设备 | |
CN114626590B (zh) | 一种基于不规则图网络的森火蔓延预测方法及装置 | |
Booij | Decision support systems for flood control and ecosystem upgrading in the Red River basin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |