CN110117295B - 一种检测汞离子的荧光探针及其制备方法和应用 - Google Patents

一种检测汞离子的荧光探针及其制备方法和应用 Download PDF

Info

Publication number
CN110117295B
CN110117295B CN201910272218.5A CN201910272218A CN110117295B CN 110117295 B CN110117295 B CN 110117295B CN 201910272218 A CN201910272218 A CN 201910272218A CN 110117295 B CN110117295 B CN 110117295B
Authority
CN
China
Prior art keywords
fluorescent probe
mercury ions
dichloromethane
following
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910272218.5A
Other languages
English (en)
Other versions
CN110117295A (zh
Inventor
文丹
喻艳华
邓宣凯
舒婷婷
杨智慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jianghan University
Original Assignee
Jianghan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jianghan University filed Critical Jianghan University
Priority to CN201910272218.5A priority Critical patent/CN110117295B/zh
Publication of CN110117295A publication Critical patent/CN110117295A/zh
Application granted granted Critical
Publication of CN110117295B publication Critical patent/CN110117295B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种检测汞离子的荧光探针及其制备方法和应用,其化学名称为3‑(4‑(1,3,5,7‑四甲基‑8丙基)氟化硼二吡咯‑4‑羰基)哌嗪)‑罗丹明B酰肼,本发明所述的荧光探针以氟化硼二吡咯类荧光染料BODIPY单元为能量供体,罗丹明单元为能量受体,通过二价汞离子促进螺酰胺环“开‑关”实现BODIPY和罗丹明单元发生荧光能量共振转移导致荧光红移,从而可用来检测Hg2+的荧光比率型探针;该荧光探针是以间羟基苯基哌嗪和2‑(4‑二乙胺基)‑2‑羟基)‑苯甲酸为原料,反应后再与1,3,5,7‑四甲基‑8‑丙氧羰酰琥珀酰亚胺)氟化硼二吡咯通过缩合反应所得。本发明探针是灵敏度高、选择性好、可在水相中检测汞离子且基于FRET的比率型荧光探针。

Description

一种检测汞离子的荧光探针及其制备方法和应用
技术领域
本发明涉及阳离子检测技术领域;具体地,涉及一种检测汞离子的荧光探针及其制备方法和应用。
背景技术
汞离子(Hg2+)是一种极具生理毒性的重金属离子,其可以通过皮肤、消化道或呼吸道直接在人体内富集,并引发各种极具杀伤力的疾病,如水俣病,危害性非常大。Hg2+引发疾病的机理尚未完全研究清楚,目前被广泛接受的是由于Hg2+可与体内蛋白质中某些含硫基团(如巯基)结合,形成Hg-S复合物,导致蛋白质失活。体内重要的生理活动都是由蛋白质来完成的,如核蛋白构成细胞核并影响细胞功能;酶蛋白具有促进食物消化、吸收和利用的作用;免疫蛋白具有维持机体免疫功能的作用。与汞结合后蛋白质变性失活,导致细胞内许多代谢受到影响,从而影响了细胞的功能和生长。而且Hg2+具有易迁移性和生物富集性,使其成为目前全球最引人关注的环境污染物之一。
虽然汞的毒性极强,但是在化工、制药、冶金及其它领域仍然需要用到大量的金属汞及其化合物,这样必然会导致其对环境的污染和人类健康的危害。因此开发选择性好,灵敏度高的检测Hg2+的方法有着极其重要的意义。检测Hg2+的传统方法主要有:原子吸收光谱法、原子发射光谱和分光光度法等,由于这些检测手段需要依赖大型仪器设备,检测成本较高,检测过程较为繁琐和耗时,而且灵敏度和选择性一般,未能满足重金属离子痕量分析检测的需求。在众多检测Hg2+的方法中,荧光探针由于其选择性好,灵敏度高且可实时、在线、原位检测等优势获得广泛关注。荧光探针检测离子主要是以荧光光谱为手段,当探针与待检测离子发生化学反应或者络合后,导致其分子结构发生变化,从而引起荧光光谱发生变化,实现对待测离子进行定性和定量分析。根据荧光光谱的变化特征,荧光探针包括荧光增敏型(turn-on)和荧光淬灭型(turn-off)。“turn-on”和“turn-off”型荧光探针都是通过单荧光发射光谱的变化来实现目标物的检测,因此在检测过程中容易受光源及样品环境方面的影响,导致检测的准确度变低。
发明内容
本发明的目的是为了克服现有技术存在的缺陷,提供一种检测汞离子的荧光探针及其制备方法和应用,所得的荧光探针是灵敏度高、选择性好、可在水相中检测汞离子且基于FRET的比率型荧光探针。
为了实现上述目的,在基础的实施方案中,本发明提供了一种检测汞离子的荧光探针,其化学名称为3-(4-(1,3,5,7-四甲基-8丙基)氟化硼二吡咯-4-羰基)哌嗪)-罗丹明B酰肼,标记为BR;包括如下结构式:
Figure BDA0002018776260000021
本发明另一方面提供了上述检测汞离子的荧光探针的制备方法,包括如下步骤:
1)将2-(4-二乙胺基)-2-羟基)-苯甲酸、间羟基苯基哌嗪和三氟乙酸混合,在氮气保护下加热回流搅拌,减压蒸馏浓缩,得到红色的残留物;再加入乙二胺和乙醇,加热回流搅拌,通过减压蒸馏除去乙醇和未反应完的乙二胺,向浓缩后的混合物中加入超纯水,用二氯甲烷萃取,再合并有机相,干燥,过滤,浓缩;随后硅胶柱层析梯度洗脱,分离提纯,得到乳白色固体的3-(哌嗪)-罗丹明B酰肼化合物I;
2)将化合物I、(1,3,5,7-四甲基-8-丙氧羰酰琥珀酰亚胺)氟化硼二吡咯、三乙胺和除水后的二氯甲烷混合,在氮气保护下室温反应后停止,将反应混合液减压蒸馏浓缩,随后硅胶柱层析分离提纯,得到橙色固体3-(4-(1,3,5,7-四甲基-8丙基)氟化硼二吡咯-4-羰基)哌嗪)-罗丹明B酰肼II。
在一种优选的实施方案中,所述步骤1)中,所述2-(4-二乙胺基)-2-羟基)-苯甲酸和间羟基苯基哌嗪的摩尔比为1:1。
在一种优选的实施方案中,所述步骤1)中,在氮气保护下加热回流搅拌20h-24h;再加入乙二胺和乙醇,加热回流搅拌5h-6h。
在一种优选的实施方案中,所述步骤1)中,所述硅胶柱层析中分离提纯采用:二氯甲烷:甲醇=200:1,二氯甲烷:甲醇=150:1,二氯甲烷:甲醇=100:1。
在一种优选的实施方案中,所述步骤2)中,所述化合物I、(1,3,5,7-四甲基-8-丙氧羰酰琥珀酰亚胺)氟化硼二吡咯及三乙胺的摩尔比为1:2:2。
在一种优选的实施方案中,所述步骤2)中,在氮气保护下室温反应18h-20h后停止反应。
在一种优选的实施方案中,所述步骤2)中,所述硅胶柱层析分离提纯采用:二氯甲烷:甲醇=200:1,二氯甲烷:甲醇=100:1,二氯甲烷:甲醇=50:1。
本发明另一方面提供了上述检测汞离子的荧光探针的应用,所述荧光探针在含水体系中检测汞离子。
通过上述技术方案,本发明所述的荧光探针以氟化硼二吡咯类荧光染料(BODIPY)单元为能量供体,罗丹明单元为能量受体,通过二价汞离子促进螺酰胺环“开-关”实现BODIPY和罗丹明单元发生荧光能量共振转移导致荧光红移,从而可用来检测Hg2+的荧光比率型探针;该荧光探针是以间羟基苯基哌嗪和2-(4-二乙胺基)-2-羟基)-苯甲酸为原料,反应后再与1,3,5,7-四甲基-8-丙氧羰酰琥珀酰亚胺)氟化硼二吡咯通过缩合反应所得。本申请还利用荧光发射光谱法研究其在无水甲醇和HEPES缓冲液混合溶液(V/V=9:1,pH=6.0)中对Hg2+、Cu2+、Mn2+、Co2+、Ni2+、Zn2+、Cd2+、Ba2+、Ca2+、Ag+、Fe3+、K+、Na+、Mg2+等总计14种阳离子的识别效果,发现该荧光探针可以单一性识别Hg2+,最低检测限可达0.652n M,且其他阳离子对识别过程无干扰。
综上所述,本发明所述荧光探针是一种灵敏度高、选择性好、可在水相中检测汞离子且基于FRET的比率型荧光探针。此荧光探针合成方法简单,成本较低,在Hg2+的检测中具有较好的应用前景。
附图说明
图1为在本发明实施例BR溶液中加入不同阳离子(100μmol·L-1)时的荧光发射谱图(λex=480nm)(T=20℃);
图2a为在本发明实施例BR溶液中加入不同阳离子(100μmol·L-1)时的日光灯下图片。
图2b为在本发明实施例BR溶液中加入不同阳离子(100μmol·L-1)时的365nm手提紫外灯照射下图片;
图3为在本发明实施例BR溶液中加入不同Hg2+浓度(0—60μmol·L-1)下荧光发射光谱(T=20℃);
图4为I586nm/I513nm与Hg2+浓度(34-48μmol·L-1)线性图(T=20℃);
图5为BR在与其它阳离子(100μmol·L-1)共存时对Hg2+(100μmol·L-1)响应的荧光强度变化柱状图(T=20℃);
图6a为BR试剂条浸泡在不同阳离子(50μmol·L-1无水甲醇和水(V/V=9/1)溶液)后在手提式紫外灯(365nm)照射下的照片;
图6b为BR试剂条浸泡在不同浓度汞离子溶液(无水甲醇和水(V/V=9/1))后在手提式紫外灯(365nm)照射下的照片。
具体实施方式
为了更好的理解上述技术方案,下面通过具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互结合。应当理解的是,这里所使用的术语“和/或”包括其中一个或更多所列出的相关联项目的任意和所有组合。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
比率型荧光探针是根据两组荧光发射波长的比值变化检测目标物,可通过自我校正消除外界因素造成的干扰,提高检测的精度。激发光荧光能量共振转移技术(FRET)是指两个不同的荧光基团,供体荧光基团的发射光谱与受体荧光基团的吸收光谱有一定的重叠,且两者在距离1-10nm范围时,能量由供体基团向受体基团转移的现象,因此基于FRET原理可以设计灵敏度高的比率型荧光探针。本发明实施例主要提供一种灵敏度高、选择性好、可在水相中检测汞离子且基于FRET的比率型荧光探针。
为了克服现有技术存在的上述缺陷,本发明实施例的主要思路是:
本发明实施例检测汞离子的荧光探针,其化学名称为3-(4-(1,3,5,7-四甲基-8丙基)氟化硼二吡咯-4-羰基)哌嗪)-罗丹明B酰肼,标记为BR;包括如下结构式:
Figure BDA0002018776260000051
本发明实施例检测汞离子的荧光探针的合成,是以间羟基苯基哌嗪和2-(4-二乙胺基)-2-羟基)-苯甲酸为原料,反应后再与(1,3,5,7-四甲基-8-丙氧羰酰琥珀酰亚胺)氟化硼二吡咯通过缩合反应所得(合成路线如下所示)。
Figure BDA0002018776260000061
以下将结合具体实施例对本发明所述的一种基于BODIPY和罗丹明的FRET比率型荧光探针及制备和在含水体系检测汞离子的应用进行详细描述。实施例中所用的材料可通过市售渠道获得。
1)3-(哌嗪)-罗丹明B酰肼(I)的合成:
在100ml的两口瓶中,加入2-(4-二乙胺基)-2-羟基)-苯甲酸(3.13g,10.0mmol)、间羟基苯基哌嗪(1.78g,10.0mmol)和三氟乙酸(20mL),在氮气保护下加热回流搅拌24小时,减压蒸馏浓缩,得到红色的残留物;再加入乙二胺(15mL)和乙醇(30mL),加热回流搅拌6小时,通过减压蒸馏除去乙醇和未反应完的乙二胺,向浓缩后的混合物中加入超纯水,用二氯甲烷萃取,再合并有机相(分三次萃取,有机相体积总计约250mL),无水MgSO4干燥,过滤,浓缩。随后硅胶柱层析梯度洗脱,分离提纯(二氯甲烷:甲醇=200:1,二氯甲烷:甲醇=150:1,二氯甲烷:甲醇=100:1),得到乳白色固体(3.66g,7.78mmol),收率为77.8%。1H NMR(400MHz,CDCl3)δ7.94(t,1H),7.46(m,1H),7.08(t,1H),6.68(s,1H),6.54(m,2H),6.47-6.42(m,2H),6.31(m,1H),3.63(s,2H),3.34(q,J=8.0Hz,4H),3.20(d,J=4.0Hz,4H),3.04(d,J=4.0Hz,4H),1.17(t,J=8.0Hz,6H).13C NMR(100MHz,CDCl3)δ166.25,153.65,153.49,152.52,151.32,148.96,132.64,129.86,128.30,128.03,127.91,123.80,123.05,111.79,108.86,108.24,104.22,102.42,97.95,65.74,49.19,45.77,44.38,12.60.
2)3-(4-(1,3,5,7-四甲基-8丙基)氟化硼二吡咯-4-羰基)哌嗪)-罗丹明B酰肼(II)的合成:
在100ml单口瓶中,加入化合物1(0.1g,0.23mmol),(1,3,5,7-四甲基-8-丙氧羰酰琥珀酰亚胺)氟化硼二吡咯(0.216g,0.46mmol),三乙胺(0.67mL,0.46mmol),除水后的二氯甲烷(20mL),在氮气保护下室温反应18h后停止反应,将反应混合液减压蒸馏浓缩,随后硅胶柱层析分离提纯(二氯甲烷:甲醇=200:1,二氯甲烷:甲醇=100:1,二氯甲烷:甲醇=50:1),得橙色固体BP(0.15g,0.19mmol),收率为83.3%。1H NMR(400MHz,CDCl3)δ8.14-7.83(m,1H),7.59-7.39(m,2H),7.23-6.99(m,1H),6.69(s,1H),6.61-6.52(m,2H),6.52-6.40(m,2H),6.34-6.33(m,1H),6.07(s,1H),5.32(s,1H),3.91-3.73(m,2H),3.68(m,2H),3.60(m,2H),3.39-3.30(m,4H),3.23-3.21(m,4H),3.11-3.07(m,2H),2.54(s,6H),2.47(s,6H),2.06-1.98(m,2H),1.25-1.12(t,J=4.0,6H).13C NMR(101MHz,CDCl3)δ170.35,166.37,154.20,153.68,151.77,151.36,149.12,145.65,140.57,132.80,131.73,130.00,128.52,128.29,128.19,123.89,123.25,121.91,112.22,110.09,108.46,103.11,98.04,65.68,53.56,48.78,48.51,45.41,44.52,41.43,32.79,27.68,27.11,16.61,14.60,12.70。
为了证实本发明实施例荧光探针的效果,进行下述本发明实施例制备的BR荧光探针对阳离子的识别性能研究。
1、BR荧光探针选择性的研究
无水甲醇配制浓度为10-3mol·L-1BR储备液,超纯水配制浓度为10-2mol·L-1不同阳离子储备液Ag+、Ba2+、Ca2+、Cd2+、Co2+、Cu2+、Fe2+、K+、Hg2+、Mg2+、Mn2+、Na+、Ni+、Zn2+,配制HEPES缓冲液(0.02mol·L-1pH=6.0)。比色皿中分别加入无水甲醇(2230μL)和HEPES缓冲液(245μL)的混合溶液(V/V=9:1),然后加入BR储备液(25μL),最终浓度为10-5mol·L-1,检测其紫外吸收光谱和荧光发射光谱,再分别加入阳离子储备液(25μL),检测其荧光发射光谱(λex=480nm),观察BR荧光探针对阳离子的响应情况。
图1为BR(无水甲醇和HEPES缓冲溶液V/V=9:1,10μmol·L-1)溶液中加入不同阳离子(100μmol·L-1)时的荧光发射谱图(λex=480nm)(T=20℃);图2a和图2b为BR(无水甲醇和HEPES缓冲溶液V/V=9:1,10μmol·L-1)溶液中加入不同阳离子(100μmol·L-1)时在日光灯下(a)和365nm手提紫外灯(b)照射下图片,阳离子从左到右分别为:空白、Ag+、Ba2+、Ca2+、Cd2+、Cu2+、Co2+、Fe3+、Hg2+、K+、Mg2+、Mn2+、Na+、Ni2+、Zn2+.(T=20℃)。
结果表明,BR的紫外特征吸收峰位于497nm,荧光特征发射峰位于513nm处(λex=480nm),随着Hg2+的加入,导致BR的螺酰胺环打开,使其在553nm处出现另一个显著的特征吸收峰,即为罗丹明的特征吸收峰。此外,由于荧光能量共振转移,荧光发射峰发生红移至586nm处,而加入其它阳离子,BR的荧光光谱无变化(图1)。在日光下,Hg2+可以使BR溶液由黄色变为紫红色,加入其它阳离子,BR溶液颜色无任何变化(图2a)。此外,在波长为365nm的紫外灯照射下,BR溶液呈现出绿色荧光,加入Hg2+后溶液出现橙红色荧光,而其它阳离子的加入不会导致BR溶液荧光颜色的变化(图2b)。研究表明BR荧光探针对Hg2+有较高的的选择性。
2、BR荧光探针在复杂环境中的抗干扰能力检测
将无水甲醇(2230μL)和HEPES缓冲液(245μL)的混合溶剂(V/V=9:1)加入比色皿中,随后加入BR储备液(25μL),检测BR溶液的荧光发射光谱;然后再加入一种除汞离子以外的其他阳离子储备液,例如银离子(25μL),充分摇匀,检测其荧光发射光谱,最后再加入Hg2+储备液(25μL),摇匀,检测其荧光发射光谱,其它每个阳离子重复上述操作。
为了进一步验证BR荧光探针对Hg2+的高选择性,在其它阳离子共存的情况下,检测BR荧光探针对Hg2+的响应情况。结果表明,BR荧光探针在Hg2+与其他阳离子共存的情况下,依然可以发生荧光能量共振转移,使513nm处荧光发射峰减弱,并产生新的位于586nm处的荧光发射峰(图5)。研究表明BR荧光探针对Hg2+检测具有较好的抗干扰能力,其他阳离子的存在不会对检测结果造成影响。图5为BR(无水甲醇和HEPES缓冲溶液V/V=9:1,10μmol·L-1)在与其它阳离子(10μmol·L-1)共存时对Hg2+(100μmol·L-1)响应的荧光强度变化柱状图(T=20℃)。图5中,从左至右柱状依次对应:Blank、Blank+ion、Blank+ion+Hg2+
3、BR荧光探针的滴定研究
将BR溶于无水甲醇中,配制浓度为10-3mol·L-1BR储备液,将高氯酸汞溶于超纯水中,配制10-2mol·L-1Hg2+储备液。在比色皿中加入无水甲醇(2230μL)和HEPES缓冲液(245μL)的混合溶液(V/V=9:1,pH=6.0),随后再加入BR储备液(25μL),检测BR溶液的荧光发射光谱,再加入Hg2+储备液(2.5μL,1equiv.),摇晃均匀后(5min)检测其荧光发射光谱;随后加入Hg2+储备液(1.5μL,0.6equiv.),摇晃均匀后(5min)检测其荧光发射光谱,接着再加入Hg2 +储备液(1.0μL,0.4equiv.),摇晃均匀后(5min)检测其荧光发射光谱,重复此操作,直至加入6.0当量的Hg2+溶液。
图3为BR(无水甲醇和HEPES缓冲溶液V/V=9:1,10μmol·L-1)溶液中加入不同Hg2+浓度(0—60μmol·L-1)下荧光发射光谱(T=20℃);图3表明随着Hg2+浓度增加,BR在513nm处的荧光发射峰峰逐渐减弱,在586nm处的荧光发射峰逐渐增强,直至加入60μmol·L-1Hg2+时达到平衡。当Hg2+的浓度在34—48μmol·L-1范围时,I/I0与Hg2+的浓度表现出较好的线性关系,拟合得到的线性方程为y=3.77044×106x-11.72628(R2=0.99302),结果表明可用BR荧光探针定量检测水溶液中Hg2+的浓度(图4)。图4为I586nm/I513nm与Hg2+浓度(34-48μmol·L-1)线性图(T=20℃)。
4、BR荧光探针对Hg2+最低检测限的研究
当Hg2+的浓度为34-48μmol·L-1时,I/I0与Hg2+的浓度表现出较好的线性关系,拟合得到的线性方程为y=3.77044×106x-11.72628(R2=0.99302)依据“检测限=3σ/k”可计算BR荧光探针对Hg2+的检测限,其中σ为标准偏差,k为线性拟合直线的斜率.测15次BR(10μmol·L-1)的荧光强度,计算标准偏差σ为8.45231×10-4,k为3.77044×106.通过上述公式计算得出BR对Hg2+的检测限为0.6725nM。远低于世界卫生组织对饮用水中的汞离子的最大规定值0.001mg/L(相当于4.985nmol·L-1)。因此,BR荧光探针可用于检测实际水样中的汞离子。
5、BR用于实际水样的检测
将高氯酸汞分别溶于饮用水和矿泉水,配制浓度为10-2mol·L-1Hg2+储备液。将无水甲醇(2230μL)和HEPES缓冲液(245μL)的混合溶剂(V/V=9:1)加入比色皿中,然后将BR储备液(25μL)加入其中,检测BR溶液的荧光发射光谱,随后加入饮用水配制的Hg2+储备液(9μL,最终Hg2+浓度36μmol·L-1),检测其荧光发射光谱(测三次);加入不同体积Hg2+和不同水样的测定重复上述操作。实验结果如表1所示,实验测定的汞离子浓度与实际加入的汞离子浓度接近,相对标准平均偏差均小于5%,因此BR荧光探针可有效的用于检测实际水样中的Hg2+
表1
Figure BDA0002018776260000101
6、BR荧光探针试纸条测定Hg2+的研究
将滤纸修剪为形状大小相同的圆片,并浸泡于浓度为100μmol·L-1BR甲醇溶液中,浸泡5min,随后取出自然晾干待用。分别用无水甲醇与水的混合溶液(V/V=9:1)配制各种待测阳离子的储备液(100μmol·L-1)。此外,用无水甲醇与水的混合溶液(V/V=9:1)配制浓度为10μmol·L-1、30μmol·L-1、50μmol·L-1、100μmol·L-1、200μmol·L-1和500μmol·L-1Hg2+溶液,将自然晾干后的试纸条浸泡于不同阳离子溶液和不同浓度的Hg2+溶液中,浸泡5min,后取出自然晾干;在波长为365nm的紫外灯照射下观察试纸条的颜色变化。
图6a为BR试剂条浸泡在不同阳离子(50μmol·L-1无水甲醇和水(V/V=9/1)溶液)后在手提式紫外灯(365nm)照射下的照片,阳离子从左到右分别为:空白、Hg2+、Ag+、Ba2+、Ca2 +、Cd2+、Cu2+、Co2+、Fe3+、K+、Mg2+、Mn2+、Na+、Ni2+、Zn2+;图6b为BR试剂条浸泡在不同浓度汞离子溶液(无水甲醇和水(V/V=9/1))后在手提式紫外灯(365nm)照射下的照片,汞离子浓度从左到右分别为:10μmol·L-1、30μmol·L-1、50μmol·L-1、100μmol·L-1、200μmol·L-1和500μmol·L-1如图6a和6b所示,在不同阳离子溶液中浸泡过的试纸条,只有在Hg2+溶液浸泡后的BR荧光探针试纸发出橙色荧光,而其它在其他阳离子浸泡的试纸条则保持绿色荧光(图6a)。另外,随着Hg2+浓度的增加,BR荧光探针试纸条荧光强度相应增强(图6b)。结果表明BR荧光探针可制成试纸用于Hg2+的定性检测。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (9)

1.一种检测汞离子的荧光探针,其特征在于:其化学名称为
3-((4-((1,3,5,7-四甲基-8丙基)氟化硼二吡咯)-4-羰基)哌嗪)-罗丹明B酰肼,标记为BR;包括如下结构式:
Figure FDA0003225192500000011
2.如权利要求1所述检测汞离子的荧光探针的制备方法,其特征在于:包括如下步骤:
1)将2-((4-二乙胺基)-2-羟基)-苯甲酸、间羟基苯基哌嗪和三氟乙酸混合,在氮气保护下加热回流搅拌,减压蒸馏浓缩,得到红色的残留物;再加入乙二胺和乙醇,加热回流搅拌,通过减压蒸馏除去乙醇和未反应完的乙二胺,向浓缩后的混合物中加入超纯水,用二氯甲烷萃取,再合并有机相,干燥,过滤,浓缩;随后硅胶柱层析梯度洗脱,分离提纯,得到乳白色固体的3-(哌嗪)-罗丹明B酰肼化合物I;
2)将化合物I、(1,3,5,7-四甲基-8-丙氧羰酰琥珀酰亚胺)氟化硼二吡咯、三乙胺和除水后的二氯甲烷混合,在氮气保护下室温反应后停止,将反应混合液减压蒸馏浓缩,随后硅胶柱层析分离提纯,得到橙色固体3-((4-((1,3,5,7-四甲基-8丙基)氟化硼二吡咯)-4-羰基)哌嗪)-罗丹明B酰肼II。
3.根据权利要求2所述检测汞离子的荧光探针的制备方法,其特征在于:所述步骤1)中,所述2-((4-二乙胺基)-2-羟基)-苯甲酸和间羟基苯基哌嗪的摩尔比为1:1。
4.根据权利要求2所述检测汞离子的荧光探针的制备方法,其特征在于:所述步骤1)中,在氮气保护下加热回流搅拌20h-24h;再加入乙二胺和乙醇,加热回流搅拌5h-6h。
5.根据权利要求2所述检测汞离子的荧光探针的制备方法,其特征在于:所述步骤1)中,所述硅胶柱层析中分离提纯采用:二氯甲烷:甲醇=200:1,二氯甲烷:甲醇=150:1,二氯甲烷:甲醇=100:1。
6.根据权利要求2所述检测汞离子的荧光探针的制备方法,其特征在于:所述步骤2)中,所述化合物I、(1,3,5,7-四甲基-8-丙氧羰酰琥珀酰亚胺)氟化硼二吡咯及三乙胺的摩尔比为1:2:2。
7.根据权利要求2所述检测汞离子的荧光探针的制备方法,其特征在于:所述步骤2)中,在氮气保护下室温反应18h-20h后停止反应。
8.根据权利要求2所述检测汞离子的荧光探针的制备方法,其特征在于:所述步骤2)中,所述硅胶柱层析分离提纯采用:二氯甲烷:甲醇=200:1,二氯甲烷:甲醇=100:1,二氯甲烷:甲醇=50:1。
9.如权利要求1所述检测汞离子的荧光探针的应用,其特征在于:所述荧光探针在含水体系中检测汞离子。
CN201910272218.5A 2019-04-04 2019-04-04 一种检测汞离子的荧光探针及其制备方法和应用 Expired - Fee Related CN110117295B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910272218.5A CN110117295B (zh) 2019-04-04 2019-04-04 一种检测汞离子的荧光探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910272218.5A CN110117295B (zh) 2019-04-04 2019-04-04 一种检测汞离子的荧光探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110117295A CN110117295A (zh) 2019-08-13
CN110117295B true CN110117295B (zh) 2021-11-30

Family

ID=67520843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910272218.5A Expired - Fee Related CN110117295B (zh) 2019-04-04 2019-04-04 一种检测汞离子的荧光探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110117295B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423414B (zh) * 2020-04-30 2021-01-26 大唐环境产业集团股份有限公司 一种检测总汞的荧光探针及其制备、试剂盒和检测方法
CN111763513B (zh) * 2020-07-06 2022-11-22 东南大学成贤学院 一种可视化除汞循环净水高分子魔力球及制备方法
CN112225880B (zh) * 2020-09-21 2023-02-17 新疆农业大学 一种Hg2+荧光探针及制备方法
CN113603702B (zh) * 2021-08-11 2022-09-06 中国矿业大学 一种检测汞离子的比色/荧光探针及其制备方法与应用
CN115677744A (zh) * 2022-10-31 2023-02-03 太原工业学院 一种用于检测Ag+的荧光探针及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370573A (zh) * 2018-12-07 2019-02-22 江汉大学 一种二价汞离子和温度检测的荧光探针、制备方法及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370573A (zh) * 2018-12-07 2019-02-22 江汉大学 一种二价汞离子和温度检测的荧光探针、制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
2,7-Dichlorofluorescein Hydrazide as a New Fluorescent Probe for Mercury Quantification: Application to Industrial Effluents and Polluted Water Samples;Kempahanumakkagari Sureshkumar等;《JOURNAL OF SPECTROSCOPY》;20131231;第2013卷;全文 *
A modified fluorescein derivative with improved water-solubility for turn-on fluorescent determination of Hg2+ in aqueous and living cells;Shanyi Guang等;《Talanta》;20170404;第170卷;第90页 *
A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Forster resonance energy transfer platform for hypochlorous acid and its application in living cells;Liu Ying等;《ANALYTICA CHIMICA ACTA》;20160407;第921卷;第79页 *
Novel multi-responsive fluorescence switch for Hg2+ and UV/vis lights based on diarylethene-rhodamine derivative;Wang Shuai等;《TETRAHEDRON》;20190205;全文 *

Also Published As

Publication number Publication date
CN110117295A (zh) 2019-08-13

Similar Documents

Publication Publication Date Title
CN110117295B (zh) 一种检测汞离子的荧光探针及其制备方法和应用
Fan et al. A fluorescent probe for the dual-channel detection of Hg2+/Ag+ and its Hg2+-based complex for detection of mercapto biomolecules with a tunable measuring range
CN109342385B (zh) 一种用于快速检测食品和环境中亚硝酸盐含量的碳量子点及其应用方法
Bhalla et al. Hg 2+ induced hydrolysis of pentaquinone based Schiff base: a new chemodosimeter for Hg 2+ ions in mixed aqueous media
CN107141491B (zh) 一种用荧光试纸检测大气污染物so2及其衍生物的方法
CN110204564B (zh) 一种检测氰根离子的荧光探针及其制备方法和应用
JP2016511824A (ja) 水中の亜硝酸イオンの選択的な検出のための新規アザbodipy化合物及びその調製方法
Ozay et al. Novel hexapodal triazole linked to a cyclophosphazene core rhodamine-based chemosensor for selective determination of Hg 2+ ions
Sun et al. Construction of a water-soluble fluorescent probe for copper (II) ion detection in live cells and food products
CN109824683B (zh) 一种基于2-噻吩乙酰氯的罗丹明B类Hg2+荧光传感器的制备及应用
CN104949949B (zh) 含有罗丹明基团及苯并呋咱基团的化合物及制备方法与应用
CN107417681B (zh) 一种含有香豆素-噻二唑基席夫碱荧光探针化合物及其制备方法和用途
CN109320535B (zh) 一种检测Cu2+的比率型荧光探针、其制备方法及应用
CN109370573B (zh) 一种二价汞离子和温度检测的荧光探针、制备方法及其应用
CN108640867B (zh) 一种含有氰基-咔唑基席夫碱荧光探针化合物及其制备方法和用途
CN113087651B (zh) 一种含有吲哚基团的化合物及其制备方法和应用
Zhu et al. Ultrasensitive detection of lead (II) based on the disaggregation of a polyether bridged squaraine fluorescent probe
CN110563640B (zh) 一类脱氢枞基吡啶酰胺化合物及其制备方法和应用
CN110878100B (zh) 一种可裸眼识别的氰根离子探针及其制备方法和在含水体系中检测氰根离子的应用
CN110698409B (zh) 一种特异性识别汞离子的反应型苯并咪唑类荧光探针及制备方法和应用
CN107831165B (zh) 一种双通道铜离子检测试纸及其制备方法
CN115490700B (zh) 一种快速检测亚硝酸根离子的荧光探针及其应用
CN110423609A (zh) 一种识别硫氰酸根的荧光探针及其制备和识别方法
Wang et al. A new “on-off-on” fluorescent sensor for cascade recognition of Hg2+ and S2− ion in aqueous medium
CN110563609B (zh) 一种检测亚硒酸根的近红外荧光探针的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211130