CN110563640B - 一类脱氢枞基吡啶酰胺化合物及其制备方法和应用 - Google Patents

一类脱氢枞基吡啶酰胺化合物及其制备方法和应用 Download PDF

Info

Publication number
CN110563640B
CN110563640B CN201910890760.7A CN201910890760A CN110563640B CN 110563640 B CN110563640 B CN 110563640B CN 201910890760 A CN201910890760 A CN 201910890760A CN 110563640 B CN110563640 B CN 110563640B
Authority
CN
China
Prior art keywords
pyridine
solution
stirring
dichloromethane
dehydroabietyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910890760.7A
Other languages
English (en)
Other versions
CN110563640A (zh
Inventor
费宝丽
屠双燕
殷彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Forestry University
Guangxi Normal University
Original Assignee
Nanjing Forestry University
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Forestry University, Guangxi Normal University filed Critical Nanjing Forestry University
Priority to CN201910890760.7A priority Critical patent/CN110563640B/zh
Publication of CN110563640A publication Critical patent/CN110563640A/zh
Application granted granted Critical
Publication of CN110563640B publication Critical patent/CN110563640B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/36Radicals substituted by singly-bound nitrogen atoms
    • C07D213/40Acylated substituent nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6443Fluorimetric titration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一类脱氢枞基吡啶酰胺化合物及其制备方法和应用,属于化学合成领域及阳离子检测领域。本发明以天然产物松香的主要成分脱氢枞酸为原料,经一步法得到脱氢枞酸酰氯,进一步将脱氢枞酸酰氯分别与双(吡啶‑2‑基‑甲基)胺、N‑(吡啶‑2‑基‑甲基)吡啶‑2‑胺、2‑氨甲基吡啶和2‑氨基吡啶通过酰胺化反应,得到四种脱氢枞基吡啶酰胺化合物,所得化合物对Cu2+和Fe3+具有高选择性识别功能,相应的检测限均低于饮用水中所规定的铜和铁含量的最大允许值,并且生物安全性好。因此,该类化合物可作为识别铜离子和铁离子的紫外和荧光探针,应用到环境、饮用水及生物体系相关的检测中,具有广阔的应用前景。

Description

一类脱氢枞基吡啶酰胺化合物及其制备方法和应用
技术领域
本发明属于化学合成领域及阳离子检测领域,更具体地说,涉及一类脱氢枞基吡啶酰胺化合物及其制备方法和应用。
背景技术
铜(Cu)元素和铁(Fe)元素是重要的微量元素,广泛存在于生物体细胞中。铜与蛋白质结合形成铜蛋白或含铜酶,参与生物体内电子转移、氧的输送和多种有机底物胺、多酚和糖等的生物氧化过程,另外还有调节体内铁的吸收,血红蛋白合成以及形成皮肤、头发和眼睛的色素等功能。但人体内铜离子含量过高时会产生严重的毒害作用,可以导致严重的神经性退变型疾病,例如门克斯综合症、威尔森氏综合症、家族性肌萎缩症和阿尔茨海默氏症等病症。另外,过量的铜也会抑制植物的生长和矿营养物质摄取。同时,由于其在日常生活中的广泛应用,铜也是环境中主要的污染源之一,环境检测的一个重要指标就是环境中铜离子含量的多少。铁与人体的造血功能有密切相关,缺铁可以引起贫血营养缺乏症,但过量的铁对人体有毒,会引起严重的铁代谢障碍疾病,如阿耳茨海默氏老年痴呆病,帕金森氏综合症和其他神经退化性疾病等。
因此,有关铜离子和铁离子检测方法的研究已成为热点问题。由于检测金属离子的原子吸收法、质谱法、伏安法、原子荧光法、离子色谱法和高效液相色谱法以及新兴的电化学法、比色法、中子活化分析法等,存在前处理复杂、操作较为繁琐耗时、实验成本相对较高、仪器价格昂贵、不能在线检测等缺点,开发简单、实时、快速、高选择性和灵敏度的检测技术对生物、环境和医学都具有重大的实际意义。荧光分析法因具有灵敏度高,操作简便,成本低,专一性强、用途广和实时监测等优点而备受关注。虽然探针如罗丹明类、丹酰类、萘酰亚胺类、香豆素类、喹啉类功能分子对金属离子具有较好的识别性能,但其中某些识别体系由于受其它金属离子的干扰限制了其在特定环境中的应用,且绝大多数探针分子合成复杂并具有一定的毒性,也限制了其在生物体内的应用。因此,设计、开发一类对铜离子和铁离子具有高选择性且无毒或低毒的低成本探针分子具有重要的理论意义和应用价值。
脱氢枞酸是一种重要的天然三环二萜类树脂酸,为我国优势天然产物松香的主要成分,性质稳定,抗氧化能力强,在化妆品、农业、医药、表面活性剂及其它精细化学品制备领域中有着巨大的应用前景。对脱氢枞酸的结构改造和应用研究是林产化工的重要研究领域。基于脱氢枞基吡啶酰胺化合物的生物安全性及配位能力,开发脱氢枞酸酰胺化合物在金属离子识别领域的应用潜力,对我国松香资源的高附加值利用及地方特色经济的发展具有重要的实际应用意义和潜在的研究价值。
发明内容
针对现有技术存在的上述问题,本发明所要解决的技术问题在于提供一类脱氢枞基吡啶酰胺化合物,作为检测识别铜离子和铁离子的紫外、荧光探针。本发明所要解决的另一的技术问题在于提供一类脱氢枞基吡啶酰胺化合物的制备方法。本发明最后要解决的技术问题在于提供一类脱氢枞基吡啶酰胺化合物在检测识别铜离子和铁离子中的应用。
技术方案:为了解决上述问题,本发明所采用的技术方案如下:
一类脱氢枞基吡啶酰胺化合物,结构式如下:
Figure BDA0002208026580000021
所述的脱氢枞基吡啶酰胺化合物I的制备方法:将双(吡啶-2-基-甲基)胺和三乙胺加入到烧瓶中,并加入无水二氯甲烷,冰浴条件下搅拌至全溶后,缓慢地将脱氢枞酸酰氯滴入,继续搅拌;撤掉冰浴后向反应体系中加入蒸馏水,用分液漏斗分出下层溶液,用水洗多次,水相用少量二氯甲烷萃取,合并有机相,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
优选地,所述的双(吡啶-2-基-甲基)胺,其制备方法为:在室温、搅拌条件下,将2-氨甲基吡啶的甲醇溶液逐滴地滴加到2-醛基吡啶中,反应一段时间后,向其中分次加入NaBH4固体并搅拌过夜;反应完成后,减压蒸干溶剂,再加入蒸馏水,在搅拌条件下用稀盐酸调节混合物的pH至中性,然后用二氯甲烷萃取三次,得下层黄色溶液,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
所述的脱氢枞基吡啶酰胺化合物II的制备方法:将N-(吡啶-2-基-甲基)吡啶-2-胺和三乙胺加入到烧瓶中,并加入无水二氯甲烷,在冰浴条件下搅拌至全溶后,缓慢地滴入脱氢枞酸酰氯,继续搅拌;撤掉冰浴后向反应体系中加入蒸馏水,用分液漏斗分出下层溶液,用水洗多次,水相用少量二氯甲烷萃取,合并有机相,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
优选地,所述的N-(吡啶-2-基-甲基)吡啶-2-胺,其制备方法为:在装有分水器、搅拌、回流的条件下,使2-醛基吡啶和2-氨基吡啶在苯溶剂中进行缩合生成希夫碱,反应完成后减压除去溶剂苯;在室温、搅拌、N2保护条件下,将所得剩余物溶于干燥无水乙醇中,并向其中分次缓慢地加入NaBH4固体,反应完成后加入适量的水和饱和氯化铵溶液以除去过量的NaBH4;减压蒸掉乙醇后,用乙酸乙酯萃取,萃取液用无水MgSO4干燥后,除去溶剂即得目标产物。
所述的脱氢枞基吡啶酰胺化合物III的制备方法:在搅拌条件下,将2-氨甲基吡啶缓慢地滴加到脱氢枞酸酰氯的二氯甲烷溶液中,并向其中逐滴地滴加三乙胺,反应结束后,过滤并将溶液进行浓缩,即得目标产物。
所述的脱氢枞基吡啶酰胺化合物IV的制备方法:在搅拌条件下,将三乙胺滴加到2-氨基吡啶的二氯甲烷溶液中,开启N2保护,并向上述混合物中滴加脱氢枞酸酰氯,滴加完毕后,将混合物倒入等体积的蒸馏水中,并用二氯甲烷萃取,合并有机相并用水洗三次,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
优选地,所述的脱氢枞酸酰氯,其制备方法为:在N2保护、搅拌条件下,将草酰氯逐滴地滴加到脱氢枞酸的二氯甲烷溶液中,滴加完毕后,反应完毕后,减压除掉溶剂,即得目标产物。
所述的脱氢枞基吡啶酰胺化合物在识别铜离子或铁离子中的应用。
有益效果:相比于现有技术,本发明的优点为:
(1)本发明提供的脱氢枞基吡啶酰胺化合物,能高效灵敏地选择性识别铜离子和铁离子,可作为识别铜离子和铁离子的紫外、荧光探针,应用到环境及饮用水的检测中,使用简便,应用前景良好。
(2)本发明提供的脱氢枞基吡啶酰胺化合物的制备方法,步骤简洁,原料脱氢枞酸来自于我国优势天然产物资源松香,来源丰富且成本低,含有的酰胺键基团具有良好的配位活性,容易与金属离子发生作用以达到识别的目的。
(3)本发明提供的脱氢枞基吡啶酰胺化合物具有很高的生物安全性。
附图说明
图1为化合物I的乙腈溶液(1.0×10-4M)中加入各种金属离子(10equiv)的紫外吸收光谱图;
图2为化合物II的乙腈溶液(1.0×10-4M)中加入各种金属离子(10equiv)的紫外吸收光谱图;
图3为化合物III的乙腈溶液(1.0×10-4M)中加入各种金属离子(10equiv)的紫外吸收光谱图;
图4为化合物IV的乙腈溶液(1.0×10-4M)中加入各种金属离子(10equiv)的紫外吸收光谱图;
图5为向化合物I的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图6为向化合物II的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图7为向化合物III的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图8为向化合物IV的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图9为化合物I对Cu2+荧光滴定的Stern-Volmer方程图;
图10为化合物II对Cu2+荧光滴定的Stern-Volmer方程图;
图11为化合物III对Cu2+荧光滴定的Stern-Volmer方程图;
图12为化合物IV对Cu2+荧光滴定的Stem-Volmer方程图;
图13为化合物I的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图14为化合物II的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图15为化合物III的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图16为化合物IV的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)后的荧光发射光谱(λex=260nm)图;
图17为化合物I对Fe3+荧光滴定的Stem-Volmer方程图;
图18为化合物II对Fe3+荧光滴定的Stem-Volmer方程图;
图19为化合物III对Fe3+荧光滴定的Stem-Volmer方程图;
图20为化合物IV对Fe3+荧光滴定的Stem-Volmer方程图;
图21为化合物I的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)时荧光强度(310nm)的线性拟合图;
图22为化合物II的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)时荧光强度(310nm)的线性拟合图;
图23为化合物III的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)时荧光强度(310nm)的线性拟合图;
图24为化合物IV的乙腈溶液(1.0×10-5M)中加入不同当量Cu2+(0-9equiv)时荧光强度(310nm)的线性拟合图;
图25为化合物I的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)时荧光强度(310nm)的线性拟合图;
图26为化合物II的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)时荧光强度(310nm)的线性拟合图;
图27为化合物III的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)时荧光强度(310nm)的线性拟合图;
图28为化合物IV的乙腈溶液(1.0×10-5M)中加入不同当量Fe3+(0-9equiv)时荧光强度(310nm)的线性拟合图。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例1:脱氢枞基吡啶酰胺化合物的制备方法
1)双(吡啶-2-基-甲基)胺的合成,反应式如下:
Figure BDA0002208026580000061
在100mL三口烧瓶中加入2-醛基吡啶(10mmol),在搅拌条件下,将2-氨甲基吡啶(10mmol)的甲醇溶液20mL逐滴地滴加到2-醛基吡啶中,滴加完毕后于室温下搅拌10h。将NaBH4(20mmol)分次、缓慢地加入到反应体系中,反应液由棕色变为浅黄色,在室温下搅拌过夜后,减压蒸干溶剂,再加入20mL蒸馏水,在搅拌下用32%的稀盐酸调至pH为中性,用二氯甲烷萃取(3×30mL),收集下层黄色溶液用无水MgSO4干燥后,减压蒸馏得一黄色液体,产率95%。MS:m/z:200.1[M+1]+
2)N-(吡啶-2-基-甲基)吡啶-2-胺的合成,反应式如下:
Figure BDA0002208026580000062
在装有分水器的100mL烧瓶中,分别加入2-醛基吡啶(9.6mmol)、2-氨基吡啶(8mmol)和15mL苯,在搅拌条件下下回流12h,缩合生成希夫碱。减压除去苯后的剩余物溶于20mL的干燥无水乙醇,在N2气(伸入液面之下,液封装置即可)保护、搅拌条件下,将NaBH4(10.58mmol)分次、缓慢地加入到体系中,室温反应18h。反应完成后加入适量的水和饱和氯化铵溶液除去过量的NaBH4,减压除去乙醇后再加入20mL蒸馏水,并用乙酸乙酯萃取(3×30mL),萃取液用无水MgSO4干燥后除去溶剂,得红棕色粘稠油状物,产率为96%。MS:m/z:186.1[M+1]+
3)脱氢枞酸酰氯的合成,反应式如下:
Figure BDA0002208026580000063
在100mL的两口烧瓶中,将纯品脱氢枞酸(13mmol)溶于40mL干燥的二氯甲烷,在N2气保护(伸入液面以下,液封装置即可)、搅拌、室温条件下,向其中逐滴地滴加草酰氯(47mmol),反应3h后,减压蒸干溶剂所得的红棕色粘稠物,即为脱氢枞酸酰氯。收率为90%。
4)N,N-(吡啶-2-基-甲基)-脱氢枞基酰胺(I)的合成,反应式如下:
Figure BDA0002208026580000071
向250mL的单口烧瓶中,分别加入双(吡啶-2-基-甲基)胺(10mmol)和三乙胺(30mmol)及100mL无水二氯甲烷,在冰浴条件下搅拌至全溶后,缓慢地滴入脱氢枞酸酰氯(30mmol),控制滴速为2~3秒/滴,得一红棕色溶液,继续搅拌15min后撤去冰浴。在室温条件下继续反应,用TLC跟踪、检测反应进度。18h后向体系加入50mL蒸馏水并继续搅拌30min,用分液漏斗分出下层溶液,并用水洗多次,水相用少量二氯甲烷萃取,合并有机相,无水Na2SO4干燥后除去溶剂得粗品棕黄色油状物,经过硅胶柱层析纯化(二氯甲烷∶甲醇=98∶2)得淡黄色固体,产率:75%。熔点:130~131℃。元素分析(%,括号内为计算值):C 79.75(79.79),H 8.14(8.16),N 8.70(8.72),O 3.29(3.32)。IR(KBr)V:2958,2930,2872,1793,1630,1478,1381,1219cm-1。MS:m/z:481.3[M+1]+1H NMR(400MHz,CDCl3),δ(ppm):8.52(d,J=4.1Hz,1H),7.66(td,J=7.7,1.7Hz,1H),7.26(s,1H),7.24(s,1H),7.19-7.11(m,3H),7.01(d,J=8.2Hz,1H),6.97(dd,J=8.2,1.6Hz,1H),6.88(s,1H),6.86(d,J=1.1Hz,1H),5.13-4.52(m,4H),2.89-2.85(m,2H),2.82(d,J=6.9Hz,1H),2.31(d,J=13.1Hz,1H),2.16(dd,J=12.4,1.9Hz,1H),1.79(d,J=4.2Hz,2H),1.75(d,J=5.1Hz,2H),1.62(dd,J=4.9,2.5Hz,1H),1.51-1.44(m,2H),1.31(s,3H),1.24(s,3H),1.22(d,J=4.0Hz,6H)。13C NMR(101MHz,CDCl3),δ(ppm):174.92,157.77,149.54,146.55,145.96,136.90,134.71,127.17,124.27,124.11,123.78,122.28,49.19,47.39,44.93,37.92,37.11,36.0l,33.57,30.20,25.42,24.09,21.81,18.47,16.59。
5)N-(吡啶-2-基),N-(吡啶-2-基-甲基)-脱氢枞基酰胺(II)的合成,反应式如下:
Figure BDA0002208026580000081
在100mL的单口烧瓶中,加入N-(吡啶-2-基-甲基)吡啶-2-胺(5mmol)和三乙胺(15mmol)及50mL无水二氯甲烷,冰浴条件下搅拌至全溶后,缓慢滴入脱氢枞酸酰氯(15mmol)(控制滴速为2-3秒/滴),有白色烟雾产生,继续搅拌15min后撤去冰浴,在室温下搅拌,用TLC跟踪、检测反应进度,20h后向反应体系中加入30mL水猝灭反应,分液,收集有机相、并用蒸馏水水洗多次,水相用少量二氯甲烷萃取,合并有机相,经无水Na2SO4干燥后除去溶剂得粗品棕色油状物,经过硅胶柱层析纯化(二氯甲烷∶甲醇=30∶1)得棕黄色固体,产率:65%。熔点:118~120℃。元素分析(%,括号内为计算值):C 79.59(79.62),H 8.02(7.98),N 8.95(8.99),O 3.45(3.42)。IR(KBr)v:2958,2930,2872,1888,1802,1725,1582,1468,1381,1219cm-1。MS:m/z:468.3[M+1]+1H NMR(400MHz,CDCl3),δ(ppm):8.58-8.35(m,1H),7.67(tdd,J=7.6,5.8,1.9Hz,1H),7.54(d,J=7.8Hz,1/2H),7.34(d,J=8.0Hz,1/2H),7.32-7.20(m,1H),7.22-7.12(m,2H),7.14-7.07(m,1H),7.01(d,J=8.1Hz,1H),6.95(d,J=8.1Hz,1H),6.87(d,J=18.1Hz,2H),5.05(s,2H),2.89-2.85(m,2H),2.83-2.79(m,1H),2.32(d,J=12.9Hz,1H),2.16(dd,J=12.3,1.6Hz,1H),1.90-1.81(m,2H),1.76(d,J=5.3Hz,2H),1.65-1.60(m,1H),1.53-1.44(m,2H),1.31(s,3H),1.25(s,3H),1.22(d,J=4.4Hz,6H)。13C NMR(101MHz,CDCl3),δ(ppm):δ174.91,157.93,148.77,146.54,145.94,138.40,136.70,135.08,134.70,127.16,126.89,124.26,124.10,123.68,122.78,122.14,49.18,45.75,44.92,37.91,37.10,36.00,33.56,30.19,25.42,24.09,21.80,18.46,16.58。
6)N-(吡啶-2-基-甲基)-脱氢枞基酰胺(III)的合成,反应式如下:
Figure BDA0002208026580000082
在0℃条件下,将(5mmol)的2-氨甲基吡啶缓慢滴加到溶有(7.5mmol)脱氢枞酸酰氯的30mL无水二氯甲烷中,搅拌0.5h后,向其中逐滴地滴加三乙胺(15mmol),滴加完毕后升至室温(25℃),继续搅拌,用TLC跟踪、检测反应进度,16h后过滤,溶液浓缩得粗品深红色粘稠物,经过硅胶柱层析纯化(正己烷∶乙酸乙酯∶=4∶1)得纯品,产率:85%。熔点:76~78℃。元素分析(%,括号内为计算值):C 79.99(79.96),H 8.75(8.77),N 7.20(7.17),O 4.15(4.10)。IR(KBr)v:2958,2930,2863,1793,1725,1649,1257,1381,1047cm-1。MS:m/z:391.3[M+1]+。1H NMR(400MHz,CDCl3),δ(ppm):8.53(d,J=4.5Hz,1/2H),7.68(td,J=7.7,1.7Hz,1/2H),7.30(d,J=7.7Hz,1H),7.22(dd,J=7.0,5.4Hz,1H),7.16(dd,J=8.2,3.3Hz,2H),7.01(d,J=6.6Hz,1H),6.88(s,1H),4.77-4.22(m,2H),2.88-2.84(m,2H),2.82-2.77(m,1H),2.35-2.10(m,2H),1.91-1.79(m,2H),1.82-1.72(m,2H),1.66-1.56(m,1H),1.50-1.42(m,2H),1.31(s,3H),1.24(s,3H),1.22(d,J=5.3Hz,6H)。13C NMR(101MHz,CDCl3),δ(ppm):174.92,156.86,148.84,146.55,145.95,137.12,134.71,127.17,124.27,124.10,122.66,122.50,49.19,47.48,44.93,37.92,37.10,36.01,33.57(s),30.20,25.42,24.09,21.81,18.47,16.59。
7)N-(吡啶-2-基)-脱氢枞基酰胺(IV)的合成,反应式如下:
Figure BDA0002208026580000091
在100mL两口烧瓶中,将三乙胺(17mmol)逐滴地滴加到40mL 2-氨基吡啶将(10mmol)的无水二氯甲烷溶液中,快速搅拌10min后,在N2保护下,再滴加脱氢枞酸酰氯(15mmol),用TLC跟踪、检测反应进度,滴加完毕后室温反应16h。然后,将反应混合物倒入等体积的蒸馏水中,并用少许二氯甲烷萃取,有机层用水洗三次后用无水Na2SO4干燥过夜,浓缩得红棕色油状粗品,经过硅胶柱层析纯化(正己烷∶乙酸乙酯=3∶1)得纯品,收率为82%。熔点为:91~92℃。元素分析(%,括号内为计算值):C 79.70(79.74),H 8.61(8.57),N7.46(7.44),O 4.15(4.25)。IR(KBr)v:3255,2958,2863,1773,1678,1572,1505,1429,1028cm-1。MS:m/z:377.3[M+1]+1H NMR(400MHz,CDCl3),δ(ppm):8.42-8.13(m,3H),7.83-7.59(m,1H),7.18(d,J=8.2Hz,1H),7.02(dd,J=7.0,5.5Hz,2H),6.87(s,1H),2.89(dt,J=14.1,7.0Hz,2H),2.82(dd,J=13.8,6.9Hz,1H),2.35(d,J=13.1Hz,1H),2.24(dd,J=12.5,2.0Hz,1H),1.85(dd,J=12.8,3.0Hz,2H),1.81-1.74(m,2H),1.71(d,J=11.2Hz,1H),1.62-1.54(m,2H),1.43(s,3H),1.27(s,3H),1.22(d,J=6.9Hz,6H)。13C NMR(101MHz,CDCl3),δ(ppm):177.29,151.76,147.85,146.89,145.93,138.46,134.65,127.00,124.13,124.05,119.79,114.15,48.51,45.70,38.06,37.32,37.26,33.59,29.99,25.27,24.11,24.09,21.42,18.87,16.74。
实施例2:探针脱氢枞酸酰胺化合物(I~IV)在检测Cu2+、Fe3+中的应用
1)紫外-可见光吸收光谱实验
向化合物I~IV的乙腈溶液(浓度为1.0×10-4M)中,分别加入相当于化合物10倍当量的Cd2+、Ni2+、Co2+、Zn2+、Cr3+、Fe3+、Cu2+的乙腈溶液(1.0×10-3M),于室温下检测其紫外吸收光谱。
如图1~4可知,在不加任何金属阳离子时,化合物I、II、III和IV在200-300nm内有着各自不同的紫外吸收峰,当向化合物的乙腈溶液中分别加入Cd2+、Ni2+、Co2+、Zn2+、Cr3+、Fe3 +、Cu2+七种硝酸盐以及氯化铜和溴化铜的乙腈溶液,结果发现只有加入Cu2+时化合物的紫外吸收光谱有明显的变化,可观察到其特征峰发生了不同程度的红移现象,说明这四种化合物均能对铜离子表现出良好的选择性识别。
实施例3:荧光滴定实验
为进一步研究探针(化合物I~IV)与金属离子的结合能力的大小以及评价Cu2+和Fe3+浓度对化合物选择性的影响,本实施例采用了荧光滴定法来分析。其中猝灭常数是表征化合物识别能力的重要参数,一般猝灭常数可由如下公式计算出:
F0/F=1+Ksv[Q]
式中[Q]是猝灭剂(Cu2+和Fe3+)的浓度;F0和F分别是荧光配体(化合物I~IV)溶液加入猝灭剂之前和加入猝灭剂之后的荧光强度;Ksv为Stern-Volmer猝灭常数。
1)Cu2+对探针(化合物I~IV)的荧光滴定分析
在化合物I~IV的乙腈溶液(浓度为1.0×10-5M)中,分别加入0-9倍当量(相对于化合物)的Cu2+、Fe3+,观察溶液的荧光变化情况。图5~8为加入0-9倍当量Cu2+后的I~IV乙腈溶液的荧光发射光谱(λex=260nm),可看到随着化合物体系中的Cu2+浓度逐渐增大,其在310nm附近处的最大荧光发射强度不断减弱。并且由图9~12的Stem-Volmer猝灭曲线可计算出化合物-Cu2+体系中荧光猝灭常数Ksv分别为6.348×104M-1、8.114×104M-1、5.981×104M-1和7.136×104M-1,如此高的Ksv值说明在乙睛溶剂中,较低浓度的Cu2+即可导致化合物发生荧光猝灭现象,化合物I~IV的荧光光谱对Cu2+表现出极高的响应选择性和灵敏度。
2)Fe3+对探针(化合物I~IV)的荧光滴定分析
图13~16的荧光光谱显示,随着化合物体系中Fe3+浓度不断增加,配体(化合物I~IV)自身在310nm附近处的最大荧光发射强度不断减弱,发生了荧光猝灭现象。并根据图17~20的Stern-Volmer猝灭曲线可得出化合物I~IV荧光猝灭常数Ksv分别为2.571×103M-1、4.27×103M-1、3.592×103M-1和4.61×103M-1,实验结果表明,在乙睛溶剂中,化合物I~IV的荧光光谱对Fe3+的响应选择性和灵敏度都很高。
3)探针(化合物I~IV)对Cu2+和Fe3+离子的检测限研究
利用荧光滴定法,计算出化合物对Cu2+和Fe3+的检测限,其中无金属离子时配体(化合物I~IV)的发射强度需测定10次,用来确定空白样品的标准偏差,而后测得不断向配体中加入Cu2+和Fe3+时的荧光强度。检测限可由以下公式求出:LOD=3σ/k。式中σ为空白测量的标准偏差;k是荧光强度对相对金属离子浓度所得曲线的斜率。
(1)探针(化合物I~IV)对Cu2+的检测限:
向固定浓度的化合物乙腈溶液中逐渐加入等体积的Cu2+,得到了其在310nm处的荧光强度与Cu2+浓度之间的线性回归方程(如图21~24),并各自以10次空白样品在310nm处的荧光强度的标准偏差可计算出化合物I~IV对Cu2+的LOD值,分别为7.885×10-7M、6.189×10-7M、8.138×10-7M、6.605×10-7M,其结果均低于世界卫生组织(WTO)所规定的铜在饮用水中的标准值31μM以及美国环境保护局(EPA)所设定的最大安全值20μM,所以化合物I~IV可以作为荧光探针去检测环境及饮用水中的Cu2+,同时对Cu2+的检测有较高的灵敏度。
(2)化合物对Fe3+的检测限:
向化合物的乙腈溶液中,依次加入等体积的Fe3+,得到化合物的荧光强度随Fe3+浓度的变化曲线(如图25~28),同样以10次不加Fe3+时的空白样品的荧光强度的标准偏差可算出不同化合物对Fe3+的检测限LOD值,依次为3.845×10-6M、2.698×10-6M、3.065×10-6M、2.349×10-6M,其结果均低于饮用水中可允许的铁离子浓度0.3μg/mL(~5.357μM),因此化合物I~IV也可作为检测环境及饮用水中Fe3+荧光探针,同时对Fe3+的检测有较高的灵敏度。
实施例4:探针(化合物I~IV)的生物安全性评价
对不同细胞株的生长抑制率的实验过程:
采用MTT法测试了化合物对六种人肿瘤细胞和一种人正常细胞的体外细胞毒活性。首先将待测化合物溶解于DMSO中,配制成10mM的溶液,然后用培养液和牛血清将浓度稀释至25μM(最终DMSO含量<0.5%)。将各种细胞经常规消化、计数,接种到96孔板中,置于37℃,5%的CO2培养箱中培养24h。再将配制好的不同浓度的待测化合物加入96孔板中,设置对照组,每孔3个复孔,于培养箱中培养24h后,每孔加入20μL的MTT溶液,继续培养4h。弃去上清液后每孔加入150μL的DMSO,摇床振荡10min混匀,随后用酶标仪测定570nm处的吸光值(OD)并计算抑制率。
如表1所示,脱氢枞基吡啶酰胺化合物化合物I~IV在高浓度(25μM)时,对人肿瘤细胞和人正常细胞生长的抑制率都维持在较低的水平,说明它们的生物安全性很高。
表1脱氢枞基吡啶酰胺化合物I~IV(25μM)对不同细胞株的生长抑制率(%)
Figure BDA0002208026580000121
Figure BDA0002208026580000131

Claims (9)

1.一类脱氢枞基吡啶酰胺化合物,其特征在于,结构式如下:
Figure FDA0002208026570000011
2.权利要求1所述的脱氢枞基吡啶酰胺化合物I的制备方法,其特征在于:将双(吡啶-2-基-甲基)胺和三乙胺加入到烧瓶中,并加入无水二氯甲烷,冰浴条件下搅拌至全溶后,缓慢地将脱氢枞酸酰氯滴入,继续搅拌;撤掉冰浴后向反应体系中加入蒸馏水,用分液漏斗分出下层溶液,用水洗多次,水相用少量二氯甲烷萃取,合并有机相,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
3.根据权利要求2所述的制备方法,其特征在于,所述的双(吡啶-2-基-甲基)胺,其制备方法为:在室温、搅拌条件下,将2-氨甲基吡啶的甲醇溶液逐滴地滴加到2-醛基吡啶中,反应一段时间后,向其中分次加入NaBH4固体并搅拌过夜;反应完成后,减压蒸干溶剂,再加入蒸馏水,在搅拌条件下用稀盐酸调节混合物的pH至中性,然后用二氯甲烷萃取三次,得下层黄色溶液,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
4.权利要求1所述的脱氢枞基吡啶酰胺化合物II的制备方法,其特征在于:将N-(吡啶-2-基-甲基)吡啶-2-胺和三乙胺加入到烧瓶中,并加入无水二氯甲烷,在冰浴条件下搅拌至全溶后,缓慢地滴入脱氢枞酸酰氯,继续搅拌;撤掉冰浴后向反应体系中加入蒸馏水,用分液漏斗分出下层溶液,用水洗多次,水相用少量二氯甲烷萃取,合并有机相,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
5.根据权利要求4所述的制备方法,其特征在于,所述的N-(吡啶-2-基-甲基)吡啶-2-胺,其制备方法为:在装有分水器、搅拌、回流的条件下,使2-醛基吡啶和2-氨基吡啶在苯溶剂中进行缩合生成希夫碱,反应完成后减压除去溶剂苯;在室温、搅拌、N2保护条件下,将所得剩余物溶于干燥无水乙醇中,并向其中分次缓慢地加入NaBH4固体,反应完成后加入适量的水和饱和氯化铵溶液以除去过量的NaBH4;减压蒸掉乙醇后,用乙酸乙酯萃取,萃取液用无水MgSO4干燥后,除去溶剂即得目标产物。
6.权利要求1所述的脱氢枞基吡啶酰胺化合物III的制备方法,其特征在于:在搅拌条件下,将2-氨甲基吡啶缓慢地滴加到脱氢枞酸酰氯的二氯甲烷溶液中,并向其中逐滴地滴加三乙胺,反应结束后,过滤并将溶液进行浓缩,即得目标产物。
7.权利要求1所述的脱氢枞基吡啶酰胺化合物IV的制备方法,其特征在于:在搅拌条件下,将三乙胺滴加到2-氨基吡啶的二氯甲烷溶液中,开启N2保护,并向上述混合物中滴加脱氢枞酸酰氯,滴加完毕后,将混合物倒入等体积的蒸馏水中,并用二氯甲烷萃取,合并有机相并用水洗三次,用无水硫酸钠干燥后减压蒸馏除去溶剂,即得目标产物。
8.根据权利要求2、4、6或7所述的制备方法,其特征在于,所述的脱氢枞酸酰氯,其制备方法为:在N2保护、搅拌条件下,将草酰氯逐滴地滴加到脱氢枞酸的二氯甲烷溶液中,滴加完毕后,反应完毕后,减压除掉溶剂,即得目标产物。
9.权利要求1所述的脱氢枞基吡啶酰胺化合物在识别铜离子或铁离子中的应用。
CN201910890760.7A 2019-09-19 2019-09-19 一类脱氢枞基吡啶酰胺化合物及其制备方法和应用 Expired - Fee Related CN110563640B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910890760.7A CN110563640B (zh) 2019-09-19 2019-09-19 一类脱氢枞基吡啶酰胺化合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910890760.7A CN110563640B (zh) 2019-09-19 2019-09-19 一类脱氢枞基吡啶酰胺化合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110563640A CN110563640A (zh) 2019-12-13
CN110563640B true CN110563640B (zh) 2021-03-12

Family

ID=68781404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910890760.7A Expired - Fee Related CN110563640B (zh) 2019-09-19 2019-09-19 一类脱氢枞基吡啶酰胺化合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110563640B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788816B (zh) * 2021-08-09 2022-05-03 南京林业大学 一种脱氢枞酸基喹喔啉类汞离子荧光探针及其制备方法和应用
CN113929642B (zh) * 2021-09-30 2023-04-11 南京林业大学 一种脱氢枞胺类银离子荧光探针及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535546B (zh) * 2014-11-10 2017-02-15 中国林业科学研究院林产化学工业研究所 脱氢枞酸基芳胺化合物作为金属离子荧光探针的应用
CN106220570B (zh) * 2016-07-26 2019-07-30 南京林业大学 咪唑脱氢枞胺酰胺类化合物及其制备方法和应用

Also Published As

Publication number Publication date
CN110563640A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
Khan et al. Recent developments in fluorescent and colorimetric chemosensors based on schiff bases for metallic cations detection: A review
Li et al. A benzothiazole-based fluorescent probe for efficient detection and discrimination of Zn2+ and Cd2+, using cysteine as an auxiliary reagent
Kim et al. A single colorimetric sensor for multiple target ions: the simultaneous detection of Fe 2+ and Cu 2+ in aqueous media
Erdemir et al. A highly selective fluorescent sensor based on calix [4] arene appended benzothiazole units for Cu2+, S2− and HSO4− ions in aqueous solution
Guo et al. A fast, highly selective and sensitive colorimetric and fluorescent sensor for Cu2+ and its application in real water and food samples
Wang et al. Recognition of Cu2+ and Hg2+ in physiological conditions by a new rhodamine based dual channel fluorescent probe
Chang et al. Novel fluorescent probes for sequential detection of Cu2+ and citrate anion and application in living cell imaging
Mei et al. A new fluorescent probe of rhodamine B derivative for the detection of copper ion
Zhou et al. New diaminomaleonitrile derivatives containing aza-crown ether: Selective, sensitive and colorimetric chemosensors for Cu (II)
CN110563640B (zh) 一类脱氢枞基吡啶酰胺化合物及其制备方法和应用
Li et al. A “turn-on” fluorescent chemosensor for the detection of Zn (II) in aqueous solution at neutral pH and its application in live cells imaging
La et al. Spectroscopic and theoretical studies on a novel bis (salamo)-like probe for highly effective fluorimetric-colorimetric identification of Fe3+ and Cu2+ in aquo-organic medium
Xie et al. An “off–on” rhodamine 6G hydrazide-based output platform for fluorescence and visual dual-mode detection of lead (II)
Guo et al. A “turn-on” fluorescent chemosensor for aluminum ion and cell imaging application
CN104910316B (zh) 一种高分子比色纳米薄膜材料及其制备方法以及用于Fe3+和焦磷酸根检测方面的应用
Sun et al. A turn-on fluorescent probe for cyanide based on aggregation of terthienyl and its application for bioimaging
Velmurugan et al. Binol based “turn on” fluorescent chemosensor for mercury ion
CN110117295B (zh) 一种检测汞离子的荧光探针及其制备方法和应用
Wu et al. A ratiometric fluorescent chemosensor for Cr3+ based on monomer–excimer conversion of a pyrene compound
Yan et al. Synthesis and spectral analysis of fluorescent probes for Ce4+ and OCl− ions based on fluorescein Schiff base with amino or hydrazine structure: application in actual water samples and biological imaging
Bhuvanesh et al. Small molecule “turn on” fluorescent probe for silver ion and application to bioimaging
Shamsipur et al. Development of a novel flow injection liquid–liquid microextraction method for the on-line separation and preconcentration for determination of zinc (II) using 5-(8-hydroxy-2-quinolinylmethyl)-2, 8-dithia-5-aza-2, 6-pyridinophane as a sensitive and selective fluorescent chemosensor
Jiang et al. A novel chemosensor for the distinguishable detections of Cu2+ and Hg2+ by off–on fluorescence and ratiometric UV–visible absorption
Sun et al. Construction of a water-soluble fluorescent probe for copper (II) ion detection in live cells and food products
Chen et al. A highly sensitive fluorogenic “turn-on” chemosensor for the recognition of Cd2+ based on a hybrid purine-quinoline Schiff base

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210312

Termination date: 20210919

CF01 Termination of patent right due to non-payment of annual fee