CN110105733B - 一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法 - Google Patents

一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法 Download PDF

Info

Publication number
CN110105733B
CN110105733B CN201910444647.6A CN201910444647A CN110105733B CN 110105733 B CN110105733 B CN 110105733B CN 201910444647 A CN201910444647 A CN 201910444647A CN 110105733 B CN110105733 B CN 110105733B
Authority
CN
China
Prior art keywords
polylactic acid
pla
polydopamine
nanoparticles
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910444647.6A
Other languages
English (en)
Other versions
CN110105733A (zh
Inventor
施冬健
杨雯迪
章丰凯
张克娜
赵晓峰
陈明清
倪忠斌
闻杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Hehao Environmental Protection Technology Co.,Ltd.
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201910444647.6A priority Critical patent/CN110105733B/zh
Publication of CN110105733A publication Critical patent/CN110105733A/zh
Application granted granted Critical
Publication of CN110105733B publication Critical patent/CN110105733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0666Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0672Polycondensates containing five-membered rings, condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法,所述方法利用多巴胺氧化自聚而得的聚多巴胺纳米粒子为引发剂,对丙交酯进行开环聚合,在PDA NPs的表面接枝PLA链,制备了聚乳酸接枝聚多巴胺复合纳米粒子,以提高纳米粒子在聚乳酸(PLA)基质中的分散性和相容性;进而将PDA NPs‑PLA作为纳米填料与PLA复合成型,制备得到聚乳酸/聚乳酸接枝聚多巴胺复合材料。本发明制备所得的复合材料具有较低的冷结晶温度、较高的紫外屏蔽性能及良好的力学性能与生物可降解性,可作为包装材料、农用膜材料、工程塑料、生物医用材料等应用于多个领域。

Description

一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法
技术领域
本发明涉及一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法,属于高分子材料和生物可降解材料技术领域。
背景技术
近年来,生物可降解高分子材料因其生物来源广、环境友好等诸多优势而引起了广泛的关注。聚乳酸(PLA)具有无毒、无刺激、生物可降解、生物相容性好等优异性能,因而成为一种最有发展潜力的生物可降解高分子材料。尽管PLA具有较好的力学性能,但其韧性较差,在某些领域难以满足使用要求。同时,PLA材料缺乏一定的功能性,特别是在包装材料、工程塑料等领域中使用时,缺乏紫外屏蔽性能,因而限制了其使用领域。将生物可降解聚合物材料与纳米填料混合不仅可以改善其机械和热性能,而且还能够赋予材料额外的功能,如导电性、紫外屏蔽性、气体阻隔性和抗菌性等。而前期的研究报道称,碳纳米材料或金属纳米粒子等纳米填料可以极大地改善PLA的热学、电学和光学性质,但这些无机纳米填料与PLA间的相容性较差,且其存在一定的生物不相容性与生理毒性,极大地限制了其在生物可降解基复合材料中的应用。因而,选用具有生物可降解性的有机纳米粒子为填料,有望解决上述问题。
2007年,美国西北大学Messersmith教授团队发现L-3,4-二羟苯丙氨酸(DOPA)可在弱碱性溶液及氧气中发生氧化自聚,且其表现出令人惊叹的黏附性,即几乎可在所有材料表面形成聚多巴(PDOPA)涂层,这一发现拉开了研究多巴及其衍生物的序幕。多巴胺(DA)是一种多巴的常见衍生物,其具有与多巴相类似的性质:可氧化自聚成聚多巴胺纳米粒子(PDA NPs)、优异的黏附性能、生物相容性、光热转化性、紫外屏蔽性等,而且PDA NPs中富含儿茶酚基、氨基、亚氨基等功能性基团,可与多种化合物和聚合物有较强的相互作用也可发生二次反应。因此,PDA NPs作为纳米填料具有很大的研究和应用价值。
然而,直接将PDA NPs与PLA复合,存在两者不相容而使PDA NPs聚集,从而PDA NPs不能很好的分散于PLA基材中而未能实现提高PLA性能的目的。
发明内容
本发明目的是提供一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法,制备得到的复合材料具有良好的热学性能与紫外屏蔽性。
本发明的设计思路是:首先利用多巴胺在弱碱性环境下的氧化自聚自组装制备不同粒径(100~550nm)的聚多巴胺纳米粒子(PDA NPs);再将其作为引发剂,利用丙交酯的开环聚合将聚乳酸链段接枝至PDA NPs的表面,以提高纳米粒子在PLA基质中的分散性和相容性,进而提高纳米粒子与PLA基材的相互作用;最后将两者复合制备PLA/PDA NPs-PLA复合材料。
本发明的技术方案如下:
利用多巴胺在弱碱性条件下的氧化自聚自组装,并利用氨水调节反应体系的pH,制备了不同粒径的PDA NPs;再以辛酸亚锡为催化剂、无水甲苯为溶剂,进行丙交酯的开环聚合,将PLA链段接枝至PDA NPs的表面,制备得到PDA NPs-PLA复合纳米粒子;最后通过溶液浇铸复合成型,待溶剂挥发后,真空干燥24h至恒重,制备得到PLA/PDA NPs-PLA复合材料。
其中,通过控制氨水的添加量为0.5~3.5 L,所制备得到的PDA NPs的粒径可以控制在550~100nm;PDA NPs与LA的投料质量比为1:20~1:100,催化剂辛酸亚锡的用量为单体(LA)的1wt%,反应温度为130℃,得到PDA NPs-PLA复合纳米粒子;将其均匀分散在PLA基质中,并使聚乳酸/聚乳酸接枝聚多巴胺复合材料中PDA NPs-PLA的含量为0.5~3wt%。
本发明的有益效果:
本发明为更好地改善PDA NPs与PLA基材间的相容性,设计发明了一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法,利用多氧化自聚得到的聚多巴纳米粒子(PDANPs)为引发剂,开环丙交酯(LA)聚合,得到聚乳酸接枝聚多巴胺复合纳米粒子(PDA NPs-PLA),再将其与PLA基材复合成型,制备得到了聚乳酸/聚乳酸接枝聚多巴胺(PLA/PDA NPs-PLA)复合材料。
本发明以多巴胺为原料,自聚后的PDA NPs中含有羟基可开环丙交酯得到表面接枝聚乳酸链段的PDA纳米粒子,再将其与聚乳酸复合得到纳米粒子分散良好的复合材料。所得复合材料的冷结晶温度可降低至110℃以下,对UVA和UVB的紫外屏蔽率可达到92%以上,最高可达99%,在包装材料、农用材料、工程塑料、生物医用材料等领域有潜在的应用。
附图说明
图1为本发明PDA NPs-0.5(a),PDA NPs-1.0(b),PDA NPs-1.5(c),PDA NPs-3.5(d),PDA NPs-0.5-PLA-100(e),PDA NPs-1.0-PLA-100(f),PDA NPs-1.5-PLA-100(g)和PDANPs-3.5-PLA-100(h)的扫描电镜照片示意图;
图2 LA/PDA NPs-PLA复合材料的制备示意图;
图3 PLA和PLA/PDA NPs-PLA-100复合材料的紫外屏蔽性。
具体实施方式
下面结合附图和实施例,对本发明进行具体描述。
实施例1、聚多巴胺纳米粒子(PDA NPs)的制备
准确量取4 L无水乙醇与9 L的去离子水并将其混合,再移取0.5 L的氨水加入到混合溶液中,并将混合溶液置于30℃的水浴锅中加热搅拌。称取50g盐酸多巴胺(DA)并用1mL去离子水溶解后加入到上述混合溶液中,反应24h。将反应后的混合液用去离子水洗涤三次、离心并冷冻干燥待用,所制备的聚多巴胺纳米粒子记作PDA NPs-0.5,粒径为550nm,其扫描电镜图见图1中(a),其表面光滑。
需要说明的是,当氨水的用量为1 L、1.5 L和3.5 L,所制备的聚多巴胺纳米粒子分别记作PDA NPs-1.0、PDA NPs-1.5和PDA NPs-3.5,粒径分别为370nm、270nm、150nm,扫描电镜图分别见图1中(b)、(c)、(d),其特征如图1中(a)基本一致。
实施例2、PDA NPs-PLA复合纳米粒子的制备
称取1g先前合成的PDA NPs-0.5并将其分散在40mL无水甲苯中,将分散液移入100mL三口烧瓶中并加热至50℃,再加入100g的丙交酯(LA),持续搅拌待丙交酯完全溶解后,通入N2排出空气,再加入1wt%异辛酸亚锡(Sn(Oct)2)并升温至130℃冷凝回流反应24h;反应结束后用氯仿离心洗涤三次以除去未反应的单体和副产物;将所得的产物在60℃下真空干燥24h待用,所制备的纳米粒子为聚乳酸接枝聚多巴胺纳米粒子,记作PDA NPs-0.5-PLA-100,扫描电镜图如图1中(e)所示,其粒径略有增加,约为600nm,但其表面稍变粗糙,表明PLA接枝至PDA NPs表面。
需要说明的是,PDA NPs可以是PDA NPs-0.5、PDA NPs-1.0、PDA NPs-1.5和PDANPs-3.5;当丙交酯的用量为20g、50g、80g、100g时,所得的纳米粒子分别记作PDA NPs-n-PLA-20、PDA NPs-n-PLA-50、PDA NPs-n-PLA-80、PDA NPs-n-PLA-100,其中n为0.5,1.0,1.5或3.5。
实施例3、聚乳酸/聚乳酸接枝聚多巴胺(PLA/PDA NPs-PLA)复合材料的制备称取250mg PDA NPs-PLA并将其分散在0.7 L CHCl3中,充分分散后,向其中加入50g PLA,静置待PLA充分溶解后,再轻微搅拌使各组分充分分散,最后将混合液浇铸成型;将培养皿静置待溶剂挥发后,放入60℃真空干燥至恒重,得到PDA NPs-PLA 质量分数为0.5%的PLA/PDANPs-PLA复合材料,记作PLA/PDA NPs-PLA-0.5%。
需要说明的是,当PDA NPs-PLA的质量为500mg、1g和1.5g时,纳米粒子的质量分数分别为1%、2%和3%,并分别记作PLA/PDA NPs-PLA-1%、PLA/PDA NPs-PLA-2%和PLA/PDANPs-PLA-3%。
当在PLA中加入PDA NPs-PLA,其所得聚乳酸/聚乳酸接枝聚多巴胺纳米复合材料具有优异的紫外屏蔽性能,对UVA和UVB的紫外屏蔽率可达到92%以上。当加入PDA NPs-0.5-PLA-100为1%时,对UVA和UVB的紫外屏蔽率达到最佳,为99%。

Claims (6)

1.一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法,其特征在于,所述制备方法包括如下步骤:
(1)以多巴胺氧化自聚制备得到的聚多巴胺纳米粒子为引发剂,丙交酯开环聚合得到聚乳酸接枝的聚多巴胺纳米粒子,称为聚乳酸接枝聚多巴胺复合纳米粒子;
(2)以聚乳酸为连续相,聚乳酸接枝聚多巴胺复合纳米粒子为纳米填料,两者复合制备得到聚乳酸/聚乳酸接枝聚多巴胺复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述聚多巴胺纳米粒子的粒径为100~550nm。
3.根据权利要求1所述的制备方法,其特征在于,所述开环聚合反应的过程中所述聚多巴胺纳米粒子与丙交酯的质量比为1:20~1:100,聚乳酸接枝聚多巴胺复合纳米粒子表示为PDA NPs-PLA。
4.根据权利要求1所述的制备方法,其特征在于,所述聚乳酸/聚乳酸接枝聚多巴胺复合材料中PDA NPs-PLA的含量为0.5~3wt%。
5.根据权利要求1所述的制备方法,其特征在于聚乳酸/聚乳酸接枝聚多巴胺纳米复合材料冷结晶温度可降低至110℃以下;且具有紫外屏蔽性能,对UVA和UVB的紫外屏蔽率可达到92%以上。
6.根据权利要求5所述的制备方法,其特征在于所述聚乳酸/聚乳酸接枝聚多巴胺纳米复合材料对UVA和UVB的紫外屏蔽率最高可达99%。
CN201910444647.6A 2019-05-27 2019-05-27 一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法 Active CN110105733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910444647.6A CN110105733B (zh) 2019-05-27 2019-05-27 一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910444647.6A CN110105733B (zh) 2019-05-27 2019-05-27 一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN110105733A CN110105733A (zh) 2019-08-09
CN110105733B true CN110105733B (zh) 2020-06-19

Family

ID=67492364

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910444647.6A Active CN110105733B (zh) 2019-05-27 2019-05-27 一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN110105733B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117534984B (zh) * 2023-11-06 2024-09-10 临沂宏利装饰材料有限公司 一种可生物降解的印刷油墨及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101168616A (zh) * 2007-09-29 2008-04-30 武汉理工大学 一种聚多糖纳米粒子接枝聚酯改性聚乳酸材料的制备方法
CN103083735A (zh) * 2013-01-18 2013-05-08 南京医科大学附属口腔医院 一种引导骨组织再生的复合膜及其制备方法
CN104558665A (zh) * 2014-12-26 2015-04-29 东华大学 一种己内酯开环聚合表面改性的聚多巴胺小球及其复合物的制备方法
CN105801897A (zh) * 2016-05-03 2016-07-27 江南大学 一种聚多巴胺/透明质酸改性涂覆聚乳酸膜的制备方法
CN109608647A (zh) * 2018-12-25 2019-04-12 上海交通大学医学院 活性氧响应的聚合物、载体及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101168616A (zh) * 2007-09-29 2008-04-30 武汉理工大学 一种聚多糖纳米粒子接枝聚酯改性聚乳酸材料的制备方法
CN103083735A (zh) * 2013-01-18 2013-05-08 南京医科大学附属口腔医院 一种引导骨组织再生的复合膜及其制备方法
CN104558665A (zh) * 2014-12-26 2015-04-29 东华大学 一种己内酯开环聚合表面改性的聚多巴胺小球及其复合物的制备方法
CN105801897A (zh) * 2016-05-03 2016-07-27 江南大学 一种聚多巴胺/透明质酸改性涂覆聚乳酸膜的制备方法
CN109608647A (zh) * 2018-12-25 2019-04-12 上海交通大学医学院 活性氧响应的聚合物、载体及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Enhanced mechanical properties of self-polymerized polydopaminecoated-coated recycled PLA filament used in 3D printing;Xing Guan Zhao 等;《Applied Surface Science》;20180131;第381–387页 *
基于聚多巴胺粘附层生物学修饰聚乳酸及其细胞相容性研究;李慧华等;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;20170215(第 02 期);正文第13页倒数第1-4段,第14页第1段,第19页倒数第1段 *

Also Published As

Publication number Publication date
CN110105733A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN105392842B (zh) 聚酰亚胺树脂组合物和聚酰亚胺树脂-纤维复合材料
Jin et al. Development of conductive protein-based film reinforced by cellulose nanofibril template-directed hyperbranched copolymer
Yang et al. Novel Poly (l-lactide)/graphene oxide films with improved mechanical flexibility and antibacterial activity
CN101381511A (zh) 单层石墨与聚合物复合材料及其制备方法
CN110105733B (zh) 一种聚乳酸/聚乳酸接枝聚多巴胺复合材料的制备方法
Tan et al. Dopamine modified polyaniline with improved adhesion, dispersibility, and biocompatibility
CN107793573B (zh) 一种杂化双亲性星型共聚物纳米胶束的制备方法
Mirmohammadi et al. In-situ photocrosslinkable nanohybrid elastomer based on polybutadiene/polyhedral oligomeric silsesquioxane
CN112898611B (zh) 一种高强度、光响应自修复纳米复合聚氨酯薄膜的制备方法
Stipniece et al. Development of functionalized hydroxyapatite/poly (vinyl alcohol) composites
Martínez-Sanz et al. Antimicrobial poly (lactic acid)-based nanofibres developed by solution blow spinning
Nath et al. Multifunctional mussel‐inspired Gelatin and Tannic acid‐based hydrogel with pH‐controllable release of vitamin B12
CN110229326B (zh) 一种黑色素颗粒的制备方法
Mallakpour et al. Novel ternary poly (vinyl pyrrolidone)/poly (amide-imide)/ZnO nanocomposite: synthesis, characterization, thermal and optical performance
JP2011102332A (ja) 水溶性ナノ粒子複合体を形成するための両親媒性ポリマー
CN117720799A (zh) 一种可降解高韧性抗菌pbat发泡材料
Laysandra et al. “Grafting from” Enabled Stretchable and Highly Fluorescent Carbon Quantum Dot–Polyisoprene Elastomers
Abdolmaleki et al. Microwave-assisted treatment of MWCNTs with vitamin B2: study on morphology, tensile and thermal behaviors of poly (vinyl alcohol) based nanocomposites
CN109880346B (zh) 一种有机-无机复合导电凝胶的制备方法
Shi et al. Fabrication of rod-like nanocapsules based on polylactide and 3, 4-dihydroxyphenylalanine for a drug delivery system
CN101671495B (zh) 一种碳酸钙改性剂及其制备方法
Scholz Perspectives to produce positively or negatively charged polyhydroxyalkanoic acids
Dong et al. Hydrolyzable and bio-based polyester/nano-hydroxyapatite nanocomposites: Structure and properties
CN104140546B (zh) 一种类碳纳米管状可降解聚合物的制备方法
CN105669987A (zh) 一种聚乙烯醇-聚(丙交酯-乙交酯)接枝共聚物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211110

Address after: 215107 No. 30, Fenghuangshan Road, science and Technology Industrial Park, Dongshan Town, Wuzhong District, Suzhou City, Jiangsu Province

Patentee after: SUZHOU H&FINE PLASTIC CO.,LTD.

Address before: No. 1800, Lihu Avenue, Wuxi, Jiangsu 214122

Patentee before: Jiangnan University

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: 215107 No. 30, Fenghuangshan Road, science and Technology Industrial Park, Dongshan Town, Wuzhong District, Suzhou City, Jiangsu Province

Patentee after: Suzhou Hehao Environmental Protection Technology Co.,Ltd.

Address before: 215107 No. 30, Fenghuangshan Road, science and Technology Industrial Park, Dongshan Town, Wuzhong District, Suzhou City, Jiangsu Province

Patentee before: SUZHOU H&FINE PLASTIC CO.,LTD.

CP01 Change in the name or title of a patent holder