CN110105391B - 碱性磷酸酶响应型分子探针及其应用 - Google Patents

碱性磷酸酶响应型分子探针及其应用 Download PDF

Info

Publication number
CN110105391B
CN110105391B CN201910508151.0A CN201910508151A CN110105391B CN 110105391 B CN110105391 B CN 110105391B CN 201910508151 A CN201910508151 A CN 201910508151A CN 110105391 B CN110105391 B CN 110105391B
Authority
CN
China
Prior art keywords
alkaline phosphatase
compound
molecular probe
probe
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910508151.0A
Other languages
English (en)
Other versions
CN110105391A (zh
Inventor
史海斌
赵梦
周如鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910508151.0A priority Critical patent/CN110105391B/zh
Publication of CN110105391A publication Critical patent/CN110105391A/zh
Application granted granted Critical
Publication of CN110105391B publication Critical patent/CN110105391B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种碱性磷酸酶响应型分子探针及其应用。本发明设计合成了一种激活型小分子荧光探针,能够专一性检测体内外碱性磷酸酶水平,不受其他生物分子及酶等干扰。同时,本发明中目标探针被碱性磷酸酶剪切后,具有明显的聚集诱导发光行为,且发射波长位于红光波段,能量更低,损伤小,组织穿透能力强。通过本发明的制备方法获得碱性磷酸酶响应型探针,能够定性的展示HeLa细胞中碱性磷酸酶的空间分布,以及肝损伤斑马鱼幼虫的碱性磷酸酶水平,对研究碱性磷酸酶相关的生理和病理过程具有重要的科研及经济价值。

Description

碱性磷酸酶响应型分子探针及其应用
技术领域
本发明属于响应型分子探针功能化修饰技术领域,具体涉及一种碱性磷酸酶响应型聚集诱导发光分子探针的制备方法,以及该探针在活细胞及斑马鱼幼虫显影中的应用。
背景技术
众所周知,激活型小分子荧光探针具有无创性、代谢快、毒性低等优点,在临床成像中得到了广泛的应用。迄今为止,许多针对酶、生物硫醇、活性氧(ROS)、离子、pH的激活型小分子荧光探针,已经被大量的报道用于疾病的早期诊断。其中,酶作为最重要的生物标志物之一,参与了多种疾病过程的调控,具有重大的临床研究价值。因此,合理设计酶激活小分子荧光探针,实时监测生物体系中酶活性的异常表达,具有相当重要的意义。
碱性磷酸酶(ALP),作为重要的生物标志物和治疗靶点,其异常的高表达反映出机体的功能障碍和代谢异常,如:肝脏功能异常,骨质疏松和糖尿病等。目前,多种技术手段被成功用于碱性磷酸酶的检测,包括:荧光、同位素标记、电化学、层析和表面增强拉曼散射等,然而,详细的阐述碱性磷酸酶在机体内的生理和病理功能,仍旧是个巨大的挑战。因此,开发一种碱性磷酸酶响应型小分子荧光探针,用于细胞和活体的检测具有重要的意义。
发明内容
本发明旨在提供一种具有细胞及活体显影功能,碱性磷酸酶响应型小分子荧光探针及其制备方法,特征酶切引发的聚集诱导发光行为,实现红光发射,使其进行细胞和活体成像。
本发明采用以下技术方案:
一种碱性磷酸酶响应型分子探针,具有如下化学结构式:
Figure 840710DEST_PATH_IMAGE001
上述碱性磷酸酶响应型聚集诱导发光分子探针的制备方法,包括以下步骤:
(1)2-甲基喹啉与碘甲烷发生甲基化反应,得到化合物1;
(2)化合物1与丙二腈反应,得到化合物2;
(3)5-溴噻吩2-甲醛与羟基苯硼酸偶联反应,得到化合物3;
(4)化合物2与化合物3在弱碱存在下缩合反应,得到化合物4;
(5)化合物4与三氯氧磷反应,得到所述碱性磷酸酶响应型分子探针,称为QMP。
上述技术方案中,步骤(1)中,2-甲基喹啉与碘甲烷的甲基化反应在乙腈中进行,2-甲基喹啉与碘甲烷的摩尔比为1∶3。优选的,甲基化反应在氮气保护下进行,甲基化反应为回流反应12 h。
上述技术方案中,步骤(2)中,化合物1与丙二腈的反应在乙醇/乙醇钠的混合溶剂中进行,化合物1与丙二腈的摩尔比为1:2.5。优选的,所述反应为冰浴反应4小时。
上述技术方案中,步骤(3)中,5-溴噻吩2-甲醛与羟基苯硼酸在四(三苯基膦)钯(0)催化下发生偶联反应,5-溴噻吩2-甲醛、羟基苯硼酸、四(三苯基膦)钯(0)的摩尔为1:1:0.01。优选的,所述偶联反应在碳酸钾存在下进行;所述偶联反应以无水四氢呋喃作为溶剂;所述偶联反应为回流反应12 h。
上述技术方案中,步骤(4)中,化合物2与化合物3的反应在乙腈/甲醇的混合溶剂中进行,弱碱为哌啶,适量的哌啶作为催化剂,化合物2与化合物3的摩尔比为1:1。优选的,缩合反应在氮气保护下进行,缩合反应为回流反应12 h。
上述技术方案中,步骤(5)中,化合物4与三氯氧磷的反应在溶剂吡啶中进行,化合物4与三氯氧磷的摩尔比为1:3.3。优选的,化合物4与三氯氧磷室温反应12小时后,倒入冰水浴中,于室温反应12小时。
上述技术方案中,化合物1、化合物2、化合物3、化合物4、化合物QMP的化学结构式分别如下:
Figure 492271DEST_PATH_IMAGE002
本发明公开了上述碱性磷酸酶响应型分子探针在检测碱性磷酸酶水平中的应用;上述碱性磷酸酶响应型分子探针在制备碱性磷酸酶水平检测剂中的应用;或者上述碱性磷酸酶响应型分子探针在细胞成像或者活体成像中的应用;或者上述碱性磷酸酶响应型分子探针在制备细胞成像试剂或者活体成像试剂中的应用。
由于上述技术方案的运用,本发明与现有技术相比具有如下优点:
(1)本发明中设计合成了一种激活型小分子荧光探针,可定性/定量的检测体内外碱性磷酸酶水平,检测限低至5.36 U/L;
(2)本发明中目标探针被碱性磷酸酶剪切后,具有明显的聚集诱导发光行为,且发射波长位于红光波段,能量更低,损伤小,组织穿透能力强;
(3)本发明中目标探针可定性的展示HeLa细胞中碱性磷酸酶的空间分布,以及肝损伤斑马鱼幼虫的碱性磷酸酶水平。
附图说明
图1为实施例1中碱性磷酸酶响应型聚集诱导发光分子探针的合成示意图;
图2为实施例2中(a)目标探针QMP与化合物4的紫外可见吸收及荧光光谱,(b)目标探针QMP在不同水含量下的荧光变化,(c)目标探针QMP在碱性磷酸酶存在时以及抑制剂同时存在时的荧光光谱,(d)目标探针QMP在碱性磷酸酶切前后的高效液相色谱变化;
图3为实施例3中(a)目标探针QMP随碱性磷酸酶增加荧光光谱变化,(b)对应(a)中荧光强度与碱性磷酸酶浓度的线性关系,(c)时间及浓度依赖的目标探针QMP的最佳发射变化,(d)目标探针的选择性实验;
图4为实施例4中(a)目标探针QMP对不同细胞及抑制剂的共聚焦荧光图像,(b)目标探针QMP与HeLa细胞共培养及抑制剂条件下的流式细胞分析,(c)对应(b)的流式定量强度;
图5为实施例5中(a)目标探针QMP与线粒体商染Mito-Tracker及内质网商染ER-Tracker的共定位荧光图像,(b)对应(a)的目标探针与线粒体的共定位效果,(c)对应(a)的目标探针与内质网的共定位效果。
图6为实施例6中(a)目标探针QMP与不同程度肝损伤斑马鱼幼虫的荧光图像,(b)对应(a)中定量的荧光强度。
具体实施方式
下文将结合附图和具体实施例来进一步阐述本发明。应当理解的是,这些实施例仅用于解释和说明本发明中的技术方案,而并非旨在限制本发明的范围。此外,除非另有说明,下列实施例中所使用的材料、试剂、仪器等均可通过商业手段获得。
本发明首先构建、合成碱性磷酸酶响应型聚集诱导发光分子探针:
2-甲基喹啉与碘甲烷发生甲基化反应,得到中间体化合物1;将中间体化合物1与丙二腈反应,得到中间体化合物2;随后,使用5-溴噻吩2-甲醛与羟基苯硼酸发生偶联反应,得到中间体化合物3;接着将得到的中间体化合物2与化合物3在弱碱下进行缩合反应,得到中间体化合物4;最后,将中间体化合物4与三氯氧磷反应,得到最终产物化合物QMP。
然后将碱性磷酸酶响应型聚集诱导发光分子探针的细胞成像:
将上述获得的目标探针化合物QMP溶于含1vol%DMSO的水中,加入到细胞富集程度达60 %的HeLa细胞培养皿中(5μM),放置在恒温培养箱孵化30 min,随后吸去培养液,并用PBS缓冲液洗两遍(2×1mL),最后将每个孔注入1 mL的PBS缓冲液。共定位实验中,在化合物5与HeLa细胞共培养30 min后,将介质换成Mito-Tracker(2 μM)或者ER Tracker(2 μM)再共培养30 min,随后洗去培养液,并用PBS缓冲液洗两遍(2 × 1 mL),最后将培养皿中注入1 mL的PBS缓冲液。共聚焦荧光显微镜结果表明,当目标探针进入细胞后,由于HeLa细胞中高表达碱性磷酸酶,迅速与目标探针发生脱磷酸的酶切反应,探针水溶性显著降低,发生聚集诱导发光行为,同时磷酸根的切去增强了体系的供电子能力,从而实现了荧光由“OFF”到“ON”的过程。具体来说,HeLa细胞胞质中可观察到明显的荧光信号,定性的表明碱性磷酸酶在HeLa细胞中的空间分布。
进一步的,碱性磷酸酶响应型聚集诱导发光分子探针的斑马鱼活体成像:
将上述获得的目标探针化合物QMP加入到不同程度肝损伤的斑马鱼幼虫培养基中(10 μM),1 h后使用荧光显微镜观察斑马鱼幼虫体内的荧光信号。结果表明,正常的斑马鱼幼虫体内荧光信号不明显,而肝损伤的斑马鱼幼虫体内可明显的观察到肝、胃和肠部分的荧光信号,且肝损伤程度越大,荧光信号越明显。由此可推断斑马鱼幼虫肝损伤可能导致碱性磷酸酶表达增强,目标探针可定性检测肝损伤斑马鱼幼虫体内的碱性磷酸酶水平。
实施例1:碱性磷酸酶响应型聚集诱导发光分子探针的合成与表征
(1)氮气保护下,100 mL圆底烧瓶中加入2-甲基喹啉(7.15 g,50.0 mmol)、碘甲烷(21.30 g,150.0 mmol)以及50 mL乙腈作为溶剂,混合液磁力搅拌并回流12 h。反应完成,冷却至室温,旋转蒸发除去溶剂,得到浅黄色固体产物化合物1(8.84 g,产率:62 %),不需进一步处理直接作为下一步原料。
(2)冰浴条件下,100 mL圆底烧瓶中加入化合物1(5.24 g,18.4 mmol)、丙二腈(3.04 g,46.0 mmol)以及35.0 mL无水乙醇作为溶剂,搅拌条件下,逐滴加入乙醇钠溶液(0.97 g金属钠溶于20 mL无水乙醇)并反应4 h。反应结束,混合液倒入冰水浴中,使用1mol/L盐酸水溶液调节pH = 7-8,减压抽滤,滤饼水洗三遍,真空干燥得到黄色固体化合物2(3.17 g,产率:78 %)。
1H-NMR (d 6 -DMSO, 600 MHz, ppm) δ = 8.90 (d, J = 8.5 Hz, 1H), 8.02 (d,J = 8.8 Hz, 1H), 7.91 (dd, J = 8.5, 7.3 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H),6.81 (s, 1H), 3.90 (s, 3H), 2.65 (s, 3H). 13C-NMR (d 6 -DMSO, 150 MHz, ppm) δ =152.81, 151.64, 139.64, 133.70, 125.21, 131.98, 121.09, 130.37, 118.47,109.14, 36.69, 22.27. Maldi-Tof: m/z, cal: 244.09, found: 244.28 [M+].
(3)氮气保护下,250 mL圆底烧瓶中加入5-溴噻吩2-甲醛(1.91 g, 10.0 mmol)、对羟基苯硼酸(1.65 g, 10.0 mmol)、四(三苯基膦)钯(0)(0.10 g, 0.1 mmol)以及90.0mL无水四氢呋喃作为溶剂,随后快速加入40 mL碳酸钾水溶液(22 wt %),反应液回流搅拌12 h。反应结束,旋转蒸发除去溶剂,得到黄色油状物,硅胶柱层析纯化(石油醚:乙酸乙酯= 3:1,v/v),产物为浅黄色固体化合物3(1.36 g,产率:67 %)。
1H-NMR (d 6 -DMSO, 600 MHz, ppm) δ = 9.95 (s, 1H), 9.82 (s, 1H), 7.95(d, J = 3.9 Hz, 1H), 7.61 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 3.9 Hz, 1H), 6.83(d, J = 8.5 Hz, 2H). 13C-NMR (d 6 -DMSO, 150 MHz, ppm) δ = 183.93, 159.44,154.17, 140.94, 139.75, 128.25, 124.00, 123.76, 116.56. Maldi-Tof: m/z, cal:205.03, found: 205.26 [M+].
(4)氮气保护下,50 mL圆底烧瓶中加入化合物2(0.44 g,2.0 mmol)、化合物3(0.41 g,2.0 mmol)以及15 mL无水乙腈和15 mL无水甲醇,搅拌条件下,加入250L哌啶作为催化剂,反应液搅拌回流12 h。反应结束,旋转蒸发除去溶剂,得到红色油状物,硅胶柱层析纯化(二氯甲烷:甲醇 = 10:1,v/v),产物为红色固体化合物4(0.32 g,产率:40 %)。
1H-NMR (d 6 -DMSO, 600 MHz, ppm) δ = 9.80 (s, 1H), 8.88 (d, J = 8.5 Hz,1H), 8.01 (d, J = 8.8 Hz, 1H), 7.89 (s, 1H), 7.63 – 7.55 (m, 2H), 7.52 (d, J = 7.5 Hz, 3H), 7.37 (d, J = 3.7 Hz, 1H), 7.14 (d, J = 15.6 Hz, 1H), 7.00 (d,J = 4.0 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 3.95 (s, 3H). 13C-NMR (d 6 -DMSO, 150MHz, ppm) δ = 158.64, 152.55, 149.82, 147.40, 139.70, 138.22, 133.92, 133.16,132.91, 127.47, 125.30, 124.60, 123.42, 120.85, 119.08, 118.80, 116.50,106.70, 43.95. Maldi-Tof: m/z, cal: 407.12, found: 408.28 [M+].
(5)氮气保护下,50 mL圆底烧瓶中加入化合物4(0.12 g,0.3 mmol)以及10 mL吡啶作为溶剂,搅拌条件下,逐滴加入三氯氧磷(0.15 g,1.0 mmol),反应液室温搅拌12 h。随后,搅拌条件下,反应液倒入100 mL冰水中,继续在室温条件搅拌反应12 h(不对冰水浴进行升温、保温或者降温处理)。反应结束,减压除去溶剂,得到红色油状物,硅胶柱层析纯化(二氯甲烷:甲醇 = 4:1,v/v),产物为红色固体QMP(0.04 g,产率:34 %)。
1H-NMR (d 6 -DMSO, 600 MHz, ppm) δ = 8.84 (d, J = 8.3 Hz, 1H), 8.00 (d,J = 8.9 Hz, 1H), 7.89 (t, J = 7.8 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.59 –7.56 (m, 3H), 7.50 (d, J = 3.6 Hz, 1H), 7.20 (t, J = 12.0 Hz, 3H), 6.97 (s,1H), 3.95 (s, 3H). 13C-NMR (d 6 -DMSO, 150 MHz, ppm) δ = 152.53, 149.62, 145.79,144.55, 143.87, 139.62, 133.95, 132.90, 132.62, 129.37, 127.24, 127.00,125.23, 125.03, 121.27, 120.72, 119.90, 118.73, 106.81, 47.35. Maldi-Tof: m/ z, cal: 488.08, found: 488.17 [M+].
上述反应示意图见图1。
实施例2:目标探针QMP的光物理性质及聚集诱导发光性质
如图2(a)所示,将实施例1中制得的目标探针QMP及化合物4用Tris-HCl缓冲液稀释至浓度为5 μM,并使用紫外可见分光光度计及荧光分光光度计测其紫外可见光谱及荧光光谱。激发波长为476 nm。结果表明,二者紫外可见吸收变化不大,最佳吸收均在476 nm左右;而荧光光谱具有显著差异,目标探针QMP荧光强度较弱,而相同条件下,化合物4具有显著的荧光发射。目标探针在水中的聚集诱导发光性质如图2(b)所示,在DMSO/H2O的混合溶剂中,随着水含量的增加,QMP的荧光强度显著增强,当水含量达到70%时,荧光强度达到峰值,表明探针QMP具有明显的聚集诱导发光性质。目标探针QMP对碱性磷酸酶及其抑制剂的荧光光谱改变如图2(c)所示,将实施例1中制得的目标探针QMP用Tris-HCl缓冲液稀释至浓度为5 μM,并加入1 mM的碱性磷酸酶抑制剂正钒酸钠,30 min后再加入1200 U/L的碱性磷酸酶,并于37 °C恒温震荡反应2 h。随着碱性磷酸酶的加入,探针QMP的荧光强度显著增强,而同时加碱性磷酸酶及其抑制剂正钒酸钠,又使荧光强度恢复到本底水平。如图2(d)所示,将实施例1中制得的目标探针QMP用Tris-HCl缓冲液稀释至浓度为5 μM,并加入2000 U/L的碱性磷酸酶,并于37 °C恒温震荡反应2 h,随后取80 μL反应液进行高效液相色谱分析。同时将化合物QMP和化合物4的甲醇溶液进行高效液相色谱分析。Agilent 1260高效液相色谱仪对探针QMP及酶切产物的分析结果表明,单纯的探针QMP的保留时间在7.24 min,加入碱性磷酸酶后,体系的保留时间为8.80 min,同时酶切中间体化合物4的保留时间也为8.80min,验证了酶切过程的存在以及酶切产物的形成。
实施例3:目标探针QMP对碱性磷酸酶的响应性及选择性
如图3(a)所示,将实施例1中制得的目标探针QMP用Tris-HCl缓冲液稀释至浓度为5μM,并加入不同浓度的碱性磷酸酶(0-2000 U/L),测试体系的荧光光谱改变。结果表明单纯探针QMP的荧光强度较低,随着碱性磷酸酶的增加,荧光强度依次增大,当碱性磷酸酶浓度达到1800 U/L时,荧光强度达到峰值。同时利用化合物4替换QMP作为对比,加入碱性磷酸酶前后荧光信号相当。图3(b)为3(a)在碱性磷酸酶浓度为0-1200 U/L范围内拟合的线性关系。图3(c)为探针QMP酶切过程的动力学性质,即随时间和碱性磷酸酶浓度变化,荧光强度的改变。图3(d)为探针对碱性磷酸酶的选择性实验,选用多种代表性生物分子及酶,相同条件下测其荧光光谱的改变,证实探针具有对碱性磷酸酶的单一选择性。可以看出本发明中设计合成的激活型小分子荧光探针,可定性/定量的检测体内外碱性磷酸酶水平,检测限低至5.36 U/L。
实施例4:目标探针QMP与HeLa/3T3细胞的共聚焦成像及流式细胞分析
采用同样的培养方法,将实施例1中制得的目标探针QMP(5 μM)与HeLa细胞和3T3细胞共培养,随后用Olympus显微镜进行观察,如图4(a)所示。实验结果表明探针对于碱性磷酸酶过表达的HeLa细胞具有明显的成像效果;而由于正常的3T3细胞内碱性磷酸酶水平正常,荧光信号不明显。抑制剂实验表明,预先用正钒酸钠处理过的HeLa细胞,由于碱性磷酸酶活性受抑制,也同样不表现显著的荧光信号。图4(b)和4(c)为相同孵育条件下的流式细胞分析及定量实验,与空白对照组相比,可直观看出加入目标探针后荧光信号的增强;抑制剂正钒酸钠的预处理,使得荧光信号与空白对照组相当。
实施例5:目标探针QMP对线粒体/内质网的共定位实验
将实施例1中制得的目标探针QMP与HeLa细胞共培养,并与线粒体商染Mito-Tracker和内质网商染ER-Tracker进行共定位。如图5所示,将实施例1中制得的目标探针QMP(5 μM)与HeLa细胞共培养30 min,随后分别加入2μM Mito-Tracker或2μM ER-Tracker,继续共培养30 min。实验结果表明,在HeLa细胞中,探针QMP对线粒体及内质网的共定位效果的皮尔森系数分别为0.76和0.92,表明探针主要定位于细胞的内质网上,说明本发明探针对细胞器具有靶向。
实施例6:目标探针QMP对肝损伤斑马鱼幼虫的荧光成像
根据现有技术建立斑马鱼幼虫的肝损伤模型,随后与目标探针QMP进行共培养,实时观察活体成像效果,如图6所示。实验结果表明,正常的斑马鱼幼虫体内荧光信号不明显,而随着肝损伤程度的增加,荧光信号逐渐增强,且主要集中于肝、胃和肠部分。由此可说明斑马鱼幼虫肝损伤可能导致碱性磷酸酶表达增强,目标探针可定性检测肝损伤斑马鱼幼虫体内的碱性磷酸酶水平。

Claims (12)

1.一种碱性磷酸酶响应型分子探针,其特征在于,所述分子探针具有如下化学结构式:
Figure DEST_PATH_IMAGE002
2.权利要求1所述碱性磷酸酶响应型分子探针在检测碱性磷酸酶水平中的应用。
3.权利要求1所述碱性磷酸酶响应型分子探针在制备碱性磷酸酶水平检测剂中的应用。
4.权利要求1所述碱性磷酸酶响应型分子探针在细胞成像或者活体成像中的应用。
5.权利要求1所述碱性磷酸酶响应型分子探针在制备细胞成像试剂或者活体成像试剂中的应用。
6.根据权利要求1所述碱性磷酸酶响应型分子探针,其特征在于,所述碱性磷酸酶响应型分子探针的制备方法包括以下步骤:
(1)2-甲基喹啉与碘甲烷发生甲基化反应,得到化合物1;
(2)化合物1与丙二腈反应,得到化合物2;
(3)5-溴噻吩2-甲醛与羟基苯硼酸偶联反应,得到化合物3;
(4)化合物2与化合物3在弱碱存在下缩合反应,得到化合物4;化合物2与化合物3的反应在乙腈/甲醇的混合溶剂中进行;所述弱碱为哌啶;化合物2与化合物3的摩尔比为1∶1;
(5)化合物4与三氯氧磷反应,得到所述碱性磷酸酶响应型分子探针;化合物4与三氯氧磷的摩尔比为1∶3.3。
7.根据权利要求6所述碱性磷酸酶响应型分子探针,其特征在于,2-甲基喹啉与碘甲烷的甲基化反应在乙腈中进行,2-甲基喹啉与碘甲烷的摩尔比为1∶3。
8.根据权利要求6所述碱性磷酸酶响应型分子探针,其特征在于,化合物1与丙二腈的反应在乙醇/乙醇钠的混合溶剂中进行,化合物1与丙二腈的摩尔比为1∶2.5。
9.根据权利要求6所述碱性磷酸酶响应型分子探针,其特征在于,5-溴噻吩2-甲醛与羟基苯硼酸在四(三苯基膦)钯(0)催化下发生偶联反应;5-溴噻吩2-甲醛、羟基苯硼酸、四(三苯基膦)钯(0)的摩尔为1∶1∶0.01。
10.根据权利要求6所述碱性磷酸酶响应型分子探针,其特征在于,化合物4与三氯氧磷的反应在吡啶中进行。
11.利用权利要求1所述碱性磷酸酶响应型分子探针进行细胞成像的方法,其特征在于,包括以下步骤,将所述碱性磷酸酶响应型分子探针溶液加入细胞中,培养孵化后吸去培养液,然后加入缓冲液,进行荧光检测;完成细胞成像。
12. 根据权利要求11所述的应用,其特征在于,碱性磷酸酶响应型分子探针溶液的溶剂为含1 %的DMSO的水;细胞为表达碱性磷酸酶的细胞。
CN201910508151.0A 2019-06-12 2019-06-12 碱性磷酸酶响应型分子探针及其应用 Active CN110105391B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910508151.0A CN110105391B (zh) 2019-06-12 2019-06-12 碱性磷酸酶响应型分子探针及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910508151.0A CN110105391B (zh) 2019-06-12 2019-06-12 碱性磷酸酶响应型分子探针及其应用

Publications (2)

Publication Number Publication Date
CN110105391A CN110105391A (zh) 2019-08-09
CN110105391B true CN110105391B (zh) 2021-04-27

Family

ID=67494857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910508151.0A Active CN110105391B (zh) 2019-06-12 2019-06-12 碱性磷酸酶响应型分子探针及其应用

Country Status (1)

Country Link
CN (1) CN110105391B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113429238A (zh) * 2021-07-23 2021-09-24 甘肃省农业科学院旱地农业研究所 一种有机肥及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106753341B (zh) * 2016-12-27 2019-03-19 湘潭大学 一种近红外碱性磷酸酶荧光探针的制备方法和应用

Also Published As

Publication number Publication date
CN110105391A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
CN110283583B (zh) γ-谷氨酰转肽酶响应型分子探针及其应用
Zhou et al. A ratiometric fluorescent probe for the detection of peroxynitrite with simple synthesis and large emission shift and its application in cells image
JP5228190B2 (ja) パーオキシナイトライト蛍光プローブ
CN110563650B (zh) 一种硫酸酯酶的比率型双光子荧光探针及其合成方法和应用
CN111499604B (zh) 一种溶酶体靶向的Cys近红外荧光探针及其制备方法和应用
Gao et al. A sensitive ratiometric fluorescent probe for quantitive detection and imaging of alkaline phosphatase in living cells
Ou-Yang et al. An infinite coordination polymer nanoparticles-based near-infrared fluorescent probe with high photostability for endogenous alkaline phosphatase in vivo
Huang et al. A novel near-infrared fluorescent hydrogen sulfide probe for live cell and tissue imaging
CN109836394B (zh) 一种用于识别硫化氢的近红外荧光探针及其制备方法和应用
CN109293669B (zh) 一种检测次氯酸的荧光探针及其合成方法和应用
CN109867611B (zh) 一种用于红酒和活体内硫化氢检测的水溶性双光子硫化氢荧光探针及其制备方法和应用
CN109336835B (zh) 用于检测髓过氧化物酶活性荧光探针及其制备方法和应用
CN110078665A (zh) 一种内质网靶向的检测次氯酸的荧光探针和应用
CN110156688B (zh) 一种靶向内质网检测极性的荧光探针及其应用
EP2754657B1 (en) Luminescent substrate for luciferase
EP2484671A1 (en) Fluorescent molecule and method for detecting target nucleic acid
CN109810690A (zh) 基于苯并吡喃腈检测过氧化氢的荧光探针分子、制备方法及用途
CN116178349A (zh) 一种检测半胱氨酸的高尔基体靶向近红外荧光探针、其制备方法和应用
Hou et al. An anthracenecarboximide fluorescent probe for in vitro and in vivo ratiometric imaging of endogenous alpha-l-fucosidase for hepatocellular carcinoma diagnosis
Zhang et al. A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase
Pang et al. A turn-on near-infrared fluorescent probe for visualization of endogenous alkaline phosphatase activity in living cells and zebrafish
CN110105391B (zh) 碱性磷酸酶响应型分子探针及其应用
CN113061109B (zh) 吗啉-吡啶-部花菁衍生物荧光探针及其制备方法和应用
CN111825718B (zh) 基于喹啉-氧杂蒽的碱性磷酸酶荧光探针的制备和应用
CN108623611B (zh) 一种检测过氧化氢的荧光探针的合成与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant