CN110102264A - 一种超高磁响应性纳米团簇微球的制备及废水处理方法 - Google Patents

一种超高磁响应性纳米团簇微球的制备及废水处理方法 Download PDF

Info

Publication number
CN110102264A
CN110102264A CN201910483079.0A CN201910483079A CN110102264A CN 110102264 A CN110102264 A CN 110102264A CN 201910483079 A CN201910483079 A CN 201910483079A CN 110102264 A CN110102264 A CN 110102264A
Authority
CN
China
Prior art keywords
nanocluster
microballoon
magnetic responsiveness
superelevation magnetic
wastewater treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910483079.0A
Other languages
English (en)
Other versions
CN110102264B (zh
Inventor
王兴宝
林森
范欢欢
张萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910483079.0A priority Critical patent/CN110102264B/zh
Publication of CN110102264A publication Critical patent/CN110102264A/zh
Application granted granted Critical
Publication of CN110102264B publication Critical patent/CN110102264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种超高磁响应性纳米团簇微球的制备及废水处理方法,其中制备方法步骤包括:制作硝酸铁溶液、乙醇以及十六烷基三甲基氯化铵的混合溶液;对混合溶液超声分散;滴加环氧乙烷直至形成黑色凝胶并干燥;煅烧得到磁性纳米铁氧化物团簇微球。废水处理方法步骤包括:计算加入微球颗粒的质量;加入微球颗粒并维持一定温度;震荡条件下反应;利用外磁场回收。本发明制备方法获得的超高磁响应性纳米团簇微球具有良好的晶形结构和颗粒均匀性,饱和磁性高达93.26emu/g,具有超高磁响应能力,在废水处理时能够作为吸附剂去除废水中不同价态存在的的砷污染物,达到净化废水的目的,具有很大的工业化应用价值。

Description

一种超高磁响应性纳米团簇微球的制备及废水处理方法
技术领域
本发明涉及一种磁性铁氧化物颗粒制备及废水处理方法,尤其是一种超高磁响应性纳米团簇微球的制备及废水处理方法。
背景技术
磁性纳米铁氧化物颗粒因具有比表面积大、可磁场回收等特点以及能够通过表面大量的水合性羟基与含氧酸根型污染物发生络合,被尝试应用于吸附去除工业废水中的砷污染物。但在实践中发现单分散型磁性纳米颗粒的磁响应性较弱,对磁回收设备要求过高,磁回收性往往不能够满足工业化水处理的要求。因此,开发具有更高磁响应性同时保持高吸附容量的磁性砷吸附剂对磁性颗粒在重金属废水处理领域的应用具有重大意义。
发明内容
本发明要解决的技术问题是:现有的单分散型磁性纳米颗粒的磁响应性较弱,对磁回收设备要求过高,磁回收性往往不能够满足工业化水处理的要求。
为了解决上述技术问题,本发明提供了一种超高磁响应性纳米团簇微球的制备方法,包括如下步骤:
步骤1,在AmL浓度为1mmol/L的硝酸铁溶液中加入BmL的乙醇以及Cg的十六烷基三甲基氯化铵;
步骤2,对步骤1中获得的混合溶液超声分散8-12min;
步骤3,在超声分散后的溶液中滴加环氧乙烷直至形成黑色凝胶,再对黑色凝胶真空干燥7-9h,得到干凝胶;
步骤4,然后在220-320℃条件下对干凝胶隔氧煅烧2.5-4.5h,便得到磁性纳米铁氧化物团簇微球。
作为制备方法的进一步限定方案,步骤1中,A与B的比例范围为1.5:1-2.8:1;A与C的比例范围为50:1-85:1。
作为制备方法的进一步限定方案,步骤2中的,超声分散时间为10min。
作为制备方法的进一步限定方案,步骤3中,真空干燥的时间为8h。
作为制备方法的进一步限定方案,步骤4中的煅烧温度为230-260℃,煅烧时间为3h。
本发明还提供了一种超高磁响应性纳米团簇微球的废水处理方法,包括如下步骤:
步骤1,根据废水中重金属元素的质量计算加入超高磁响应性纳米团簇微球的质量;
步骤2,将超高磁响应性纳米团簇微球加入废水中,并维持温度在28-32℃之间;
步骤3,维持170-180rpm的震荡条件下反应85-95min;
步骤4,利用强度为0.25-0.35T的外磁场回收1-2min,使超高磁响应性纳米团簇微球与水相的分离。
作为废水处理方法的进一步限定方案,步骤1中,加入超高磁响应性纳米团簇微球与废水中重金属元素的质量比为1:25。
作为废水处理方法的进一步限定方案,步骤2中,维持的温度为30℃。
作为废水处理方法的进一步限定方案,步骤3中,震荡参数为175rpm;反应时间为90min。
作为废水处理方法的进一步限定方案,步骤4中,外磁场的强度为0.3T;回收时间为1.5min。
本发明的有益效果在于:本发明制备方法获得的超高磁响应性的纳米团簇微球具有良好的晶形结构和颗粒均匀性,饱和磁性高达93.26emu/g,具有超高磁响应能力,能够作为吸附剂去除废水中不同价态存在的的砷污染物,达到净化废水的目的,具有很大的工业化应用价值。
附图说明
图1为本发明的制备方法流程图;
图2为本发明的废水处理方法流程图;
图3为本发明的超高磁响应性纳米团簇微球的透射电镜图(TEM);
图4为本发明的超高磁响应性纳米团簇微球的红外谱图(FTIR);
图5为本发明的超高磁响应性纳米团簇微球的X射线衍射谱图(XRD);
图6为本发明的超高磁响应性纳米团簇微球的磁滞回线图(VSM)。
具体实施方式
下面结合附图对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。
实施例1:
如图1所示发明提供了一种超高磁响应性纳米团簇微球的制备方法,具体制备步骤包括:
步骤1,在AmL浓度为1mmol/L的硝酸铁溶液中加入BmL的乙醇以及Cg的十六烷基三甲基氯化铵,例如,在10mL浓度为1mmol/L的硝酸铁溶液中加入5mL乙醇以及0.2g十六烷基三甲基氯化铵(CTAC);
步骤2,对步骤1中获得的混合溶液超声分散8-12min;
步骤3,在超声分散后的溶液中滴加环氧乙烷,搅拌直至形成黑色凝胶,再对黑色凝胶真空干燥7-9h,得到干凝胶;
步骤4,然后在220-320℃条件下对干凝胶隔氧煅烧2.5-4.5h,便得到磁性纳米铁氧化物团簇微球。
作为制备方法的进一步限定方案,步骤1中,A与B的比例范围为1.5:1-2.8:1;A与C的比例范围为50:1-85:1。
作为制备方法的进一步限定方案,步骤2中的,超声分散时间为10min。
作为制备方法的进一步限定方案,步骤3中,真空干燥的时间为8h。
作为制备方法的进一步限定方案,步骤4中的煅烧温度为230-260℃,煅烧时间为3h。
如图3-6所示,本发明制备获得的超高磁响应性的超顺磁性纳米铁氧化物多孔团簇微球具有良好的晶形结构和颗粒均匀性,饱和磁性高达93.26emu/g,图3-6分别为制得的纳米级磁性铁氧化物颗粒的透射电镜图(TEM)、红外谱图(FTIR)、X射线衍射谱图(XRD)以及磁滞回线图(VSM)。
如图2所示,本发明还提供了一种超高磁响应性纳米团簇微球的废水处理方法,包括如下步骤:
步骤1,根据废水中重金属元素的质量计算加入超高磁响应性纳米团簇微球的质量,需要先根据废水体积以及废水中重金属的浓度计算重金属元素的质量;
步骤2,将超高磁响应性纳米团簇微球加入废水中,并维持温度在28-32℃之间;
步骤3,维持170-180rpm的震荡条件下反应85-95min;
步骤4,利用强度为0.25-0.35T的外磁场回收1-2min,使超高磁响应性纳米团簇微球与水相的分离。
作为废水处理方法的进一步限定方案,步骤1中,加入超高磁响应性纳米团簇微球与废水中重金属元素的质量比为1:25,例如,废水中砷元素的质量为10mg,则需加入超高磁响应性纳米团簇微球的质量为0.25g。
作为废水处理方法的进一步限定方案,步骤2中,维持的温度为30℃。
作为废水处理方法的进一步限定方案,步骤3中,震荡参数为175rpm;反应时间为90min。
作为废水处理方法的进一步限定方案,步骤4中,外磁场的强度为0.3T;回收时间为1.5min。
废水处理实施例1:
将0.25g制备得到的超高磁响应性纳米团簇微球颗粒加入100ml、pH=3.0~12.0、砷的初始浓度为100mg/L的NaH2AsO4溶液中,维持温度30℃,175rpm的震荡条件下反应90min后,溶液中As(V)的去除率均高于99.89%,剩余浓度低于0.11mg/L,符合国家废水中上限为0.5mg/L的砷含量排放标准。
废水处理实施例2:
将0.25g制备得到的超高磁响应性纳米团簇微球颗粒加入100ml、pH=3.0~12.0、砷的初始浓度为100mg/L的NaH2AsO3溶液中,维持温度30℃,175rpm的震荡条件下反应90min后,溶液中As(III)的去除率均高于99.76%,剩余浓度低于0.24mg/L,符合国家废水中上限为0.5mg/L的砷含量排放标准。
废水处理实施例3:
将0.50g制备得到的超高磁响应性纳米团簇微球颗粒加入100ml、pH=3.0~12.0、As(V)与As(III)的初始浓度均为100mg/L的NaH2AsO4与NaH2AsO3混合溶液中,维持温度30℃,175rpm的震荡条件下反应90min后,溶液中砷的去除率均高于99.83%,剩余浓度低于0.17mg/L,符合国家废水中上限为0.5mg/L的砷含量排放标准。
废水处理实施例4:
分别将0.25g制备得到的超高磁响应性纳米团簇微球颗粒加入pH=7.0、砷初始浓度为100mg/L、含有50mmol/L的SO4 2-、NO3 -和Cl-的100mlNaH2AsO4溶液中,维持温度30℃,175rpm的震荡条件下反应90min后,溶液中As(V)的剩余浓度均低于0.33mg/L,符合国家废水中上限为0.5mg/L的砷含量排放标准。
废水处理实施例5:
分别将0.25g制备得到的超高磁响应性纳米团簇微球颗粒加入pH=4.0、砷初始浓度为100mg/L、含有50mmol/L的SO4 2-、NO3 -和Cl-的100ml NaH2AsO3溶液中,维持温度30℃,175rpm的震荡条件下反应90min后,溶液中As(III)的剩余浓度均低于0.37mg/L,符合国家废水中上限为0.5mg/L的砷含量排放标准。
颗粒回收实施例:
将0.05g制备得到的磁性团簇微球颗粒均匀分散在100mL去离子水中,采用强度为0.3T的外磁场回收1min后,能够实现磁性纳米颗粒与水相的分离,回收率能够达到99.99%以上。
如上所述,尽管参照特定的优选实施例已经表示和表述了本发明,但其不得解释为对本发明自身的限制。在不脱离所附权利要求定义的本发明的精神和范围前提下,可对其在形式上和细节上作出各种变化。

Claims (10)

1.一种超高磁响应性纳米团簇微球的制备方法,其特征在于,包括如下步骤:
步骤1,在AmL浓度为1mmol/L的硝酸铁溶液中加入BmL的乙醇以及Cg的十六烷基三甲基氯化铵;
步骤2,对步骤1中获得的混合溶液超声分散8-12min;
步骤3,在超声分散后的溶液中滴加环氧乙烷直至形成黑色凝胶,再对黑色凝胶真空干燥7-9h,得到干凝胶;
步骤4,然后在220-320℃条件下对干凝胶隔氧煅烧2.5-4.5h,便得到磁性纳米铁氧化物团簇微球。
2.根据权利要求1所述的超高磁响应性纳米团簇微球的制备方法,其特征在于,步骤1中,A与B的比例范围为1.5:1-2.8:1;A与C的比例范围为50:1-85:1。
3.根据权利要求1所述的超高磁响应性纳米团簇微球的制备方法,其特征在于,步骤2中的,超声分散时间为10min。
4.根据权利要求1所述的超高磁响应性纳米团簇微球的制备方法,其特征在于,步骤3中,真空干燥的时间为8h。
5.根据权利要求1所述的超高磁响应性纳米团簇微球的制备方法,其特征在于,步骤4中的煅烧温度为230-260℃,煅烧时间为3h。
6.一种超高磁响应性纳米团簇微球的废水处理方法,其特征在于,包括如下步骤:
步骤1,根据废水中重金属元素的质量计算加入超高磁响应性纳米团簇微球的质量;
步骤2,将超高磁响应性纳米团簇微球加入废水中,并维持温度在28-32℃之间;
步骤3,维持170-180rpm的震荡条件下反应85-95min;
步骤4,利用强度为0.25-0.35T的外磁场回收1-2min,使超高磁响应性纳米团簇微球与水相的分离。
7.根据权利要求6所述的超高磁响应性纳米团簇微球的废水处理方法,其特征在于,步骤1中,加入超高磁响应性纳米团簇微球与废水中重金属元素的质量比为1:25。
8.根据权利要求6所述的超高磁响应性纳米团簇微球的废水处理方法,其特征在于,步骤2中,维持的温度为30℃。
9.根据权利要求6所述的超高磁响应性纳米团簇微球的废水处理方法,其特征在于,步骤3中,震荡参数为175rpm;反应时间为90min。
10.根据权利要求6所述的超高磁响应性纳米团簇微球的废水处理方法,其特征在于,步骤4中,外磁场的强度为0.3T;回收时间为1.5min。
CN201910483079.0A 2019-06-04 2019-06-04 一种超高磁响应性纳米团簇微球的制备及废水处理方法 Active CN110102264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910483079.0A CN110102264B (zh) 2019-06-04 2019-06-04 一种超高磁响应性纳米团簇微球的制备及废水处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910483079.0A CN110102264B (zh) 2019-06-04 2019-06-04 一种超高磁响应性纳米团簇微球的制备及废水处理方法

Publications (2)

Publication Number Publication Date
CN110102264A true CN110102264A (zh) 2019-08-09
CN110102264B CN110102264B (zh) 2021-03-02

Family

ID=67493871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910483079.0A Active CN110102264B (zh) 2019-06-04 2019-06-04 一种超高磁响应性纳米团簇微球的制备及废水处理方法

Country Status (1)

Country Link
CN (1) CN110102264B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986427A (zh) * 2005-12-21 2007-06-27 中国科学院化学研究所 铁的氧化物纳米材料、制备方法及其在水处理中的使用
CN101993115A (zh) * 2009-08-26 2011-03-30 同济大学 四氧化三铁磁性纳米颗粒的制备方法
CN102019165A (zh) * 2009-09-09 2011-04-20 中国科学院生态环境研究中心 一种复合金属氧化物除砷吸附剂及其制备方法
CN102674469A (zh) * 2012-05-08 2012-09-19 清华大学 纳米磁性铁氧化物及其制备方法与应用
CN103464089A (zh) * 2013-09-11 2013-12-25 清华大学 磁性砷吸附剂及其制备方法与应用
CN104475060A (zh) * 2014-12-09 2015-04-01 成都信息工程学院 一种复合吸附剂及其制备方法与应用
US20160268013A1 (en) * 2012-03-01 2016-09-15 Ramot At Tel-Aviv University Ltd. Conductive nanowire films
CN106111053A (zh) * 2016-06-20 2016-11-16 广东工业大学 一种短孔道有序介孔氧化硅‑硫铟锌复合光催化剂及其制备方法和应用
CN106824126A (zh) * 2017-01-20 2017-06-13 贵州理工学院 一种能分离铟的三明治结构磁性介孔印迹材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986427A (zh) * 2005-12-21 2007-06-27 中国科学院化学研究所 铁的氧化物纳米材料、制备方法及其在水处理中的使用
CN101993115A (zh) * 2009-08-26 2011-03-30 同济大学 四氧化三铁磁性纳米颗粒的制备方法
CN102019165A (zh) * 2009-09-09 2011-04-20 中国科学院生态环境研究中心 一种复合金属氧化物除砷吸附剂及其制备方法
US20160268013A1 (en) * 2012-03-01 2016-09-15 Ramot At Tel-Aviv University Ltd. Conductive nanowire films
CN102674469A (zh) * 2012-05-08 2012-09-19 清华大学 纳米磁性铁氧化物及其制备方法与应用
CN103464089A (zh) * 2013-09-11 2013-12-25 清华大学 磁性砷吸附剂及其制备方法与应用
CN104475060A (zh) * 2014-12-09 2015-04-01 成都信息工程学院 一种复合吸附剂及其制备方法与应用
CN106111053A (zh) * 2016-06-20 2016-11-16 广东工业大学 一种短孔道有序介孔氧化硅‑硫铟锌复合光催化剂及其制备方法和应用
CN106824126A (zh) * 2017-01-20 2017-06-13 贵州理工学院 一种能分离铟的三明治结构磁性介孔印迹材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
赵志伟等: "《磁性纳米材料及其在水处理领域中的应用》", 31 January 2018, 哈尔滨工业大学出版社 *
郑春满等: "《高等合成化学方法与实践》", 30 September 2018, 国防工业出版社 *

Also Published As

Publication number Publication date
CN110102264B (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
Liu et al. Single‐atom Pt loaded zinc vacancies ZnO–ZnS induced type‐V electron transport for efficiency photocatalytic H2 evolution
Zhang et al. Carbothermal reduction for preparing nZVI/BC to extract uranium: insight into the iron species dependent uranium adsorption behavior
Duan et al. Effective removal of Pb (II) using magnetic Co0. 6Fe2. 4O4 micro-particles as the adsorbent: Synthesis and study on the kinetic and thermodynamic behaviors for its adsorption
Lin et al. Facile preparation of dual La-Zr modified magnetite adsorbents for efficient and selective phosphorus recovery
Huang et al. Highly effective and selective adsorption of thorium (Ⅳ) from aqueous solution using mesoporous graphite carbon nitride prepared by sol–gel template method
Ye et al. Adsorption of fluoride from aqueous solution by fly ash cenospheres modified with paper mill lime mud: Experimental and modeling
CN111718719B (zh) 一种硫化纳米零价铁-酸活化蒙脱石复合材料及其制备方法与应用
CN109110883A (zh) 一种复合碳基纳米零价铁微电解材料的制备及处理含锑废水的方法
Zou et al. High-efficiency core-shell magnetic heavy-metal absorbents derived from spent-LiFePO4 Battery
CN107088398A (zh) 埃洛石负载针形四氧化三铁纳米复合材料的制备方法
Ye et al. Three-dimensional zigzag Prussian blue analogue and its derivates for bisphenol A scavenging: Inhomogeneous spatial distribution of FeIII in anisotropic etching of PBA
Li et al. Adsorption-reduction strategy of U (VI) on NZVI-supported zeolite composites via batch, visual and XPS techniques
Li et al. The synthesis and characterization of hydrous cerium oxide nanoparticles loaded on porous silica micro-sphere as novel and efficient adsorbents to remove phosphate radicals from water
CN109331771A (zh) 一种纳米磁性吸附剂及其制备方法和应用
CN113398945B (zh) 一种球状C/FeMo纳米复合光催化剂及其制备方法
Ling et al. Formation of uniform mesoporous TiO 2@ C–Ni hollow hybrid composites
Cai et al. Cu anchored on manganese residue through mechanical activation to prepare a Fe-Cu@ SiO2/starch-derived carbon composites with highly stable and active visible light photocatalytic performance
CN111470575A (zh) 一种磁性除磷剂及其制备方法
CN113713774A (zh) 一种高效可再生的纳米除锰剂及其制备方法与应用
Liu et al. Investigation of U (VI) sorption on silica aerogels: effects of specific surface area, pH and coexistent electrolyte ions
Uddin et al. Adsorptive removal of pollutants from water using magnesium ferrite nanoadsorbent: a promising future material for water purification
Yang et al. Optimization of the adsorption and removal of Sb (iii) by MIL-53 (Fe)/GO using response surface methodology
CN100413783C (zh) 4a型沸石分子筛及其制备方法
Liang et al. Low-temperature conversion of Fe-rich sludge to KFeS 2 whisker: a new flocculant synthesis from laboratory scale to pilot scale
CN110026169A (zh) 一种聚合物基纳米碳酸镧材料、制备方法、应用及再生方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant