CN110092933B - 场致可逆非线性导电复合材料制法、所制得的材料及应用 - Google Patents

场致可逆非线性导电复合材料制法、所制得的材料及应用 Download PDF

Info

Publication number
CN110092933B
CN110092933B CN201910452084.5A CN201910452084A CN110092933B CN 110092933 B CN110092933 B CN 110092933B CN 201910452084 A CN201910452084 A CN 201910452084A CN 110092933 B CN110092933 B CN 110092933B
Authority
CN
China
Prior art keywords
agnws
solution
composite material
tio
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910452084.5A
Other languages
English (en)
Other versions
CN110092933A (zh
Inventor
曲兆明
卢聘
王庆国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Army Engineering University of PLA
Original Assignee
Army Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Army Engineering University of PLA filed Critical Army Engineering University of PLA
Priority to CN201910452084.5A priority Critical patent/CN110092933B/zh
Publication of CN110092933A publication Critical patent/CN110092933A/zh
Application granted granted Critical
Publication of CN110092933B publication Critical patent/CN110092933B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种场致可逆非线性导电复合材料制法、所制得的材料及应用,涉及导电复合材料领域。步骤如下:取AgNWs于无水乙醇中,加入TGA,搅拌后加入TBT,混合均匀后,加热至180‑210℃,反应9‑11h,离心,取沉淀,清洗后得到AgNWs@TiO2;取PVA和水,搅拌,加热至85‑95℃,搅拌至PVA溶解得溶液G;取AgNWs@TiO2加入到溶液G,温度60‑70℃,搅拌10‑15h得到复合材料流体,进行流延成膜,待溶剂挥发后得到场致可逆非线性导电复合材料;其中,AgNWs和TGA、TBT的质量比为100:210‑220:20;PVA的聚合度为1750±50,醇解度为99%;PVA和AgNWs@TiO2的质量比为60:30‑50。本制法工艺简单,成本低廉,反应时间较短,易于大量制备;制得的复合材料分布均匀,分散性较好,无团聚,可应用于过电压防护、雷击浪涌及自适应电磁脉冲防护领域。

Description

场致可逆非线性导电复合材料制法、所制得的材料及应用
技术领域
本发明涉及导电复合材料领域,尤其是一种场致可逆非线性导电复合材料制法、所制得的材料及应用。
背景技术
随着大规模集成电路在电子信息系统中的广泛应用,在复杂强电磁环境下的抗干扰和抗毁伤能力越来越差;而电磁脉冲武器技术的运用,电子信息系统的电磁防护面临着越来越严峻的现实威胁。传统电磁防护材料利用对电磁脉冲的屏蔽和吸收而起到电磁防护的作用,这类电磁防护材料对通讯的电磁信号也具有屏蔽作用,故不适用于雷达等通讯系统的防护。为了解决通讯系统在正常电磁环境下的低插入损耗和强电磁脉冲攻击下的高屏蔽效能,需要探索研究一种新型的强电磁场环境自适应电磁防护材料。
强电场作用下具有强非线性导电或导电开关特性的材料可满足自适应强场防护的需求。国防科技大学刘培国等采用二极管制备了不同结构形式的电磁能量选择表面,但是二极管的导通存在延迟时间,对电磁脉冲的防护性能较差。课题组前期制备了填充纯导电粒子填充型聚合物基复合材料,导电性能测试发现在强电场下填充型复合材料具有显著的非线性导电特性,但是由于纯导电粒子在基体内容易形成渗滤导电网络而使得这类材料的非线性导电特性不稳定,并且导通后电阻率仍然较大。为了提高复合材料非线性导电特性及其稳定性,可以采用导电粒子表面修饰半导体材料的方式获得具有协同效应的核壳复合粒子,进而作为填料与聚合物基体复合成型,利用特定的导电机制,形成具有稳定非线性导电特性的导电复合材料。
银纳米线(AgNWs)作为一维纳米材料既具有块体银所拥有的优异电导率、热导率和稳定的化学性质,又有着纳米材料所具有的新型特性以及高比表面积、高透光性和高耐曲饶性,理化性能独特,在聚合物功能材料、透明导电薄膜、光电子发射和微纳米电子器件等方面有着极为广泛的应用,是最有应用前景的材料之一。二氧化钛(TiO2)是一种宽禁带的半导体氧化物材料,在电学性能方面,由于各种缺陷、间隙和空位的影响,本征二氧化钛—般为n型半导体材料,其作为一种兼具压电性能和半导体性能的新型材料,具有较高的机电耦合系数和良好的压电性能。利用二氧化钛修饰银纳米线形成核壳复合粒子(AgNWs@ TiO2),能够产生协同效应。利用银纳米线表面修饰二氧化钛进而开发具有场致非线性导电复合材料在过电压防护、雷击浪涌及自适应电磁脉冲防护领域具有广阔的应用前景。
发明内容
本发明要解决的技术问题是提供一种场致可逆非线性导电复合材料制法、所制得的材料及应用,制法工艺简单,操作简便,成本低廉,反应时间较短,易于大量制备;所制得的复合材料分布均匀,分散性较好,无团聚,可应用于过电压防护、雷击浪涌及自适应电磁脉冲防护领域。
为解决上述技术问题,本发明所采取的技术方案是:一种场致可逆非线性导电复合材料制法,包括如下步骤:
取银纳米线AgNWs分散在无水乙醇中,得到悬浮液E;向悬浮液E中加入巯基乙酸TGA,搅拌均匀后加入钛酸四丁酯TBT,混合均匀后,加热至180-210℃,反应9-11h,得到悬浮液F;将悬浮液F离心,取沉淀,清洗后即得到AgNWs@TiO2核壳纳米粒子,分散保存于无水乙醇中备用;
取聚乙烯醇PVA和去离子水,常温下搅拌后,加热至85-95℃,继续搅拌至聚乙烯醇PVA完全溶解得到溶液G;取AgNWs@TiO2核壳纳米粒子加入到溶液G,保持温度为60-70℃,并持续搅拌10-15h后得到复合材料流体,将该复合材料流体进行流延成膜,待溶剂挥发后即得到场致可逆非线性导电复合材料;
其中,银纳米线AgNWs和巯基乙酸TGA、钛酸四丁酯TBT的质量比为100: 210-220 :20;
聚乙烯醇PVA的聚合度为1750±50,醇解度为99%;
聚乙烯醇PVA和AgNWs@TiO2核壳纳米粒子的质量比为60:30-50。
优选的,银纳米线AgNWs的长度为10-14μm,直径为80-120nm,长径比L/r为80-350。
优选的,向悬浮液E中加入巯基乙酸TGA,搅拌均匀后加入钛酸四丁酯TBT,混合均匀后,加热至200℃,反应10 h,得到悬浮液F。
优选的,溶液G中,聚乙烯醇PVA和去离子水的质量比为5:90。
优选的,银纳米线AgNWs的制备方法为:
(1)取聚乙烯吡咯烷酮PVP加入乙二醇EG,搅拌至完全溶解得到溶液A;其中,聚乙烯吡咯烷酮PVP和乙二醇EG的质量比为0.6-1:100;
(2)取AgNO3加入溶液A,搅拌得到均匀的溶液B;其中,聚乙烯吡咯烷酮PVP和AgNO3的质量比为60-100:100;
(3)制备浓度为300-900 μmol/L的FeCl3/EG溶液,取FeCl3/EG溶液加入溶液B中,继续搅拌至均匀得到溶液C;其中,所述FeCl3/EG溶液与溶液B的质量比为7-21: 100;
(4)将溶液C于110-150-℃加热反应3.5-7 h,至形成乳白色悬浊液D;
(5)清洗乳白色悬浊液D,离心,得到的沉淀物即为银纳米线AgNWs。
进一步优选的,步骤(4)中,将溶液C于130℃加热反应5 h,至形成乳白色悬浊液D。
进一步优选的,步骤(5)为:配置无水乙醇、丙酮及去离子水混合清洗溶液,与乳白色悬浊液D混合后超声,离心,重复此步骤1-3次,得到沉淀物;混合清洗溶液中无水乙醇、丙酮、去离子水的体积比为3:2:1;
将获得的沉淀物置于无水乙醇中,超声后离心,无水乙醇重复清洗1-3次后得到的沉淀物即为银纳米线AgNWs,将其置于无水乙醇中保存待用。
上述场致可逆非线性导电复合材料制法所制得的材料的应用:场致可逆非线性导电复合材料应用于过电压防护、雷击浪涌及自适应电磁脉冲防护领域。
采用上述技术方案所产生的有益效果在于:
(1)本发明场致可逆非线性导电复合材料制法、所制得的材料及应用,制法工艺简单,操作简便,成本低廉,反应时间较短,易于大量制备;所制得的复合材料分布均匀,分散性较好,无团聚,可应用于过电压防护、雷击浪涌及自适应电磁脉冲防护领域。
(2)本发明采用的AgNWs制备方法工艺简单,操作简便,且对实验环境要求较低,成本低廉,反应时间较短,易于大量制备,制得的AgNWs产物为面心立方的纯相AgNWs,具有较高长径比、纯度高,梳直性、均匀性和分散性较好;PVA选用聚合度和醇解度较高的型号,耐溶剂性好,机械性能优异。导电复合材料的制备采用溶液流延工艺,具有工艺简单、易于操作、成品质量稳定且便于添加助剂等优点。
(3)银纳米线(AgNWs)作为一维纳米材料既具有块体银所拥有的优异电导率、热导率和稳定的化学性质,又有着纳米材料所具有的新型特性以及高比表面积、高透光性和高耐曲饶性,理化性能独特,在聚合物功能材料、透明导电薄膜、光电子发射和微纳米电子器件等方面有着极为广泛的应用,是最有应用前景的材料之一。二氧化钛(TiO2)是一种宽禁带的半导体氧化物材料,在电学性能方面,由于各种缺陷、间隙和空位的影响,本征二氧化钛—般为n型半导体材料,其作为一种兼具压电性能和半导体性能的新型材料,具有较高的机电耦合系数和良好的压电性能。利用二氧化钛修饰银纳米线形成核壳复合粒子(AgNWs@ TiO2),能够产生协同效应。
(4)本发明对银纳米线进行厚度可控的TiO2表面包覆,与传统聚合物非线性导电材料不同的是,填充AgNWs@ TiO2复合填料不需要回避其形成导电网络,因为TiO2在AgNWs表面能够保证常态弱场条件下复合材料无法形成连通的导电网络而保持高阻抗特性,而当外部出现强电场作用时,TiO2受外场作用并达到其相变阈值场强时则突变为低阻态或导通态,进而将整个渗滤导电网络激发导通,从而实现场致低阻抗特性。当外部强场消失后,TiO2自动恢复高阻态,则整个复合材料也恢复到原始的高阻抗状态。因此,AgNWs@ TiO2/PVA复合材料能够产生可逆的场致非线性导电特性,并在导通后有望获得更高的电导率,为过电压防护、雷击浪涌及自适应电磁脉冲防护提供了可能。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明;
图1是本发明实施例1中制得的AgNWs@TiO2复合粒子的SEM图,其中内嵌图为AgNWs@SiO2的TEM图;
图2是本发明实施例1中制得的AgNWs@TiO2复合粒子的EDS能谱图;
图3是本发明实施例1中制得的AgNWs及AgNWs@TiO2复合粒子的XRD谱图;
图4是本发明实施例2中制得的AgNWs@TiO2填充体积分数为9.50%的复合材料微区SEM图;
图5是本发明不同AgNWs@TiO2复合粒子填充浓度下制得的复合材料的伏安曲线图;
图6是本发明实施例2中制得的AgNWs@TiO2复合粒子填充体积分数为9.5%的复合材料的重复性伏安曲线图;
图7是本发明制备的复合材料场致非线性导电机理示意图。
具体实施方式
实施例中所用主要化学试剂如表1所示,硝酸银(AgNO3)、无水三氯化铁(FeCl3) 、聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP)和乙二醇(Ethylene glycol, EG)用于制备AgNWs,无水乙醇和丙酮用于清洗制备工艺结束后的AgNWs悬浊液。其中AgNO3、FeCl3、EG、无水乙醇和丙酮为分析纯试剂,实验用水为去离子水。钛酸四丁酯(Titanium butoxide,TBT)和巯基乙酸(Thioglycolic acid, TGA)用于AgNWs的包覆。
表1主要化学试剂
实验试剂 规格 生产厂家/供应商
硝酸银(AgNO<sub>3</sub>) AR 上海精细化工材料研究所
聚乙烯吡咯烷酮([C<sub>6</sub>H<sub>9</sub>NO]n) K88-96,平均分子量1300000 Aladdin
无水三氯化铁(FeCl<sub>3</sub>) AR Aladdin
无水乙醇(C<sub>2</sub>H<sub>5</sub>OH) AR 天津市永大化学试剂有限公司
乙二醇(HOCH<sub>2</sub>CH<sub>2</sub>OH) AR 天津市永大化学试剂有限公司
丙酮(CH<sub>3</sub>COCH<sub>3</sub>) AR 天津市永大化学试剂有限公司
巯基乙酸(HSCH<sub>2</sub>COOH) AR Aladdin
钛酸四丁酯(C<sub>16</sub>H<sub>36</sub>O<sub>4</sub>Ti) AR Aladdin
聚乙烯醇([CH<sub>2</sub>CHOH]n) 1750±50 国药集团化学试剂有限公司
实施例1
场致可逆非线性导电复合材料制法,包括如下步骤:
(1)首先,称取0.8 g 的PVP并加入到100ml EG中搅拌4~5小时直至完全溶解得到混合溶液A。
(2)之后,称取1g的AgNO3并加入溶液A中充分搅拌约1小时至完全溶解,得到溶液B。
(3)然后,向溶液B中加入14ml的600μM FeCl3/EG溶液并搅拌约5分钟,得到溶液C。
(4)将搅拌均匀的溶液C倒入500ml圆底烧瓶中并置于130℃油浴中加热5小时。圆底烧瓶中的溶液C从淡黄色逐渐加深至棕色,最后呈现乳白色,形成乳白色悬浊液D。反应完成后,待此乳白色悬浊液D自然冷却至室温,取出倒入洁净烧杯。
(5)将无水乙醇、丙酮、去离子水按照3:2:1的体积比例配置混合清洗并加入180ml,与乳白色悬浊液D混合后超声约30 min,以3000r/min离心约15分钟后除去上清液,重复清洗2次得到灰白色的沉淀物;将获得的灰白色的沉淀物置于无水乙醇中,超声后离心,无水乙醇重复清洗2次后得到的沉淀物即为银纳米线AgNWs,得到的银纳米线AgNWs的长度约为12μm,直径约为100 nm,长径比L/r为240,置于无水乙醇中保存待用。
(6)取1份步骤(5)中制得的无水乙醇清洗后的银纳米线AgNWs(其中,1份步骤(5)中制得的AgNWs指的是每0.8g PVP经过上述(1)-(5)步骤生成的AgNWs称之为1份),分散在100 mL无水乙醇中,得到悬浮液E;向悬浮液E中加入0.8 mL巯基乙酸(Thioglycolic acid,TGA),搅拌均匀后加入0.1 mL的钛酸四丁酯(Titanium butoxide, TBT),混合均匀后,转移至200 mL反应釜,放入鼓风干燥箱中加热至200℃,反应10 h,得到悬浮液F;将悬浮液F离心,取沉淀,用无水乙醇清洗后即得到AgNWs@TiO2核壳纳米粒子,分散保存于无水乙醇中备用。
(7)先称取5 g PVA(聚合度为1750±50,醇解度为99%)和 90ml 的去离子水置于圆底烧瓶,常温下磁力搅拌半小时,使杂质挥发,并使PVA充分溶胀以避免溶解过程中的皮溶内生。之后提高温度,加热去离子水至90℃,持续搅拌约1.5 h至PVA完全溶解得到溶液G,取4份步骤(6)中制备的AgNWs@TiO2(其中,1份步骤(6)中制得的AgNWs@SiO2指的是1份步骤(5)中制得的AgNWs再经过步骤(6)处理得到的AgNWs@TiO2复合粒子)加入到溶液G,调温至65℃,并持续搅拌10-15小时后得到具有一定黏度的复合材料流体,将该复合材料流体倒入平整、洁净的皮氏培养皿进行流延成膜,待溶剂挥发后即可得到所要制备的AgNWs@TiO2复合粒子体积分数为4.62%的场致可逆非线性导电复合材料。
实施例2
场致可逆非线性导电复合材料制法,包括如下步骤:
前(1)-(6)步同实施例1。
(7)先称取5 g PVA(聚合度为1750±50,醇解度为 99%)和 90ml的去离子水置于圆底烧瓶,常温下磁力搅拌半小时,使杂质挥发,并使PVA充分溶胀以避免溶解过程中的皮溶内生。之后提高温度,加热去离子水至90℃,持续搅拌约1.5 h至PVA完全溶解得到溶液G,取8份步骤(6)中制备的AgNWs@TiO2(其中,1份步骤(6)中制得的AgNWs@TiO2指的是1份步骤(5)中制得的AgNWs再经过步骤(6)处理得到的AgNWs@TiO2复合粒子)加入到溶液G,调温至65℃,并持续搅拌10-15小时后得到具有一定黏度的复合材料流体,将该复合材料流体倒入平整、洁净的皮氏培养皿进行流延成膜,待溶剂挥发后即可得到所要制备的AgNWs@TiO2复合粒子体积分数为9.50%的场致可逆非线性导电复合材料。
实施例3
场致可逆非线性导电复合材料制法,包括如下步骤:
前(1)-(6)步同实施例1。
(7)先称取5 g PVA(聚合度为1750±50,醇解度为 99%)和 90ml的去离子水置于圆底烧瓶,常温下磁力搅拌半小时,使杂质挥发,并使PVA充分溶胀以避免溶解过程中的皮溶内生。之后提高温度,加热去离子水至90℃,持续搅拌约1.5 h至PVA完全溶解得到溶液G,取10份步骤(5)中制备的AgNWs@TiO2(其中,1份步骤(6)中制得的AgNWs@TiO2指的是1份步骤(5)中制得的AgNWs再经过步骤(6)处理得到的AgNWs@TiO2复合粒子)加入到溶液G,调温至65℃,并持续搅拌10-15小时后得到具有一定黏度的复合材料流体,将该复合材料流体倒入平整、洁净的皮氏培养皿进行流延成膜,待溶剂挥发后即可得到所要制备的AgNWs@TiO2复合粒子体积分数为11.45%的场致可逆非线性导电复合材料。
二氧化钛修饰银纳米线复合粒子AgNWs@TiO2及其复合材料的结构表征及性能测试
1、制得的AgNWs@TiO2结构表征:
图1为本发明实施例1中制得的AgNWs@TiO2复合粒子的SEM图,其中内嵌图为AgNWs@TiO2的TEM图;本发明采用德国卡尔·蔡司显微镜有限公司生产的GeminiSEM 300型扫描电子显微镜(Scanning Electron Microscopy, SEM)对AgNWs产物的微结构进行观察分析。从图1中可以看出,TiO2包覆后的AgNWs的表面非常粗糙,如同蠕虫状,与表面光滑的AgNWs差别较大。从插图中样品的TEM表征中可看出AgNWs的外表面上有一层颗粒状的包覆层。
图2为本发明实施例1中制得的AgNWs@TiO2的EDS能谱图。本发明采用布鲁克Quantax 400能谱仪(Energy Dispersive Spectrometer, EDS),搭配上述型号SEM对产物微区进行元素种类与含量表征分析。从图2中可以看出,反应产物的EDS谱图中除了元素碳、银、氧的衍射峰之外,还含有元素钛和硫的衍射峰。因此,AgNWs外的包覆层即为钛酸四丁酯水解后的TiO2
图3为本发明实施例1中制得的AgNWs@TiO2的XRD谱图,为了与AgNWs作对比分析,图3中同时给出了实施例1中制备得到的AgNWs的XRD曲线,以进一步确定其成分和结晶情况。从图3可以看出,AgNWs@TiO2除了含有与AgNWs具有相同特征的五个衍射峰外,还有其它的衍射峰,经过JADE软件对比后确定,为锐钛矿晶型结构(JCPDS卡片号为:21-2172)。表明成功的制备了具有TiO2包覆层的AgNWs@TiO2核壳纳米粒子,并且包覆过程没有破坏AgNWs的晶体结构。
2、场致可逆非线性导电复合材料的微结构表征
为了观测AgNWs@TiO2在聚乙烯醇基体内的分布状态,对填充体积分数为9.05%的样品进行了SEM表征分析,如图4所示。从图中可以看出,AgNWs@TiO2在PVA基体中随机的分散性均匀分布,无明显的团聚出现,并且材料样品内已经形成极为密集的网络。由于AgNWs表面修饰了TiO2,因此即使形成的逾渗网络也不会导电,当外部出现强电磁脉冲场作用时,薄膜会发生场致绝缘-金属相变,使得原本高阻态的薄膜瞬间突变为低阻态,从而对电磁脉冲产生屏蔽作用。
3、场致可逆非线性导电复合材料的伏安特性测试结果与分析
图5是AgNWs@TiO2复合粒子填充体积分数分别为4.62%、9.50%及11.45%下制得的复合材料的非线性伏安曲线图,结果表明:不同AgNWs@TiO2复合粒子填充体积分数的复合材料均具有较为明显的非线性导电行为,且随着填充浓度的提高,屏蔽薄膜的导电开关电压有所降低,对应的非线性系数也发生了不同程度的变化。因此,AgNWs进行TiO2绝缘包覆之后,复合粒子的填充浓度即使超过渗流阈值,薄膜材料仍然可以呈现出良好的场致导电开关性质,而且填充的越多临界场越低,这表明,TiO2包覆银纳米线复合粒子填充型薄膜材料确实可以有效调整材料的开关临界场强。
4、场致可逆非线性导电复合材料伏安特性的重复性测试结果与分析
经过测试得到AgNWs@TiO2复合粒子填充体积分数为9.5%的复合材料的重复性伏安曲线如图6所示。从图6中可以看出,第一次测试时,复合材料的电压阈值为约300V左右,电流发生了1000倍左右的跃变,其后的2、3、4、5次测试中,复合材料的电压阈值也基本稳定在300V左右。同时,后面几次测试中电流有一个小幅度跃变,分析原因可能是由于包覆试剂TBT的用量较少,AgNWs未能形成完全包覆,导致部分AgNWs之间存在PVA间隙,在电流的作用下发生电迁移,并逐渐形成搭接。在形成搭接后电流的小幅度跃变也完全消失。测试结果表明,AgNWs@TiO2/PVA复合材料具有稳定的、重复性优异的场致可逆非线性导电特性。
5、场致可逆非线性导电复合材料的导电机理分析
AgNWs@TiO2/PVA复合材料内存在的AgNWs@TiO2填料搭接形成了网络通路,内部结构示意图如图7所示。复合材料内形成AgNWs/TiO2/AgNWs结构,AgNWs之间的间距即为TiO2包覆层厚度的2倍,约为9 nm左右。此时AgNWs填料之间存在的势垒由TiO2包覆层的厚度决定。由于TiO2包覆层为锐钛矿晶型结构,相邻的AgNWs之间存在肖特基势垒。根据量子隧道效应理论,随着复合材料内场强的升高,自由电子越过AgNWs之间TiO2包覆层形成的势垒的几率增大;当达到场强阈值时,大量电子跃迁进入相邻的AgNWs,隧道电流迅速增大并形成导电路径,复合材料内电流瞬间上升几个数量级,电阻率大幅度下降。复合材料内存在金属(metal)-半导体(semiconductor)-金属的MSM三明治结构,并且TiO2包覆层为锐钛矿晶体结构,可以较好的阻碍导电路径中的电迁移,所以AgNWs@TiO2/PVA复合材料样品具有非常好的场致可逆非线性导电特性。

Claims (7)

1.一种场致可逆非线性导电复合材料制法所制得的材料,其特征在于:包括如下步骤:
取银纳米线AgNWs分散在无水乙醇中,得到悬浮液E;向悬浮液E中加入巯基乙酸TGA,搅拌均匀后加入钛酸四丁酯TBT,混合均匀后,加热至180-210℃,反应9-11h,得到悬浮液F;将悬浮液F离心,取沉淀,清洗后即得到AgNWs@TiO2核壳纳米粒子,分散保存于无水乙醇中备用;
取聚乙烯醇PVA和去离子水,常温下搅拌后,加热至85-95℃,继续搅拌至聚乙烯醇PVA完全溶解得到溶液G;取AgNWs@TiO2核壳纳米粒子加入到溶液G,保持温度为60-70℃,并持续搅拌10-15h后得到复合材料流体,将该复合材料流体进行流延成膜,待溶剂挥发后即得到场致可逆非线性导电复合材料;
其中,银纳米线AgNWs和巯基乙酸TGA、钛酸四丁酯TBT的质量比为100: 210-220 :20;
聚乙烯醇PVA的聚合度为1750±50,醇解度为99%;
聚乙烯醇PVA和AgNWs@TiO2核壳纳米粒子的质量比为60:30-50;
所述银纳米线AgNWs的制备方法为:
(1)取聚乙烯吡咯烷酮PVP加入乙二醇EG,搅拌至完全溶解得到溶液A;其中,聚乙烯吡咯烷酮PVP和乙二醇EG的质量比为0 .6-1:100;
(2)取AgNO3加入溶液A,搅拌得到均匀的溶液B;其中,聚乙烯吡咯烷酮PVP和AgNO3的质量比为60-100:100;
(3)制备浓度为300-900 μmol/L的FeCl3/EG溶液,取FeCl3/EG溶液加入溶液B中,继续搅拌至均匀得到溶液C;其中,所述FeCl3/EG溶液与溶液B的质量比为7-21: 100;
(4)将溶液C于110-150℃加热反应3 .5-7 h,至形成乳白色悬浊液D;
(5)清洗乳白色悬浊液D,离心,得到的沉淀物即为银纳米线AgNWs。
2.根据权利要求1所述的场致可逆非线性导电复合材料制法所制得的材料,其特征在于所述银纳米线AgNWs的长度为10-14μm,直径为80-120nm,长径比L/r为80-350。
3.根据权利要求1所述的场致可逆非线性导电复合材料制法所制得的材料,其特征在于:向悬浮液E中加入巯基乙酸TGA,搅拌均匀后加入钛酸四丁酯TBT,混合均匀后,加热至200℃,反应10h,得到悬浮液F。
4.根据权利要求1所述的场致可逆非线性导电复合材料制法所制得的材料,其特征在于:溶液G中,聚乙烯醇PVA和去离子水的质量比为5:90。
5.根据权利要求1所述的场致可逆非线性导电复合材料制法所制得的材料,其特征在于,步骤(4)中,将溶液C于130℃加热反应5 h,至形成乳白色悬浊液D。
6.根据权利要求1所述的场致可逆非线性导电复合材料制法所制得的材料,其特征在于,步骤(5)为:配置无水乙醇、丙酮及去离子水混合清洗溶液,与乳白色悬浊液D混合后超声,离心,重复此步骤1-3次,得到沉淀物;混合清洗溶液中无水乙醇、丙酮、去离子水的体积比为3:2:1;
将获得的沉淀物置于无水乙醇中,超声后离心,无水乙醇重复清洗1-3次后得到的沉淀物即为银纳米线AgNWs,将其置于无水乙醇中保存待用。
7.一种如权利要求1所述的场致可逆非线性导电复合材料制法所制得的材料的应用,其特征在于所述材料应用于过电压防护、雷击浪涌及自适应电磁脉冲防护领域。
CN201910452084.5A 2019-05-28 2019-05-28 场致可逆非线性导电复合材料制法、所制得的材料及应用 Active CN110092933B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910452084.5A CN110092933B (zh) 2019-05-28 2019-05-28 场致可逆非线性导电复合材料制法、所制得的材料及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910452084.5A CN110092933B (zh) 2019-05-28 2019-05-28 场致可逆非线性导电复合材料制法、所制得的材料及应用

Publications (2)

Publication Number Publication Date
CN110092933A CN110092933A (zh) 2019-08-06
CN110092933B true CN110092933B (zh) 2021-06-29

Family

ID=67449473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910452084.5A Active CN110092933B (zh) 2019-05-28 2019-05-28 场致可逆非线性导电复合材料制法、所制得的材料及应用

Country Status (1)

Country Link
CN (1) CN110092933B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536982B (zh) * 2022-09-20 2023-07-18 华南理工大学 一种具有非线性电导和介电性能的环氧复合材料及其制备方法和应用
CN115862923A (zh) * 2022-12-12 2023-03-28 深圳顺络电子股份有限公司 粉料、导电浆料及磁性器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721708A (zh) * 2014-01-08 2014-04-16 济南大学 一种银/二氧化钛复合异质结构及其制备方法
CN104193862A (zh) * 2014-09-10 2014-12-10 齐鲁工业大学 一种聚苯乙烯/银/二氧化钛复合材料的制备方法
WO2017180898A1 (en) * 2016-04-13 2017-10-19 Segan Industries, Inc. Optical evanescent color change compositions and methods of making and using the same
CN109337102A (zh) * 2018-09-06 2019-02-15 中国人民解放军陆军工程大学 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103721708A (zh) * 2014-01-08 2014-04-16 济南大学 一种银/二氧化钛复合异质结构及其制备方法
CN104193862A (zh) * 2014-09-10 2014-12-10 齐鲁工业大学 一种聚苯乙烯/银/二氧化钛复合材料的制备方法
WO2017180898A1 (en) * 2016-04-13 2017-10-19 Segan Industries, Inc. Optical evanescent color change compositions and methods of making and using the same
CN109337102A (zh) * 2018-09-06 2019-02-15 中国人民解放军陆军工程大学 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用

Also Published As

Publication number Publication date
CN110092933A (zh) 2019-08-06

Similar Documents

Publication Publication Date Title
Celle et al. Oxidation of copper nanowire based transparent electrodes in ambient conditions and their stabilization by encapsulation: Application to transparent film heaters
Hashim et al. Structural, dielectric and optical properties for (polyvinyl alcohol–polyethylene oxide-manganese oxide) nanocomposites
Badawi et al. Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications
Zhu et al. PET/Ag NW/PMMA transparent electromagnetic interference shielding films with high stability and flexibility
CN112876712A (zh) 一种MXene基柔性聚乙烯醇电磁屏蔽复合薄膜及制备方法
Alsulami et al. Modification and development in the microstructure of PVA/CMC-GO/Fe3O4 nanocomposites films as an application in energy storage devices and magnetic electronics industry
Bhattacharya et al. A new conducting nanocomposite—PPy-zirconium (IV) oxide
CN110092933B (zh) 场致可逆非线性导电复合材料制法、所制得的材料及应用
CN109337102B (zh) 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用
CN101885508A (zh) 一种掺杂氧化锌纳米粉体的规模化可控制备方法
CN105355881B (zh) 一种石墨烯复合材料及其制备方法
Alsmadi et al. Influence of oxygen defects and their evolution on the ferromagnetic ordering and band gap of Mn-doped ZnO films
Wang et al. Structural inheritance and change from ZnSn (OH) 6 to ZnSnO3 compounds used for ethanol sensors: Effects of oxygen vacancies, temperature and UV on gas-sensing properties
KR101313149B1 (ko) 탄소나노튜브―금속 복합체의 제조방법 및 이를 이용한 전도성 페이스트의 제조방법
Iqbal et al. Investigations on ZnO/polymer nanocomposite thin film for polymer based devices
CN109177011B (zh) 场敏感型非线性导电薄膜制备方法、所制得的薄膜及应用
JPWO2004089829A1 (ja) 複合化酸化インジウム粒子およびその製造方法ならびに導電性塗料、導電性塗膜および導電性シート
Mohamed et al. An insight into the effect of ZnWO4/ZnS nanoparticles on the optical and electrical characteristics of PVA/PVP/CMC blended polymer for optoelectronic and energy storage applications
Abdel-Kader et al. Tailoring the optical properties (linear and nonlinear) of triple blended polymers via reinforcement of interchangeable proportions of mixed (SnO2 and NiO) nanofillers for promising applications
Okeudo et al. Influence of polyethylene glycol (PEG) surfactant on the properties of molybdenum-doped zinc oxide films
Prince et al. Effects of TiO2 nanoparticles on the dielectric and electromagnetic shielding performance of PVA/POM hybrid nanocomposites
CN105088391B (zh) 聚对苯乙炔/石墨烯复合纳米纤维材料及其制备方法
JP2005022953A (ja) 複合化酸化インジウム粒子およびその製造方法、ならびに導電性塗料、導電性塗膜および導電性シート
Abou Elfadl et al. Improving the optical and thermal properties, and stress-strain behavior of a PV (Ac–C) blend using PbO and MgO nanofillers: a comparative study
Bhugul et al. Synthesis and characterization of polypyrrole zinc oxide nano composites by ex-situ technique and study of their thermal &Electrical properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant