CN109337102B - 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用 - Google Patents

自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用 Download PDF

Info

Publication number
CN109337102B
CN109337102B CN201811035530.4A CN201811035530A CN109337102B CN 109337102 B CN109337102 B CN 109337102B CN 201811035530 A CN201811035530 A CN 201811035530A CN 109337102 B CN109337102 B CN 109337102B
Authority
CN
China
Prior art keywords
solution
agnws
electromagnetic pulse
ethanol
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811035530.4A
Other languages
English (en)
Other versions
CN109337102A (zh
Inventor
曲兆明
卢聘
王庆国
赵敏
王妍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Army Engineering University of PLA
Original Assignee
Army Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Army Engineering University of PLA filed Critical Army Engineering University of PLA
Priority to CN201811035530.4A priority Critical patent/CN109337102B/zh
Publication of CN109337102A publication Critical patent/CN109337102A/zh
Application granted granted Critical
Publication of CN109337102B publication Critical patent/CN109337102B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用,涉及电磁屏蔽材料领域。步骤如下:取AgNWs加入乙醇、水和氨水得溶液E;将TEOS加入乙醇中并滴加入溶液E中,室温反应20‑30h得溶液F;将溶液F超声离心,取沉淀,洗涤得AgNWs@SiO2;取PVA和水,搅拌,加热至85‑95℃,搅拌至PVA完全溶解得到溶液G;取AgNWs@SiO2加入到溶液G,温度60‑70℃,搅拌10‑15h得到复合材料流体,进行流延成膜,待溶剂挥发后得到自适应电磁脉冲屏蔽薄膜;其中,AgNWs和TEOS的质量比为15‑25:1;PVA聚合度为1700,醇解度为99%;PVA和AgNWs@SiO2的质量比为100:40‑120。本方法工艺简单,成本低,反应时间短,易于大量制备;制得的薄膜分布均匀,分散性较好,无团聚,可应用于自适应电磁脉冲防护领域。

Description

自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用
技术领域
本发明涉及电磁屏蔽材料领域,尤其是一种自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用。
背景技术
近些年来,大规模集成电路在军事电子信息设备上获得广泛使用,极大提升了武器装备的信息化和智能化。但与此同时,随着电磁脉冲武器(EMP)的不断发展,特别是高功率武器、电磁脉冲炸弹、超宽带武器的运用,致使现代战场的电磁环境越来越恶劣。因此,做好电磁脉冲防护工作对赢得现代化战争的胜利具有重要意义。
传统的电磁防护材料是利用其对入射电磁波的吸收衰减或反射进而将电磁波与被保护的电子设备隔离开,从而达到电磁防护的目的。但这类材料对有用的和恶意的电磁信号都进行了屏蔽,使得电子设备与外界的正常联系受到了阻碍。因此,如何处理电子设备正常收发信号与强电磁脉冲防护之间的矛盾成为了解决问题的关键。国防科技大学刘培国等提出了一种能量选择表面结构(ESS),利用PIN二极管构建了能量选择表面并初步验证了电磁能量选择表面的有效性,但由于二极管材料自身存在响应时间慢、导通延迟等弊端,使其对于瞬间电磁脉冲难以实现有效防护。能量选择表面的本质是从材料层面实现电磁场诱导下的金属/绝缘相变,使其阻抗发生变化。从理论上看,要高效屏蔽电磁波需要低阻抗的材料,要高效透射电磁波则需要高阻抗的材料,这是2种完全不同的需求,要使一种材料同时满足2种需求,这种材料必须具有变阻抗的特性,即在低功率弱场安全电磁波照射下,处于高阻态,在高功率强场有害电磁波照射下突变为低阻态,此类材料属于智能材料范畴,具有自动感知外部环境信息并产生最佳响应功能的材料系统,我们通常称之为环境自适应智能电磁防护材料。对于快上升沿、窄带电磁脉冲而言,材料的相变响应时间必须不慢于脉冲持续时间才能确保防护性能的有效实施。
实际上,场致(或电致)电阻材料具备上述自适应电磁防护材料的变阻抗特性,即材料的电阻随电场(电压)或电流而产生剧烈的变化而呈现非线性导电特性。电场作用下聚合物基复合材料具有非线性导电特性,特别是在强电场作用下复合材料的非线性导电特征更加明显。对于填充型聚合物导电复合材料而言,填料(或者称为组分)的本征属性是影响材料宏观有效性能的关键因素。近些年来随着功能复合材料的发展,人们发现在一些聚合物材料中掺入适量的金属氧化物、纳米金属或合金粉末,会使这样的聚合物基纳米复合材料在电场诱导下具有非线性导电特性,其作为自适应智能电磁防护材料具有较好的应用前景。国内邹慰亲等较早研究了掺Al或Ag微粉的聚丙烯基和聚二氯乙烯基复合材料的导电开关特性,发现在某一电场阈值附近,复合材料的电阻值随外电场的变化而发生大幅度的变化,当掺入金属或合金微粒的种类、平均颗粒度、体积比不同时,对复合材料的导电开关特性具有较大的影响。华侨大学陈国华团队研究了环氧树脂/石墨纳米微片导电复合材料在电场作用下的非线性导电行为,发现复合体系的电导率对外加电场具有强的非线性,并对此体系的非线性导电行为给出了理论解释。
银纳米线(AgNWs)作为一维纳米材料(在空间中有两维方向上处于纳米尺度,而第三维为宏观尺寸),既具有块体银所拥有的优异电导率、热导率和稳定的化学性质,又有着纳米材料所具有的新型特性以及高比表面积、高透光性和高耐曲饶性,理化性能独特,在聚合物功能材料、透明导电薄膜、光电子发射和微纳米电子器件等方面有着极为广泛的应用,是最有应用前景的材料之一。利用银纳米线开发具有自适应电磁脉冲防护材料具有潜在的应用前景。银纳米线的大长径比特点使得其在作为填料时具有更低的逾渗阈值,这对于自适应电磁脉冲防护材料来讲难以保证常态弱场条件下的高阻特征,因此必须解决常态高阻特性及场致低阻抗特性的难题才能用于自适应电磁脉冲防护领域。
发明内容
本发明要解决的技术问题是提供一种自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用,制备方法工艺简单,操作简便,成本低廉,反应时间较短,易于大量制备;所制得的薄膜分布均匀,分散性较好,无团聚,可应用于自适应电磁脉冲防护领域。
为解决上述技术问题,本发明所采取的技术方案是:一种自适应电磁脉冲屏蔽薄膜制备方法,包括如下步骤:
取银纳米线AgNWs,加入乙醇、去离子水和氨水得到溶液E,超声分散;将正硅酸乙酯TEOS加入到乙醇中,将TEOS的乙醇溶液滴加入溶液E中,室温搅拌反应20-30h后得到溶液F;将溶液F超声后离心,取沉淀,洗涤后即得到二氧化硅修饰银纳米线的复合粒子,分散保存于乙醇中备用;
取聚乙烯醇PVA和去离子水,常温下搅拌后,加热至85-95℃,继续搅拌至聚乙烯醇PVA完全溶解得到溶液G;取二氧化硅修饰银纳米线的复合粒子加入到溶液G,保持温度为60-70℃,并持续搅拌10-15h后得到复合材料流体,将该复合材料流体进行流延成膜,待溶剂挥发后即得到自适应电磁脉冲屏蔽薄膜;
其中,银纳米线AgNWs和正硅酸乙酯TEOS的质量比为15-25:1;
聚乙烯醇PVA的聚合度为1700,醇解度为99%;
聚乙烯醇PVA和二氧化硅修饰银纳米线的复合粒子的质量比为100:40-120。
银纳米线AgNWs的长度为10-14μm,直径为80-120nm,长径比L/r为80-350。
溶液G中,聚乙烯醇PVA和去离子水的质量比为5:90。
溶液E中,乙醇、去离子水和氨水的质量比为150-160:60:3-4,氨水的浓度为25wt%-28wt%。
TEOS的乙醇溶液中,TEOS与乙醇的质量比为5:800-1100。
银纳米线AgNWs的制备方法为:
(1)取聚乙烯吡咯烷酮PVP加入乙二醇E5G,搅拌至完全溶解得到溶液A;其中,聚乙烯吡咯烷酮PVP和乙二醇EG的质量比为0.6-1:100;
(2)取AgNO3加入溶液A,搅拌得到均匀的溶液B;其中,聚乙烯吡咯烷酮PVP和AgNO3的质量比为60-100:100;
(3)制备浓度为300-900 μmol/L的FeCl3/EG溶液,取FeCl3/EG溶液加入溶液B中,继续搅拌至均匀得到溶液C;其中,所述FeCl3/EG溶液与溶液B的质量比为7-21: 100;
(4)将溶液C于110-150-℃加热反应3.5-7 h,至形成乳白色悬浊液D;
(5)清洗乳白色悬浊液D,离心,得到的沉淀物即为银纳米线AgNWs。
步骤(4)中,将溶液C于130℃加热反应5 h,至形成乳白色悬浊液D;
步骤(5)为:配置乙醇、丙酮及去离子水混合清洗溶液,与乳白色悬浊液D混合后超声,离心,重复此步骤1-3次,得到浅灰色沉淀物;混合清洗溶液中乙醇、丙酮、去离子水的体积比为3:2:1;
将获得的浅灰色沉淀物置于乙醇溶剂中,超声后离心,重复清洗1-3次后得到的沉淀物即为银纳米线AgNWs,将其置于无水乙醇中保存待用。
上述自适应电磁脉冲屏蔽薄膜制备方法所制得的薄膜的应用:薄膜应用于自适应电磁脉冲防护领域。
采用上述技术方案所产生的有益效果在于:
(1)本发明自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用,制备方法工艺简单,操作简便,成本低廉,反应时间较短,易于大量制备;所制得的薄膜分布均匀,分散性较好,无团聚,可应用于自适应电磁脉冲防护领域。
(2)本发明采用的AgNWs制备方法工艺简单,操作简便,且对实验环境要求较低,成本低廉,反应时间较短,易于大量制备,制得的AgNWs产物为面心立方的纯相AgNWs,具有较高长径比、纯度高,梳直性、均匀性和分散性较好。
(3)本发明PVA选用聚合度和醇解度较高的1700型号,其成膜强度高,耐溶剂性好,机械性能优异。自适应电磁脉冲屏蔽薄膜的制备采用溶液流延工艺,具有工艺简单、易于操作、成品质量稳定且便于添加助剂等优点。
(4)本发明对银纳米线进行厚度可控的SiO2绝缘包覆,然后在聚合物基体中进行超过渗流阈值的高浓度填充,使得常态弱场条件下材料对外仍然呈现为绝缘材料,当外场增加且银纳米线中的电子能量超越绝缘包覆层形成的势垒时,将会产生大量隧道电子并导电,从而产生显著的导电开关效应,此时材料中的自由隧道电子数量激增,并大幅度提高复合材料的导电率和载流能力,从而可实现材料临界场可调以及相变之后电导率大幅度提升的双重效果,解决了自适应脉冲防护材料常态高阻和场致低阻特性的难题,为有效防护强电磁脉冲提供了技术基础。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明;
图1是本发明实施例1中制得的AgNWs@SiO2复合粒子的SEM图,其中内嵌图为AgNWs@SiO2的TEM图;
图2是本发明实施例1中制得的AgNWs@SiO2复合粒子的EDS能谱图;
图3是本发明实施例1中制得的AgNWs及AgNWs@SiO2复合粒子的XRD谱图;
图4是本发明实施例1中制得的AgNWs@SiO2填充质量分数为31%的自适应电磁脉冲屏蔽薄膜的微区SEM图;
图5是本发明实施例2中制得的AgNWs@SiO2填充质量分数为42%的自适应电磁脉冲屏蔽薄膜的微区SEM图;
图6是本发明实施例3中制得的AgNWs@SiO2填充质量分数为53%的自适应电磁脉冲屏蔽薄膜的微区SEM图;
图7是本发明不同AgNWs@SiO2复合粒子填充浓度下制得的自适应电磁脉冲屏蔽薄膜的伏安曲线图;
图8是本发明实施例2中制得的AgNWs@SiO2复合粒子填充质量分数为42%的自适应电磁脉冲屏蔽薄膜的电磁脉冲屏蔽效果图。
具体实施方式
实施例中所用主要化学试剂如表1所示,EG、AgNO3、FeCl3和PVP用于合成AgNWs,乙醇、丙酮和去离子水用于离心清洗反应后悬浊液体系,以获取纯净AgNWs。
表1主要化学试剂
实验试剂 规格 生产厂家/供应商
乙二醇 AR 天津市永大化学试剂有限公司
硝酸银 AR 上海精细化工材料研究所
无水三氯化铁 AR Aladdin
聚乙烯吡咯烷酮 K88-96,平均分子量1300000 Aladdin
乙醇 AR 天津市永大化学试剂有限公司
丙酮 AR 天津市永大化学试剂有限公司
氨水 AR 石家庄试剂厂
正硅酸乙酯 AR 国药集团化学试剂有限公司
<u></u> <u></u>
聚乙烯醇 纯度≥99% 国药集团化学试剂有限公司
实施例中的所有试剂未经进一步纯化,实施例用水均为去离子水。
实施例1
自适应电磁脉冲屏蔽薄膜制备方法,包括如下步骤:
(1)首先,取0.2 g PVP加入25 ml EG,磁力搅拌4~5 h至完全溶解得到混合溶液A。
(2)然后取0.25 g AgNO3加入溶液A,磁力搅拌约1 h至完全溶解得到均匀的溶液B。
(3)制备浓度为600 mmol/L的FeCl3/EG溶液,并取3.5 ml FeCl3/EG溶液加入溶液B中,继续磁力搅拌约5 min至溶液均匀得到溶液C。
(4)将溶液C倒入250 ml圆底烧瓶,置于130℃的硅油浴锅中加热5 h,反应期间淡黄色溶液逐渐转变为浅棕色直至形成乳白色悬浊液D。待此乳白色悬浊液D自然冷却至室温,取出倒入洁净烧杯。
(5)取乙醇30 ml、丙酮20 ml、去离子水10ml配置混合清洗溶液,与乳白色悬浊液D混合后超声约30 min,然后以3000r/min离心20min,去除上层清液后得到沉淀物,重复此清洗步骤两次后将获得的浅灰色沉淀物分散到60ml乙醇中,超声20 min后以3000r/min离心20min,重复上述乙醇清洗过程两次后得到的沉淀物即为银纳米线(AgNWs),得到的银纳米线AgNWs的长度约为12μm,直径约为100 nm,长径比L/r为240,将其置于无水乙醇中保存待用。
(6)取16份步骤(5)中制得的无水乙醇清洗后的银纳米线AgNWs(其中,1份步骤(5)中制得的AgNWs指的是每0.2g PVP经过上述(1)-(5)步骤生成的AgNWs称之为1份),再加入100mL乙醇、30 mL去离子水和2 mL氨水(氨水的浓度为25wt%-28wt%)得到溶液E,超声分散5min。将0.1mL的TEOS加入20 mL乙醇中,用恒压滴液漏斗在30 min内将TEOS的乙醇溶液滴加入到溶液E反应体系中,室温搅拌反应24h后得到溶液F。将溶液F超声10min后以3000r/min离心10min,取试管底部沉淀,用无水乙醇洗涤两次得到二氧化硅修饰银纳米线的复合粒子(AgNWs@SiO2),分散保存于乙醇中以备进一步检测。
(7)先称取5 g PVA(聚合度为1700,醇解度为99%)和90ml的去离子水置于圆底烧瓶,常温下磁力搅拌半小时,使杂质挥发,并使PVA充分溶胀以避免溶解过程中的皮溶内生。之后提高温度,加热去离子水至90℃,持续搅拌约1.5 h至PVA完全溶解得到溶液G,取1份步骤(6)中制得的AgNWs@SiO2(其中,1份步骤(6)中制得的AgNWs@SiO2指的是上述步骤(6)中得到的AgNWs@SiO2的量)加入到溶液G,调温至65℃,并持续搅拌10-15小时后得到具有一定黏度的复合材料流体,将该复合材料流体倒入平整、洁净的皮氏培养皿进行流延成膜,待溶剂挥发后即可得到AgNWs@SiO2复合粒子填充质量分数为31%的自适应电磁脉冲屏蔽薄膜。
实施例2
自适应电磁脉冲屏蔽薄膜制备方法,包括如下步骤:
前(1)-(6)步同实施例1。
(7)先称取5 g PVA(聚合度为1700,醇解度为99%)和90ml的去离子水置于圆底烧瓶,常温下磁力搅拌半小时,使杂质挥发,并使PVA充分溶胀以避免溶解过程中的皮溶内生。之后提高温度,加热去离子水至90℃,持续搅拌约1.5 h至PVA完全溶解得到溶液G,取2份步骤(6)中制得的AgNWs@SiO2(其中,1份步骤(6)中制得的AgNWs@SiO2指的是上述步骤(6)中得到的AgNWs@SiO2的量)加入到溶液G,调温至65℃,并持续搅拌10-15小时后得到具有一定黏度的复合材料流体,将该复合材料流体倒入平整、洁净的皮氏培养皿进行流延成膜,待溶剂挥发后即可得到AgNWs@SiO2复合粒子填充质量分数为42%的自适应电磁脉冲屏蔽薄膜。
实施例3
自适应电磁脉冲屏蔽薄膜制备方法,包括如下步骤:
前(1)-(6)步同实施例1。
(7)先称取5 g PVA(聚合度为1700,醇解度为99%)和90ml的去离子水置于圆底烧瓶,常温下磁力搅拌半小时,使杂质挥发,并使PVA充分溶胀以避免溶解过程中的皮溶内生。之后提高温度,加热去离子水至90℃,持续搅拌约1.5 h至PVA完全溶解得到溶液G,取3份步骤(5)中制得的AgNWs@SiO2(其中,1份步骤(6)中制得的AgNWs@SiO2指的是上述步骤(6)中得到的AgNWs@SiO2的量)加入到溶液G,调温至65℃,并持续搅拌10-15小时后得到具有一定黏度的复合材料流体,将该复合材料流体倒入平整、洁净的皮氏培养皿进行流延成膜,待溶剂挥发后即可得到AgNWs@SiO2复合粒子填充质量分数为53%的自适应电磁脉冲屏蔽薄膜。
二氧化硅修饰银纳米线复合粒子AgNWs@SiO2、自适应电磁脉冲屏蔽薄膜的结构表征及性能测试
1、制得的AgNWs@SiO2结构表征:
图1为本发明实施例1中制得的AgNWs@SiO2复合粒子的SEM图,其中内嵌图为AgNWs@SiO2的TEM图;本发明采用德国卡尔·蔡司显微镜有限公司生产的GeminiSEM 300型扫描电子显微镜(Scanning Electron Microscopy, SEM)对AgNWs@SiO2复合粒子的微结构进行观察分析。从图1中可以看出,合成的AgNWs@SiO2长度约为12 μm,直径约为100 nm,纯度高,梳直性、均匀性和分散性较好,图1中内嵌图为AgNWs@SiO2的TEM图,可见SiO2修饰层均匀致密连续,包覆层厚度约为40-60 nm。
图2为本发明实施例1中制得的AgNWs@SiO2复合粒子的EDS能谱图。本发明采用布鲁克Quantax 400能谱仪(Energy Dispersive Spectrometer, EDS),搭配上述型号SEM对产物微区进行元素种类与含量表征分析。从图2中可以看出,针对试样微区的能谱图中有元素银、碳、氧、硅的衍射峰,结合AgNWs@SiO2的TEM照片,可以确认,其中外层为二氧化硅、内核为银纳米线,而EDS谱中的C元素归因于银纳米线表面吸附的少量PVP。
图3为本发明实施例1中制得的AgNWs@SiO2的XRD谱图,为了与AgNWs作对比分析,图3中同时给出了实施例1中制备得到的AgNWs的XRD曲线,以进一步确定其成分和结晶情况。从图3可以看出,AgNWs@SiO2与AgNWs的XRD图谱中都分别在38.3°,44.5°, 64.7°,77.5°和81.7°处对应出现了AgNWs的五个明显的衍射峰(111),(200),(220),(311) 和(222),而在AgNWs@SiO2的XRD图谱中并没有看到明显的SiO2特征峰,说明表面修饰的二氧化硅层具有无定性结构。由于SiO2在AgNWs@SiO2中含量较少,容易被银的强衍射峰掩盖。值得强调的是,AgNWs@SiO2出现的AgNWs的五个特征吸收峰,说明包覆过程没有破坏银纳米线的结构。
2、自适应电磁脉冲屏蔽薄膜的微结构表征
为了更好地观测AgNWs@SiO2在自适应电磁脉冲屏蔽薄膜中的分布状态,对AgNWs@SiO2填充质量分数为31%,42%,53%的样品进行了SEM表征分析,如图4-6所示。
由图4-6分析,AgNWs@SiO2在自适应电磁脉冲屏蔽薄膜中大体分布均匀,分散性较好,无明显团聚,且随着填充浓度提高,AgNWs@SiO2从少数搭接多层搭接,形成了明显的渗滤网络。由于AgNWs表面修饰了SiO2,因此即使形成的逾渗网络也不会导电,当外部出现强电磁脉冲场作用时,薄膜会发生场致绝缘-金属相变,使得原本高阻态的薄膜瞬间突变为低阻态,从而对电磁脉冲产生屏蔽作用。
3、自适应电磁脉冲屏蔽薄膜的非线性伏安特性测试结果与分析
图7是AgNWs@SiO2复合粒子填充质量分数分别为31%、42%及53%下制得的自适应电磁脉冲屏蔽薄膜的非线性伏安曲线图,结果表明,不同AgNWs@SiO2复合粒子填充质量分数的薄膜均具有较为明显的非线性导电行为,且随着填充浓度的提高,屏蔽薄膜的导电开关电压有所降低,对应的非线性系数也发生了不同程度的变化。因此,AgNWs进行SiO2绝缘包覆之后,复合粒子的填充浓度即使超过渗流阈值,薄膜材料仍然可以呈现出良好的场致导电开关性质,而且填充的越多临界场越低,这表明,SiO2包覆银纳米线复合粒子填充型薄膜材料确实可以有效调整材料的开关临界场强,而且,由于可以采用较高的填充质量分数而不变为导电材料,绝缘包覆银纳米线复合材料可以同时实现临界场调控和大幅度提高电导率和载流能力,从而能够对强电磁脉冲产生屏蔽作用。
4、自适应电磁脉冲屏蔽薄膜的电磁脉冲防护测试与分析
图8为本发明实施例2中制备得到的薄膜材料用于电磁脉冲自适应防护的时域测试效果图。测试方法为串联微带线法,测试系统是由高频噪声模拟发生器、测试夹具和示波器构成,高频噪声模拟器产生的方波脉冲参数为:输出电压幅值为10 V-4 kV,上升时间为1ns,脉冲宽度为50 ns-1 us,步进值为50 ns,重频为1-100 Hz。图8给出了加载薄膜材料前后方波脉冲的幅值衰减情况,测试中方波脉冲的脉宽为50 ns,输出电压经过衰减器作用到测试夹具中材料压片处。当方波脉冲源的输出电压为50 V时,得到了如图8所示的电磁脉冲防护效果,从图中可见脉冲的峰值电压衰减了一半以上,产生了显著的自适应电磁脉冲屏蔽效果。

Claims (9)

1.一种自适应电磁脉冲屏蔽薄膜制备方法,其特征在于:包括如下步骤:
取银纳米线AgNWs,加入乙醇、去离子水和氨水得到溶液E,超声分散;将正硅酸乙酯TEOS加入到乙醇中,将TEOS的乙醇溶液滴加入溶液E中,室温搅拌反应20-30h后得到溶液F;将溶液F超声后离心,取沉淀,洗涤后即得到二氧化硅修饰银纳米线的复合粒子,分散保存于乙醇中备用;
取聚乙烯醇PVA和去离子水,常温下搅拌后,加热至85-95℃,继续搅拌至聚乙烯醇PVA完全溶解得到溶液G;取二氧化硅修饰银纳米线的复合粒子加入到溶液G,保持温度为60-70℃,并持续搅拌10-15h后得到复合材料流体,将该复合材料流体进行流延成膜,待溶剂挥发后即得到自适应电磁脉冲屏蔽薄膜;
其中,银纳米线AgNWs和正硅酸乙酯TEOS的质量比为15-25:1;
聚乙烯醇PVA的聚合度为1700,醇解度为99%;
聚乙烯醇PVA和二氧化硅修饰银纳米线的复合粒子的质量比为100:40-120;
所述银纳米线AgNWs的制备方法为:
(1)取聚乙烯吡咯烷酮PVP加入乙二醇EG,搅拌至完全溶解得到溶液A;其中,聚乙烯吡咯烷酮PVP和乙二醇EG的质量比为0.6-1:100;
(2)取AgNO3加入溶液A,搅拌得到均匀的溶液B;其中,聚乙烯吡咯烷酮PVP和AgNO3的质量比为60-100:100;
(3)制备浓度为300-900 μmol/L的FeCl3/EG溶液,取FeCl3/EG溶液加入溶液B中,继续搅拌至均匀得到溶液C;其中,所述FeCl3/EG溶液与溶液B的质量比为7-21: 100;
(4)将溶液C于110-150℃加热反应3.5-7 h,至形成乳白色悬浊液D;
(5)清洗乳白色悬浊液D,离心,得到的沉淀物即为银纳米线AgNWs。
2.根据权利要求1所述的自适应电磁脉冲屏蔽薄膜制备方法,其特征在于所述银纳米线AgNWs的长度为10-14μm,直径为80-120nm,长径比L/r为80-350。
3.根据权利要求1所述的自适应电磁脉冲屏蔽薄膜制备方法,其特征在于:溶液G中,聚乙烯醇PVA和去离子水的质量比为5:90。
4.根据权利要求1所述的自适应电磁脉冲屏蔽薄膜制备方法,其特征在于:溶液E中,乙醇、去离子水和氨水的质量比为150-160:60:3-4,氨水的浓度为25wt%-28wt%。
5.根据权利要求1所述的自适应电磁脉冲屏蔽薄膜制备方法,其特征在于:TEOS的乙醇溶液中,TEOS与乙醇的质量比为5:800-1100。
6.根据权利要求1所述的自适应电磁脉冲屏蔽薄膜制备方法,其特征在于,步骤(4)中,将溶液C于130℃加热反应5 h,至形成乳白色悬浊液D。
7.根据权利要求1所述的自适应电磁脉冲屏蔽薄膜制备方法,其特征在于,步骤(5)为:配置乙醇、丙酮及去离子水混合清洗溶液,与乳白色悬浊液D混合后超声,离心,重复此步骤1-3次,得到浅灰色沉淀物;混合清洗溶液中乙醇、丙酮、去离子水的体积比为3:2:1;
将获得的浅灰色沉淀物置于乙醇溶剂中,超声后离心,重复清洗1-3次后得到的沉淀物即为银纳米线AgNWs,将其置于无水乙醇中保存待用。
8.一种如权利要求1-7任一项所述的自适应电磁脉冲屏蔽薄膜制备方法所制得的薄膜。
9.一种如权利要求8所述的自适应电磁脉冲屏蔽薄膜制备方法所制得的薄膜的应用,其特征在于所述薄膜应用于自适应电磁脉冲防护领域。
CN201811035530.4A 2018-09-06 2018-09-06 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用 Active CN109337102B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811035530.4A CN109337102B (zh) 2018-09-06 2018-09-06 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811035530.4A CN109337102B (zh) 2018-09-06 2018-09-06 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用

Publications (2)

Publication Number Publication Date
CN109337102A CN109337102A (zh) 2019-02-15
CN109337102B true CN109337102B (zh) 2021-03-30

Family

ID=65292176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811035530.4A Active CN109337102B (zh) 2018-09-06 2018-09-06 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用

Country Status (1)

Country Link
CN (1) CN109337102B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796344A (zh) * 2019-04-08 2020-10-20 超晶维(昆山)光电科技有限公司 一种二氧化硅纳米银线减反射薄膜的制备方法
CN110092933B (zh) * 2019-05-28 2021-06-29 中国人民解放军陆军工程大学 场致可逆非线性导电复合材料制法、所制得的材料及应用
CN111564616A (zh) * 2020-05-16 2020-08-21 西安建筑科技大学 AgNWs@Si@GO锂离子电池负极材料、其制备及采用其的锂离子电池
CN113993366B (zh) * 2021-11-02 2023-03-21 西安电子科技大学 磁控可重构的银纳米线电磁屏蔽膜及制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108485234A (zh) * 2018-02-27 2018-09-04 广东工业大学 一种基于有序导电网络结构的自愈合传感高分子复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8808583B2 (en) * 2010-06-30 2014-08-19 Chung Shan Institute Of Science And Technology Armaments Bureau, M.N.D. Method for manufacturing conductive adhesive containing one-dimensional conductive nanomaterial

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108485234A (zh) * 2018-02-27 2018-09-04 广东工业大学 一种基于有序导电网络结构的自愈合传感高分子复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Strong enhancement effect of silver nanowires on fluorescent property of Eu3+-ligand complexes and desired fluorescent iPP composite materials;Yu Zhang等;《Optical Materials》;20170430;17-22 *
银纳米相吸收增强型钙钛矿太阳电池薄膜的制备及性能研究;檀满林等;《无机材料学报》;20160831;908-914 *

Also Published As

Publication number Publication date
CN109337102A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN109337102B (zh) 自适应电磁脉冲屏蔽薄膜制备方法、所制得的薄膜及应用
Farukh et al. Enhanced electromagnetic shielding behavior of multi-walled carbon nanotube entrenched poly (3, 4-ethylenedioxythiophene) nanocomposites
Fang et al. Layer-structured silver nanowire/polyaniline composite film as a high performance X-band EMI shielding material
Olad et al. Electromagnetic interference attenuation and shielding effect of quaternary Epoxy-PPy/Fe3O4-ZnO nanocomposite as a broad band microwave-absorber
Zhang et al. Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range
Arun Prakash et al. Microwave-shielding behavior of silanized Cu and Cu–Fe 3 O 4 compound particle-reinforced epoxy resin composite in E-, F-, I-, and J-band frequencies
Gashti et al. Electromagnetic shielding response of UV-induced polypyrrole/silver coated wool
CN111392771A (zh) 壳层形貌可控的核壳结构氮掺杂碳包覆二氧化钛微球复合材料及其制备和应用
Zhao et al. Preparation and enhanced microwave absorption properties of Ni microspheres coated with Sn6O4 (OH) 4 nanoshells
Udmale et al. Development trends in conductive nano-composites for radiation shielding
Chakradhary et al. Absorption properties of CNF mixed cobalt nickel ferrite nanocomposite for radar and stealth applications
CN108822797B (zh) 一种钛硅碳复合吸波剂及其制备方法与应用
Xie et al. Enhancement of electromagnetic interference shielding and heat-resistance properties of silver-coated carbonyl iron powders composite material
CN109370155A (zh) 场致非线性导电复合材料制法、所制得的复合材料及应用
Tao et al. One‐pot hydrothermal synthesis of Co3O4/MWCNTs/graphene composites with enhanced microwave absorption in low frequency band
Abhilash et al. Functionalization of dielectric BaTiO3 and semiconducting ZnO nanoparticles on rGO layers and their polymer composites: Applications in EMI shielding
Liu et al. Surface modification engineering of iron-silicon-aluminum alloys: Microstructure evolution investigation and microwave absorption enhancement
CN109177011B (zh) 场敏感型非线性导电薄膜制备方法、所制得的薄膜及应用
CN112409653A (zh) 一种吸波剂、其制备方法及应用
Lebedev et al. Design and research polymer composites for absorption of electromagnetic radiation
CN110092933B (zh) 场致可逆非线性导电复合材料制法、所制得的材料及应用
Yang et al. Effectively tuning electromagnetic absorption of carbon-based nanocomposites by phase transition
CN116837493A (zh) 具有吸波性能的钴/凹凸棒/碳纳米复合纤维的制备方法
Chandran et al. A green mediated synthesis of glass fiber‐nickel ferrite‐polyaniline ternary composite: An excellent thermal stability and outstanding electromagnetic interference shielding performance
Duan et al. Multi-functional PDMS/MMT Coating on magnesium substrates: Hydrophobicity, durability, and EMI shielding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant