CN110090618A - 一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用 - Google Patents

一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用 Download PDF

Info

Publication number
CN110090618A
CN110090618A CN201910362336.5A CN201910362336A CN110090618A CN 110090618 A CN110090618 A CN 110090618A CN 201910362336 A CN201910362336 A CN 201910362336A CN 110090618 A CN110090618 A CN 110090618A
Authority
CN
China
Prior art keywords
prussian blue
classifying porous
preparation
porous charcoal
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910362336.5A
Other languages
English (en)
Other versions
CN110090618B (zh
Inventor
王峰
窦美玲
李珏璇
宋夜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201910362336.5A priority Critical patent/CN110090618B/zh
Publication of CN110090618A publication Critical patent/CN110090618A/zh
Application granted granted Critical
Publication of CN110090618B publication Critical patent/CN110090618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0259Compounds of N, P, As, Sb, Bi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用,所述的普鲁士蓝/分级多孔炭复合吸附剂以生物质基分级多孔炭为载体,利用分级多孔炭表面的杂原子可以锚定Fe3+,同时通过草酸抑制氯化铁中Fe3+的释放,进而控制普鲁士蓝的形核及生长速度,最终在分级多孔炭表面原位生长普鲁士蓝微晶,制备得到纳米级、高分散的普鲁士蓝/分级多孔炭复合吸附剂。本发明所提供的方法制备工艺简单,原料绿色环保,合成的吸附剂具有微孔‑中孔‑大孔的分级孔结构,比表面积高,普鲁士蓝颗粒分散均匀,可高效、快速吸附水中铯离子。

Description

一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用
技术领域
本发明属于吸附剂材料领域,具体涉及一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用,用于吸附废水中放射性元素铯。
背景技术
随着人类对能源需求的日益增加,各国核电事业飞速发展,但核电站会产生大量放射性废料,排放在周围的土壤环境中,进而污染生态环境以及危害人类健康。2011年福岛核电站泄露事故导致大量放射性元素流入到周边的水体土壤中,对环境、人体、食品都造成了严重的影响。在众多放射性元素中,137铯由于其长达30年的半衰期,高溶解性,高挥发性及高活性的特点,引起人们重点关注。
目前,对于放射性铯离子的吸附材料主要包括有机材料(例如纤维素、壳聚糖等)和无机材料(例如沸石、黏土、硅藻土、活性炭等)两大类,然而以上吸附剂普遍存在难以合成、成本昂贵、对铯离子的吸附性能以及选择性差等缺点。2011年福岛核电站事故发生后,普鲁士蓝开始应用于铯离子的吸附处理。普鲁士蓝由于其制备简单、价格经济、选择性高,吸附性能好,作为铯离子吸附剂成为目前研究人员的重点研究方向。然而,普鲁士蓝通常以微晶体形式存在,在大多数溶剂中溶解性差,且普鲁士蓝制备过程中反应速率快,难以形成高分散的颗粒,这限制了普鲁士蓝对铯离子的吸附应用。针对这些问题,以普鲁士蓝为活性物质的复合吸附剂逐渐受到重视。采用大比表面积、孔结构发达的骨架结构材料,在表面负载普鲁士蓝,显著提高了普鲁士蓝的分散性,有利于提高普鲁士蓝对铯离子的吸附能力。
发明内容
为了解决现有技术中普鲁士蓝化合物吸附剂所存在的上述问题,本发明提供一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用,旨在提高普鲁士蓝基吸附剂的吸附性能。将生物质基分级多孔炭用于负载普鲁士蓝化合物,分级多孔炭超高的比表面积、分级孔结构以及表面丰富的杂原子,可大幅提高普鲁士蓝的负载量和分散性,增强普鲁士蓝-炭载体相互作用,有利于提高吸附容量、吸附速率和循环稳定性。
本发明采用如下技术方案:一种普鲁士蓝/分级多孔炭复合吸附剂,普鲁士蓝在分级多孔炭表面分散均匀,呈现立方体形貌,粒径为30-80 nm。
在本发明的优选的实施方式中,所述的普鲁士蓝/分级多孔炭复合吸附剂具有分级多孔结构,其中微孔占比为40%-50%,介孔和大孔占比为50%-60%,比表面积为1000-2000m2 g-1,孔体积为1-2 cm3 g-1
本发明还保护所述的复合吸附剂的制备方法,由牛骨基分级多孔炭作为载体,利用分级多孔炭表面丰富的杂原子锚定三价铁离子,采用草酸抑制三价铁离子的释放从而控制普鲁士蓝的形核及生长的速度,在分级多孔炭表面原位生长普鲁士蓝微晶,从而获得纳米级、高分散、大比表面积的普鲁士蓝/分级多孔炭复合吸附剂。
在本发明的优选的实施方式中,所述的制备方法为将分级多孔炭和氯化铁在酸溶液中充分分散,然后加入亚铁氰化钾溶液快速混合,使其反应一定的时间得到所述的复合吸附剂。
在本发明的优选的实施方式中,所述的制备方法包括如下步骤:
(1)将牛骨粉碎,放置管式炉中通入惰性气体,进行预碳化,将预碳化产物与氢氧化钾研磨均匀后放置管式炉中,在惰性气体气氛中活化,然后经酸洗抽滤、烘干后得到分级多孔炭材料;
(2)称取一定质量的氯化铁放在烧杯中,加入去离子水配成氯化铁溶液,超声溶解完全,依次向其中加入弱酸溶液和步骤(1)制备得到的分级多孔炭材料,超声0.5-1h后,搅拌5-10 h;
(3)按照一定化学计量比称取亚铁氰化钾放在烧杯中,加入去离子水配成亚铁氰化钾溶液,超声溶解完全后,快速加入到步骤(2)得到的混合溶液中,继续搅拌一定时间使其充分反应;
(4)将步骤(3)所述的反应产物静置1 -2h,抽滤干燥得到普鲁士蓝/分级多孔炭复合吸附剂。
在本发明的优选的实施方式中,步骤(1)中,将牛骨粉碎,放置管式炉中通入氩气,以3-10 ℃/min的升温速率升至300-500 ℃,保温3-5 h进行预碳化,再将预碳化产物与氢氧化钾按质量比为0.4-1研磨均匀后放置管式炉中通入氩气,以1-5 ℃/min的升温速率升至600-900 ℃,保温1-3 h活化造孔,将活化产物经过硝酸酸洗、抽滤、烘干后得到分级多孔炭。
在本发明的优选的实施方式中,步骤(2)中,所述弱酸与氯化铁的摩尔比为5-10,所述的弱酸溶液为草酸溶液。
在本发明的优选的实施方式中,步骤(3)中,将亚铁氰化钾溶液快速加入到步骤(2)得到的混合溶液中,搅拌时间为0.5-4 h;所述的亚铁氰化钾与氯化铁的化学计量比为3:4。
在本发明的优选的实施方式中,所述的普鲁士蓝/分级多孔炭复合吸附剂中,普鲁士蓝负载量为40%-160%。
本发明还保护所述普鲁士蓝/分级多孔炭复合吸附剂在处理含放射性铯离子的污水处理中的应用。
与现有技术相比,本发明具有以下优点:
(1)本发明采用生物质基分级多孔炭作为普鲁士蓝载体,其超高比表面积有利于增加普鲁士蓝的负载量;其表面富含杂原子,增强了普鲁士蓝在炭材料表面的结合力,可促进普鲁士蓝高度分散。
(2)本发明采用生物质基分级多孔炭作为普鲁士蓝载体,其分级多孔结构由200-300 nm的大孔以及在其孔壁上均匀分布的介孔(2-50 nm)以及微孔(<2 nm)。其中大孔及介孔有利于被吸附溶液的快速扩散,微孔可以提高吸附剂的比表面积,促进铯离子的吸附。
(3)本发明所提供的方法可控性强,制备过程简单,原料来源丰富、绿色环保,所制备的普鲁士蓝/分级多孔炭复合吸附剂具有较大的比表面积,具有微孔-中孔-大孔的分级孔结构,具有吸附位点多,传质快速的优点,适用于快速吸附水中放射性铯离子,表现出兼具较高吸附容量以及较快的吸附速率的高吸附性能。
附图说明
下面结合附图做进一步的说明。
图1是实施例1中普鲁士蓝/分级多孔炭复合吸附剂的扫描电子显微镜照片;
图2是实施例1中普鲁士蓝/分级多孔炭复合吸附剂的X射线衍射图;
图3是实施例1中普鲁士蓝/分级多孔炭复合吸附剂的氮气吸脱附曲线(a)和孔径分布图(b);
图4是实施例1中普鲁士蓝/分级多孔炭复合吸附剂的吸附性能;
图5是实施例1中普鲁士蓝/分级多孔炭复合吸附剂吸附容量随吸附时间的变化图。
具体实施方式
为了使本发明的目的、技术方案及有益效果更加清楚,本发明用以下具体实施例进行说明,但本发明绝非限于这些例子。
分级多孔炭材料的制备方法如下:将牛骨粉碎,放置管式炉中通入氩气,以5 ℃/min的升温速率升至500 ℃,保温4 h进行预碳化,再将预碳化产物与氢氧化钾按质量比为1:1研磨均匀后放置管式炉中通入氩气,以5℃/min的升温速率升至800 ℃,保温3 h进行活化造孔,将活化产物经过硝酸酸洗、抽滤、烘干后得到分级多孔炭材料。
实施例1:
称取0.2 mmol的氯化铁放置烧杯中,加入30 mL去离子水超声溶解完全,依次加入20mL 1.6 mmol 的草酸溶液、43 mg分级多孔炭超声30 min使其均匀分散,在室温下搅拌7 h后快速加入30 mL 5 mM的亚铁氰化钾溶液,继续搅拌1 h使其反应,随后静置1 h,然后抽滤干燥得到普鲁士蓝/分级多孔炭复合吸附剂,其中普鲁士蓝的理论负载量为100%,热重计算表明普鲁士蓝的实际负载量为73.4%。
将上述得到的普鲁士蓝/分级多孔炭复合吸附剂用于铯离子吸附。取5 mg吸附剂于10 mL铯离子溶液中,室温震荡12 h,利用电感耦合等离子体质谱测其吸附前后铯离子浓度。
将普鲁士蓝/分级多孔炭复合吸附剂进行物理化学表征。由图1可见普鲁士蓝纳米颗粒均匀负载于分级多孔炭表面。图2显示普鲁士蓝/分级多孔炭复合吸附剂出现普鲁士蓝的特征衍射峰。图3显示普鲁士蓝/分级多孔炭复合吸附剂具有分级多孔结构,比表面积为1884 m2 g-1。图4的吸附性能测试表明,普鲁士蓝/分级多孔炭吸附剂的最大吸附量为125.3mg g-1,吸附容量是普鲁士蓝的3倍。图5显示普鲁士蓝/分级多孔炭在吸附1 h可达吸附平衡,具有较快的铯离子吸附速率。
实施例2
操作条件如同实施例1,不同之处在于普鲁士蓝的负载量为130%。
由此制得普鲁士蓝/分级多孔炭吸附剂,其最大吸附量为117.92 mg g-1,吸附容量是普鲁士蓝的2.5倍。同时吸附达平衡的时间为1 h,具有较快的吸附速率。
实施例3
操作条件如同实施例1,不同之处在于普鲁士蓝的负载量为160%。
由此制得普鲁士蓝/分级多孔炭吸附剂,其最大吸附量为103.19 mg g-1,吸附容量是普鲁士蓝的2.3倍。同时吸附达平衡的时间为1 h,具有较快的吸附速率。
可见,与单独的分级多孔炭、普鲁士蓝相比,将分级多孔炭用于负载普鲁士蓝化合物,分级多孔炭超高的比表面积、分级孔结构以及表面丰富的杂原子,可大幅提高普鲁士蓝的负载量和分散性,增强普鲁士蓝-炭载体相互作用。
以上已对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种普鲁士蓝/分级多孔炭复合吸附剂,其特征在于,普鲁士蓝在分级多孔炭表面分散均匀,呈现立方体形貌,粒径为30-80 nm。
2.根据权利要求1中所述的复合吸附剂,其特征在于:所述的普鲁士蓝/分级多孔炭复合吸附剂具有分级多孔结构,其中微孔占比为40%-50%,介孔和大孔占比为50%-60%,比表面积为1000-2000 m2 g-1,孔体积为1-2 cm3 g-1
3.权利要求1或2所述的复合吸附剂的制备方法,其特征在于:由牛骨基分级多孔炭作为载体,利用分级多孔炭表面丰富的杂原子锚定三价铁离子,采用草酸抑制三价铁离子的释放从而控制普鲁士蓝的形核及生长的速度,在分级多孔炭表面原位生长普鲁士蓝微晶,从而获得纳米级、高分散、大比表面积的普鲁士蓝/分级多孔炭复合吸附剂。
4.根据权利要求3中所述的制备方法,其特征在于:所述的制备方法为将分级多孔炭和氯化铁在酸溶液中充分分散,然后加入亚铁氰化钾溶液快速混合,使其反应一定的时间得到所述的复合吸附剂。
5.根据权利要求3中所述的制备方法,其特征在于:所述的制备方法包括如下步骤:
(1)将牛骨粉碎,放置管式炉中通入惰性气体,进行预碳化,将预碳化产物与氢氧化钾研磨均匀后放置管式炉中,在惰性气体气氛中活化,然后经酸洗抽滤、烘干后得到分级多孔炭材料;
(2)称取一定质量的氯化铁放在烧杯中,加入去离子水配成氯化铁溶液,超声溶解完全,依次向其中加入弱酸溶液和步骤(1)制备得到的分级多孔炭材料,超声0.5-1h后,搅拌5-10 h;
(3)按照一定化学计量比称取亚铁氰化钾放在烧杯中,加入去离子水配成亚铁氰化钾溶液,超声溶解完全后,快速加入到步骤(2)得到的混合溶液中,继续搅拌一定时间使其充分反应;
(4)将步骤(3)所述的反应产物静置1 -2h,抽滤干燥得到普鲁士蓝/分级多孔炭复合吸附剂。
6.根据权利要求5中所述的制备方法,其特征在于:步骤(1)中,将牛骨粉碎,放置管式炉中通入氩气,以3-10 ℃/min的升温速率升至300-500 ℃,保温3-5 h进行预碳化,再将预碳化产物与氢氧化钾按质量比为0.4-1研磨均匀后放置管式炉中通入氩气,以1-5 ℃/min的升温速率升至600-900 ℃,保温1-3 h活化造孔,将活化产物经过硝酸酸洗、抽滤、烘干后得到分级多孔炭。
7.根据权利要求5中所述的制备方法,其特征在于:步骤(2)中,所述弱酸与氯化铁的摩尔比为5-10,所述的弱酸溶液为草酸溶液。
8.根据权利要求5中所述的制备方法,其特征在于:步骤(3)中,将亚铁氰化钾溶液快速加入到步骤(2)得到的混合溶液中,搅拌时间为0.5-4 h;所述的亚铁氰化钾与氯化铁的化学计量比为3:4。
9.根据权利要求5中所述的制备方法,其特征在于:所述的普鲁士蓝/分级多孔炭复合吸附剂中,普鲁士蓝负载量为40%-160%。
10.权利要求1或2所述的复合吸附剂、或权利要求3-9中任一项所述的制备方法制备得到的普鲁士蓝/分级多孔炭复合吸附剂可用于含放射性铯离子的废水处理。
CN201910362336.5A 2019-04-30 2019-04-30 一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用 Active CN110090618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910362336.5A CN110090618B (zh) 2019-04-30 2019-04-30 一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910362336.5A CN110090618B (zh) 2019-04-30 2019-04-30 一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110090618A true CN110090618A (zh) 2019-08-06
CN110090618B CN110090618B (zh) 2022-12-23

Family

ID=67446599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910362336.5A Active CN110090618B (zh) 2019-04-30 2019-04-30 一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110090618B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112723384A (zh) * 2020-12-25 2021-04-30 电子科技大学 复合型锰铁基普鲁士蓝材料及其制备方法和应用
CN113509910A (zh) * 2020-11-25 2021-10-19 中国科学院青海盐湖研究所 一种用于液体铷铯资源提取的金属铁氰化物吸附剂颗粒制备方法
CN114749157A (zh) * 2022-05-11 2022-07-15 四川大学 以胶原纤维负载普鲁士蓝类化合物的铯吸附材料及其制备方法与应用
CN115196834A (zh) * 2022-07-22 2022-10-18 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 面源污染处理装置、吸附材料及可渗透反应墙的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254912A1 (en) * 2009-04-03 2010-10-07 Kent State University Gadolinium containing prussian blue nanoparticles as nontoxic MRI contrast agents having high relaxivity
CN101993068A (zh) * 2010-10-27 2011-03-30 北京化工大学 一种多级孔结构活性碳的制备方法
CN103193219A (zh) * 2013-04-09 2013-07-10 江西师范大学 三维有序多孔碳/普鲁士蓝纳米复合材料的制备方法
CN103784979A (zh) * 2014-01-17 2014-05-14 福州市传染病医院 用于肝癌光热治疗和核磁影像的antiGPC3-PB NPs及其制备和应用
EP2765580A1 (en) * 2011-08-19 2014-08-13 The Foundation for the Promotion of Industrial Science Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent
CN105575673A (zh) * 2016-03-11 2016-05-11 北京化工大学 一种氮氧原位掺杂的多孔炭电极材料的制备方法及其应用
CN106179203A (zh) * 2016-07-06 2016-12-07 江苏大学 一种牛骨基多级孔碳材料的制备方法及其用途

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100254912A1 (en) * 2009-04-03 2010-10-07 Kent State University Gadolinium containing prussian blue nanoparticles as nontoxic MRI contrast agents having high relaxivity
CN101993068A (zh) * 2010-10-27 2011-03-30 北京化工大学 一种多级孔结构活性碳的制备方法
EP2765580A1 (en) * 2011-08-19 2014-08-13 The Foundation for the Promotion of Industrial Science Radioactive cesium adsorbent and method for producing same, and method for removing radioactive cesium from environment using said adsorbent
CN103193219A (zh) * 2013-04-09 2013-07-10 江西师范大学 三维有序多孔碳/普鲁士蓝纳米复合材料的制备方法
CN103784979A (zh) * 2014-01-17 2014-05-14 福州市传染病医院 用于肝癌光热治疗和核磁影像的antiGPC3-PB NPs及其制备和应用
CN105575673A (zh) * 2016-03-11 2016-05-11 北京化工大学 一种氮氧原位掺杂的多孔炭电极材料的制备方法及其应用
CN106179203A (zh) * 2016-07-06 2016-12-07 江苏大学 一种牛骨基多级孔碳材料的制备方法及其用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《基础化学》编写组: "《基础化学 中册》", 30 April 1981, 上海科学技术出版社 *
张荻等: "《自然启迪的遗态材料》", 31 October 2013, 浙江大学出版社 *
王国清等: "《无机化学》", 31 August 2015, 中国医药科技出版社 *
谢非等: ""利用普鲁士蓝/活性炭复合材料回收盐湖卤水中铯"", 《盐湖研究》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113509910A (zh) * 2020-11-25 2021-10-19 中国科学院青海盐湖研究所 一种用于液体铷铯资源提取的金属铁氰化物吸附剂颗粒制备方法
CN112723384A (zh) * 2020-12-25 2021-04-30 电子科技大学 复合型锰铁基普鲁士蓝材料及其制备方法和应用
CN112723384B (zh) * 2020-12-25 2022-05-10 电子科技大学 复合型锰铁基普鲁士蓝材料及其制备方法和应用
CN114749157A (zh) * 2022-05-11 2022-07-15 四川大学 以胶原纤维负载普鲁士蓝类化合物的铯吸附材料及其制备方法与应用
CN115196834A (zh) * 2022-07-22 2022-10-18 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所) 面源污染处理装置、吸附材料及可渗透反应墙的制备方法

Also Published As

Publication number Publication date
CN110090618B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN110090618A (zh) 一种普鲁士蓝/分级多孔炭复合吸附剂及其制备方法和应用
Wu et al. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres
Wu et al. Magnetic metal-organic frameworks (Fe3O4@ ZIF-8) composites for U (VI) and Eu (III) elimination: simultaneously achieve favorable stability and functionality
Sun et al. Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment
Xiong et al. Highly enhanced adsorption performance to uranium (VI) by facile synthesized hydroxyapatite aerogel
Liao et al. Efficient removal of uranium from wastewater using pig manure biochar: understanding adsorption and binding mechanisms
Zhuang et al. Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent
Awual et al. Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents
Lu et al. Spectroscopic and modeling investigation of efficient removal of U (VI) on a novel magnesium silicate/diatomite
Li et al. Fabrication of carboxyl and amino functionalized carbonaceous microspheres and their enhanced adsorption behaviors of U (VI)
CN109589933B (zh) 一种磁性纳米复合材料UiO-66/Fe3O4/GO的制备方法及应用
Xing et al. Adsorptive removal of strontium ions from aqueous solution by graphene oxide
Chen et al. A balance between catalysis and nanoconfinement towards enhanced hydrogen storage performance of NaAlH4
CN111203180A (zh) 一种磁性生物炭复合吸附剂及其制备方法和应用
CN105576217B (zh) 一种三维碳原位包覆的磷酸盐正极材料的制备方法
CN109225134A (zh) 一种针状Fe-Mn-S三元纳米材料负载多孔生物炭复合材料的制备方法
CN104495950A (zh) 一种碳包覆的磁性C/Fe3O4纳米复合材料的制备方法及其应用
CN105709689B (zh) 碳基功能材料及其制备方法
CN106824100A (zh) 一种高效捕获碘的锌‑mof微孔材料及其制备方法与应用
CN113070034A (zh) 一种碘吸附材料及其制备方法
Tao et al. Copper hexacyanoferrate nanoparticle-decorated biochar produced from pomelo peel for cesium removal from aqueous solution
Jiang et al. Structural insight into the alginate derived nano-La (OH) 3/porous carbon composites for highly selective adsorption of phosphate
CN113877517A (zh) 一种用于去除放射性碘的硫化铋气凝胶吸附剂及其制备方法和应用
Luo et al. A dual-MOFs (Fe and Co)/g-C3N4 heterostructure composite for high-efficiently activating peroxymonosulfate in degradation of sertraline in water
CN105854865A (zh) 一种三维多孔结构石墨烯-二氧化铈复合物光催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant