CN110055529A - 一种制备双层陶瓷层的方法 - Google Patents

一种制备双层陶瓷层的方法 Download PDF

Info

Publication number
CN110055529A
CN110055529A CN201910258543.6A CN201910258543A CN110055529A CN 110055529 A CN110055529 A CN 110055529A CN 201910258543 A CN201910258543 A CN 201910258543A CN 110055529 A CN110055529 A CN 110055529A
Authority
CN
China
Prior art keywords
layer
ceramic layer
yttrium
ceramic
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910258543.6A
Other languages
English (en)
Inventor
徐俊阳
李加
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Fortune Precision Equipment Co Ltd
Original Assignee
Shenyang Fortune Precision Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Fortune Precision Equipment Co Ltd filed Critical Shenyang Fortune Precision Equipment Co Ltd
Priority to CN201910258543.6A priority Critical patent/CN110055529A/zh
Publication of CN110055529A publication Critical patent/CN110055529A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明涉及一种制备双层陶瓷层的方法,该技术制备的涂层应用于耐腐蚀的环境。该方法主要包括以下步骤:(1)对需要喷涂的部件进行前处理;(2)采用原子沉积的方法在部件表面沉积一层氧化钇或以钇为基础的薄膜;(3)再采用大气等离子喷涂或悬浮液喷涂技术,制备一层氧化钇或以钇为基础的涂层;(4)喷涂后清洗部件。采用该方法制备的双层陶瓷层,具有多种技术的优点。具有结合力高,致密性高,洁净度高,孔隙率低于1%,涂层硬度高,具有良好综合性能的陶瓷层。

Description

一种制备双层陶瓷层的方法
技术领域
本发明属于用原子层沉积和热喷涂方式制备陶瓷层领域,特别是将该陶瓷层应用于半导体设备领域。
背景技术
随着科学技术的快速发展,越来越多的行业开始重视提高零部件寿命和性能的方法。在半导体领域也是,对零件的使用寿命要求越来越高。在半导体设备中,有很多零件是铝制零部件,在半导体设备工作时,对铝制零部件的要求是高洁净度和高耐腐蚀性。为了提高铝制零部件的寿命,提高其洁净度和耐腐蚀性是一个非常重要的方式。而钇被认为是提高耐腐蚀性的重要元素,而铝制零部件的形状具有多样性、复杂性。单一的等离子喷涂氧化钇涂层,还存在着耐腐蚀性不够,部分零件存在喷涂死角的问题,为了解决这些问题,提高铝制零部件的寿命,需要一种综合的涂层制备方法。
发明内容
本发明的目的在于制备一种双层陶瓷层,主要是采用原子层沉积技术沉积一层氧化钇或以钇为基础的陶瓷薄膜,然后再从大气等离子喷涂技术、大气等离子喷涂结合悬浮液技术、超音速火焰喷涂结合悬浮液技术这三种技术中选择一种技术喷涂氧化钇或以钇为基础的陶瓷涂层。这样制备的双层陶瓷层,可以是原子层沉积氧化钇薄膜再加上热喷涂氧化钇涂层这样的“双层”陶瓷层,虽然是“双层”结构,但实质上都是氧化钇层,只是两个制备技术不同;也可以是原子层沉积氧化钇薄膜(或以钇为基础的薄膜)再加上热喷涂以钇为基础(或氧化钇)的陶瓷涂层,这样的“双层”结构,实质上是两种陶瓷层,两种制备技术;还可以是原子层沉积以钇为基础的薄膜再加上热喷涂以钇为基础的陶瓷涂层,虽然是“双层”结构,但实质上都是以钇为基础的陶瓷层,只是采用两种不同的制备技术。这样的双层陶瓷层的优点是,一方面用原子层沉积陶瓷层,能够解决复杂形状零部件用热喷涂制备涂层时存在死角的问题,能够全方位的覆盖所需要陶瓷层的地方;另一方面制备以钇为基础的陶瓷层,无论在耐腐蚀性还是洁净度方面都有所提高;将两种方法结合,所制备的陶瓷层,由于都含钇元素,其物理性能相似,涂层的结合力也很高。因此,本发明所制备的陶瓷层,具有很好的涂覆性、良好的耐腐蚀性、较高的结合力、较高的洁净度,可以根据所应用的环境,来决定采用哪种双层陶瓷层的制备方法,提高零部件的使用寿命。
为了实现上述目的,本发明采用的技术方案是:
一种制备双层陶瓷层的方法,包括如下步骤:
(1)喷涂前,清洗零件,清洗掉残留的机加屑渣及油污;将不要陶瓷层的区域进行遮挡保护;
(2)用原子层沉积的方法沉积一层氧化钇或以钇为基础的陶瓷薄膜;
(3)再用大气等离子喷涂技术或悬浮液喷涂技术,喷涂一层氧化钇或以钇为基础的陶瓷涂层;
(4)喷涂后,测量陶瓷层厚度,将遮蔽保护去掉,清洗零件,保证零件高洁净度。
所述步骤(1)的清洗可采用化学清洗或者超声波清洗的方法,保证零件干净、干燥;采用软方法遮挡保护,或者遮蔽模块硬方法。
所述步骤(2)中,用原子层沉积制备氧化钇或以钇为基础的陶瓷薄膜,其厚度小于1μm。
所述步骤(3)中的大气等离子喷涂技术或悬浮液喷涂技术,可以是大气等离子喷涂技术,可以是大气等离子喷涂结合悬浮液技术;也可以是超音速火焰喷涂结合悬浮液技术。
所述步骤(4)中,喷涂后,要测量陶瓷层厚度,保证零部件各个部位的陶瓷层厚度均匀,然后去除遮蔽保护,清洗零件。
陶瓷层综合性能良好,该陶瓷层可以用于半导体设备上对零件的耐腐蚀性有要求的关键零部件,还能应用于对耐腐蚀性有要求的领域的部件。
本发明的优点是:
1.本发明采用原子层沉积技术,无论零件的复杂度如何,陶瓷层都能够覆盖,不存在热喷涂有死角的缺陷。
2.本发明制备的陶瓷层,不仅包括氧化钇这种先进的耐腐蚀陶瓷层,还包括以钇为基础的陶瓷层,耐腐蚀性更高。
3.双层陶瓷层可以是同一种陶瓷层,两种不同制备方法;也可以是不同的陶瓷层,两种不同制备方法。根据零部件的要求所选择,通常同一种陶瓷层的洁净度更高。
4.通过原子层沉积技术和热喷涂技术的双重技术叠加,制备所获得的陶瓷层具有更高的结合力、更高的致密性、更好的综合性能。
附图说明
图1为本发明整体结构图。其中,A1为原子层沉积制备的氧化钇或以钇为基础的陶瓷层;A2为大气等离子喷涂或悬浮液喷涂制备的氧化钇或以钇为基础的陶瓷层。
具体实施方式
结合附图1和实例对本发明方案进行详细描述。
(1)喷涂前,清洗零件,将零件机加后所残留的屑渣和油污都去掉,保证零件具有一定的洁净性,将不需要涂层的地方进行遮蔽保护。
(2)先用原子层沉积技术制备一层氧化钇或以钇为基础的陶瓷薄膜,该薄膜厚度小于1μm。确保所有需要有薄膜的地方都被薄膜覆盖。
(3)再从大气等离子喷涂、大气等离子喷涂结合悬浮液技术、超音速火焰喷涂结合悬浮液技术从选择一种喷涂技术喷涂氧化钇或以钇为基础的陶瓷涂层。所采用的粉末或制备悬浮液的粉末采用商用粉末即可,陶瓷涂层的厚度按照零件要求即可。
(4)喷涂后,测量陶瓷层的厚度,若厚度满足要求,去掉遮蔽保护,根据零件的洁净度要求,来选择是否在洁净间清洗。
(5)采用本发明方法制备的双层陶瓷层具有良好的众合性能,涂层的孔隙率小于1%,具有高的结合力,高的耐腐蚀性,高硬度以及高洁净度。
实施例一
首先,用超声波水洗零件,将机加后零件表面残留的屑渣和油污清洗干净,保证零件表面清洁。再用遮蔽胶水将不需要陶瓷层的地方进行遮蔽保护。
其次,采用原子层沉积技术制备氧化钇薄膜(即图1中的A1),制备的氧化钇薄膜厚度小于1μm。
再次,采用大气等离子喷涂技术喷涂氧化钇涂层(即图1中的A2)。选择的商业用高纯氧化钇粉末,粉末纯度是≥99.95%,粉末粒径是-53+15μm左右,喷涂氧化钇涂层,涂层厚度为200-240μm左右,涂层的平均表面粗糙度为260μ-in。
最后,测量零件各部分的氧化钇层厚度,满足图纸要求,去掉遮蔽保护,然后在洁净间进行清洗,获得高洁净度的零件。
实施例二
首先,化学清洗,去除零件表面的油污等杂质,然后用压缩空气将零件吹干,再用遮蔽模块结合遮蔽胶带将不需要陶瓷层的地方进行遮蔽保护。
然后,采用原子层沉积技术制备以钇为基础的薄膜(即图1中的A1),薄膜的厚度为800nm左右
再然后,采用大气等离子喷涂技术结合悬浮液技术喷涂氧化钇悬浮液涂层(即图1中的A2)。选择的商业用高纯氧化钇粉末,粉末纯度是≥99.9%,粉末D50粒径是1.5μm左右,配置悬浮液的液体采用水,粉末浓度在30%左右,喷涂氧化钇悬浮液涂层,涂层厚度为240-280μm左右,涂层的平均表面粗糙度为220μ-in。
最后,测量零件各部分的陶瓷层厚度,满足图纸要求,去掉遮蔽保护,然后在洁净间进行清洗,获得高洁净度的零件。
以上所述仅为本发明的优选实施例而已,并不用于限制本分发明,对于本领域技术人员来说,本发明可能有各种变化和组合。本发明主要用于在各个领域,对耐腐蚀性有要求的零部件,例如在半导体领域,半导体设备刻蚀腔内的一些铝制零部件。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种制备双层陶瓷层的方法,其特征在于,包括如下步骤:
(1)喷涂前,清洗零件,清洗掉残留的机加屑渣及油污;将不要陶瓷层的区域进行遮挡保护;
(2)用原子层沉积的方法沉积一层氧化钇或以钇为基础的陶瓷薄膜;
(3)再用大气等离子喷涂技术或悬浮液喷涂技术,喷涂一层氧化钇或以钇为基础的陶瓷涂层;
(4)喷涂后,测量陶瓷层厚度,将遮蔽保护去掉,清洗零件,保证零件高洁净度。
2.如权利要求1所述的一种制备双层陶瓷层的方法,其特征在于,所述步骤(1)的清洗可采用化学清洗或者超声波清洗的方法,保证零件干净、干燥;采用软方法遮挡保护,或者遮蔽模块硬方法。
3.如权利要求1所述的一种制备双层陶瓷层的方法,其特征在于,所述步骤(2)中,用原子层沉积制备氧化钇或以钇为基础的陶瓷薄膜,其厚度小于1μm。
4.如权利要求1所述的一种制备双层陶瓷层的方法,其特征在于,所述步骤(3)中的大气等离子喷涂技术或悬浮液喷涂技术,可以是大气等离子喷涂技术,可以是大气等离子喷涂结合悬浮液技术;也可以是超音速火焰喷涂结合悬浮液技术。
5.如权利要求1所述的一种制备双层陶瓷层的方法,其特征在于,所述步骤(4)中,喷涂后,要测量陶瓷层厚度,保证零部件各个部位的陶瓷层厚度均匀,然后去除遮蔽保护,清洗零件。
6.如权利要求1所述的一种制备双层陶瓷层的方法,其特征在于,陶瓷层综合性能良好,该陶瓷层可以用于半导体设备上对零件的耐腐蚀性有要求的关键零部件,还能应用于对耐腐蚀性有要求的领域的部件。
CN201910258543.6A 2019-04-01 2019-04-01 一种制备双层陶瓷层的方法 Pending CN110055529A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910258543.6A CN110055529A (zh) 2019-04-01 2019-04-01 一种制备双层陶瓷层的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910258543.6A CN110055529A (zh) 2019-04-01 2019-04-01 一种制备双层陶瓷层的方法

Publications (1)

Publication Number Publication Date
CN110055529A true CN110055529A (zh) 2019-07-26

Family

ID=67318063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910258543.6A Pending CN110055529A (zh) 2019-04-01 2019-04-01 一种制备双层陶瓷层的方法

Country Status (1)

Country Link
CN (1) CN110055529A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534565B2 (ja) * 2004-04-16 2010-09-01 株式会社デンソー セラミック多孔質の製造方法
CN107615462A (zh) * 2015-02-13 2018-01-19 恩特格里斯公司 用于增强衬底制品及装置的性质及性能的涂层
CN108878246A (zh) * 2017-05-10 2018-11-23 应用材料公司 用于腔室部件的多层等离子体侵蚀保护

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4534565B2 (ja) * 2004-04-16 2010-09-01 株式会社デンソー セラミック多孔質の製造方法
CN107615462A (zh) * 2015-02-13 2018-01-19 恩特格里斯公司 用于增强衬底制品及装置的性质及性能的涂层
CN108878246A (zh) * 2017-05-10 2018-11-23 应用材料公司 用于腔室部件的多层等离子体侵蚀保护

Similar Documents

Publication Publication Date Title
JP6976215B2 (ja) チャンバコンポーネント用多層プラズマ腐食防護
JP7035005B2 (ja) 高度なデバイスのウェハ上の粒子性能に対して化学的適合性のあるコーティング材料
US11578398B2 (en) Plasma spray coating design using phase and stress control
US20180366302A1 (en) Coating architecture for plasma sprayed chamber components
JP4813115B2 (ja) 半導体製造装置用部材及びその洗浄方法
JP6312278B2 (ja) 半導体チャンバ構成要素のための放射率を調節したコーティング
KR101773510B1 (ko) 반도체 적용을 위한 희토류 옥사이드 기반 내침식성 코팅 방법 및 물품
US20180135157A1 (en) Plasma resistant coating film and fabricating method thereof
JP7460626B2 (ja) 処理チャンバの耐食性接地シールド
KR20170003519A (ko) 플라즈마 내성 세라믹 코팅의 슬러리 플라즈마 스프레이
WO2015031157A1 (en) Anodization architecture for electro-plate adhesion
CN109468575A (zh) 一种应用于半导体领域的氧化钇涂层的制备方法
JP2017179606A (ja) プライマー薄膜を含む構造体及び該構造体の製造方法
TW201833060A (zh) 用於半導體腔室應用之陶瓷塗層之溶液前驅物電漿噴塗
CN109355612A (zh) 一种用大气等离子喷涂制备氧化钇涂层的方法
CN110055529A (zh) 一种制备双层陶瓷层的方法
CN109877012A (zh) 一种制备高致密氧化钇涂层的方法
JP4879002B2 (ja) 半導体製造装置用部材
CN116356319A (zh) 一种高致密耐腐蚀高洁净的复合镀层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No.18a-1, Feiyun Road, Hunnan District, Shenyang City, Liaoning Province

Applicant after: Shenyang fuchuang precision equipment Co.,Ltd.

Address before: No.18a-1, Feiyun Road, Dongling District, Shenyang, Liaoning Province, 110000

Applicant before: Shenyang Fortune Precision Equipment Co.,Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20190726

RJ01 Rejection of invention patent application after publication