CN110041415B - 莴苣基因rll4在控制莴苣叶片颜色中的应用 - Google Patents

莴苣基因rll4在控制莴苣叶片颜色中的应用 Download PDF

Info

Publication number
CN110041415B
CN110041415B CN201811210105.4A CN201811210105A CN110041415B CN 110041415 B CN110041415 B CN 110041415B CN 201811210105 A CN201811210105 A CN 201811210105A CN 110041415 B CN110041415 B CN 110041415B
Authority
CN
China
Prior art keywords
lettuce
gene
gly
val
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811210105.4A
Other languages
English (en)
Other versions
CN110041415A (zh
Inventor
陈炯炯
贺淑萍
匡汉晖
刘文叶
陶蓉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201811210105.4A priority Critical patent/CN110041415B/zh
Publication of CN110041415A publication Critical patent/CN110041415A/zh
Application granted granted Critical
Publication of CN110041415B publication Critical patent/CN110041415B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/825Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving pigment biosynthesis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Plant Pathology (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明属于植物基因工程技术领域。具体公开了莴苣基因RLL4在控制莴苣叶片颜色中的应用。该基因在调节莴苣叶片红色深浅方面具有显著功能,可以在莴苣叶色深浅方面进行应用。RLL4基因的发现,为培育不同红色深浅的莴苣提供新的基因资源,有利于培育新的可食性观赏植物品种。

Description

莴苣基因RLL4在控制莴苣叶片颜色中的应用
技术领域
本发明属于植物工程技术领域。特别是涉及莴苣基因RLL4在控制莴苣叶片颜色中的应用。
背景技术
莴苣(Lactuca sativa)是世界上重要的蔬菜之一。莴苣基因组测序已经完成,基因组较大(约2.7Gb),其中74.2%为重复序列。虽然测序完成,但是许多基因的功能未知。生菜是叶用莴苣中的俗称,由于红色生菜中的花青素具有抗氧化、抗癌和抗衰老作用,红色生菜越来越受到消费者的青睐。花青素合成途径中的结构基因在拟南芥及其它植物中已经研究的非常清楚,而花青素合成途径中调控基因对花青素的合成至关重要且具有物种特异性。在红色生菜中,存在多个未知的花青素调控基因,它们遗传和分子机理还不清楚,大大阻碍了花青素调控基因资源的利用。
申请人发现生菜中控制叶片红色深浅性状为一个未报道的控制颜色性状,其遗传规律未被解析,控制生菜红色的基因也未被克隆,该基因功能还未被研究过。因此,对控制生菜红色性状的新基因RLL4的功能研究对解析生菜中红色深浅性状的产生有重要意义。
发明内容
本发明的目的在于提供了莴苣基因RLL4在控制莴苣叶片颜色中的应用,申请人经过遗传分析,莴苣叶片的红色性状为单基因控制,所述基因的序列为SEQ ID NO.1所示,对应的氨基酸序列为SEQ ID NO.2所示,该基因负调控莴苣叶片红色的形成。
为了达到上述目的,本发明采取以下技术措施:
申请人通过利用绿色生菜与红色生菜重组自交系(RIL)群体F4代植株中筛选到浅红和深红Q54分离群体,联合BSR-seq和传统定位方法,分析定位区段的差异表达基因并进行基因功能注释,最终获得了基因RLL4。RLL4基因在深红色生菜中的一个点突变导致了氨基酸的改变。它们的基因序列如序列表SEQ ID NO:1所示,包括1119个碱基,它的蛋白序列表如SEQ ID NO:2所示,编码372氨基酸。
莴苣基因RLL4在控制莴苣叶片颜色中的应用,利用本领域的常规方式,将RLL4基因(SEQ ID NO:1所示)在莴苣中超量表达,可以显著的使莴苣叶片红色变浅;或是将RLL4基因沉默,可使莴苣叶片的红色加深。该基因可以用于莴苣的遗传改良以及进行新品种培育的应用。
以上所述的应用中,优选的,所述的莴苣为生菜。
与现有技术相比,本发明具有以下优点:
本发明首次公开RLL4基因的功能,该基因在莴苣红色深浅形成上具有极其重要的功能,对于了解其如何参与花青素代谢途径有着重要的理论意义。此外,该基因未见在莴苣研究的报道,可为莴苣叶色改良品种提供新的基因资源,有利于培育新的不同红色莴苣品种。
附图说明
图1为转基因生菜阳性检测PCR扩增图。
图2为转基因生菜与野生型生菜的叶片颜色对比图。
具体实施方式
以下结合具体实施例对本发明做出更详细的描述。根据以下的描述和这些实施例,本领域技术人员可以确定本发明的基本特征,并且在不偏离本发明精神和范围的情况下,可以对本发明做出各种改变和修改,以使其适用各种用途和条件。本发明所述技术方案,如未特别说明,均为本领域的常规方案;所述试剂或材料,如未特别说明,均来源于商业渠道。
实施例1:
RLL4基因的精确定位
本发明中以绿色生菜为母本,以红色生菜为父本进行杂交,选真杂种F1植株自交并收获F2代种子,随后采用单粒传代获得114个F4代家系。筛选F4代114个家系,发现32个家系存在叶片颜色分离,其中Q54家系颜色存在深红和浅红分离。在四片真叶时期,Q54群体270株单株叶片颜色有明显分离。观察和统计表型,其叶色深浅的分离比为195:75(浅红:深红)≈3:1(P>0.05)。
采用极端混池BSA与第二代测序RNA-seq相结合的方法(Zou et al.,2016),快速初定位叶色调控基因。挑选35株深红,在4片真叶期取等量新叶混合成深红池;用同样的方法,取30株浅红叶片混合成浅红池。将去除低质量的数据和接头后得到的RNA-seq数据利用Hisat2软件(Kim et al.,2015)回贴到生菜参考基因组上(Reyes-Chin-Wo et al.,2017)。利用SAMtools软件(Li et al.,2009)获得两个池中的单核苷酸多态性(singlenucleotide polymorphism,SNP)位点。分别计算两个池等位基因的SNP频率,用浅红池的SNP频率减去深红池的SNP频率,获得每个等位基因SNP位点的频率差异,即delta(SNP-index)(Takagi et al.,2013)。利用滑动窗口算法计算这些delta,得到平均delta值(3Mb为窗口大小,1Mb为步长)。以染色体位置为横坐标,平均delta值为纵坐标作散点图,鉴定delta值明显升高的区域,分布在9号染色体63~69Mb区域。进一步通过分子标记,将RLL4基因定位在wd03(63.898Mb)和wd13(64.310Mb)之间,即63.898Mb~64.310Mb范围内,约411.76Kb。随后扩大种植约3,100株Q54群体,开发新的标记,将目标基因精细定位于分子标记wd03(63.898Mb)和分子标记wd12(64.256Mb)之间,即9号染色体63.898Mb~64.256Mb之间,约357.5Kb。
对定位区段进行分析和功能预测,基因表达量结合序列分析,最终确定编码WD40转录因子的RLL4为候选基因。该基因在两个亲本之间存在一个碱基的变化,导致保守区段氨基酸编码发生改变(V134D)。其中绿色生菜中所述基因的核苷酸序列为SEQ ID NO.1所示,对应的氨基酸序列为SEQ ID NO.2所示。红色生菜中所述基因的核苷酸序列为SEQ IDNO.3所示,对应的氨基酸序列为SEQ ID NO.4所示
实施例2:
基因RLL4在制备控制生菜叶片颜色中的应用:
利用设计的RLL4基因的特异引物LsWD40-OVERGFP-R:cccggggtcgacgggcatatgagttaacggttttctttttccgg和LsWD40-OVERGFP-F:caagttcttcactgttgatacatatgatgaaaaacgtctcatttcaatcag),用Phanta Super-Fidelity DNA Polymerase酶(购自Vazyme公司)从绿色生菜材料中扩增RLL4基因的CDS序列,将扩增产物同源重组(Vazyme公司)到NdeI酶切的超量表达载体pRI101载体上(构建流程参考Vazyme公司的ClonExpress TM II说明书),转化大肠杆菌Trans1-T1(购自全式金公司)筛选阳性克隆。采用农杆菌介导的方法转化,农杆菌菌株为超毒力菌株GV3101(购自上海唯地公司)。该载体由35S启动子驱动,选择标记基因为卡那霉素(Kan)。转基因的受体为深红的商品种改良红皱紫红生菜(购买于寿光华诺种业)。
本发明遗传转化的主要步骤、培养基如下所述:
生菜种子用84消毒液浸泡15min,浸泡完成后用无菌水冲洗3~4次,每次1~2min,将消毒清洗后的种子摆放在铺有一层湿润滤纸的灭菌9cm培养皿中,置于温度25℃,光照长度16h/d,光照强度2000lx的培养室中培养。
切取发芽后4d的子叶放在含有0.5mg·L-1KT+0.05mg·L-1NAA的MS培养基(Lee etal.,2007)中(MS盐4.43g·L-1+蔗糖30g·L-1+琼脂7g·L-1+6-BA 0.1mg·L-1+NAA0.1mg·L-1,pH 5.8)黑暗条件预培养1~2天。农杆菌划线活化,摇菌至OD 1.0-2.0,8000g离心5min收集菌体,用10倍体积MS液体培养基重悬,浸染5min后将菌液倒出,在滤纸吸干叶片表面多余的菌液。黑暗25℃,共培养40h,放入含有60mg·L-1卡那霉素+300mg·L-1特美汀分化培养基(0.5mg·L-1KT+0.05mg·L-1NAA的MS培养基)上,2周继代一次,继代2-3次后,切取含生长点的正常苗进行生根(1/2MS培养基+0.05mg·L-1NAA+300mg·L-1特美汀)。
获得的转基因植株采用引物pRI101F+R(pRI101F:ACTGACGTAAGGGATGACGC和pRI101R:GCTGAACTTGTGGCCGTTTA)引物进行阳性检测,(能扩增出条带,为阳性苗)确认有6株为阳性的转基因植株(图1)。对转基因植株表型进行观察后发现,转基因生菜植株的叶片红色相对转基因阴性植株(WT)变浅(图2),转基因生菜植株的叶片几乎变成了绿色。实验结果证明,RLL4基因,具有控制生菜叶片颜色的功能。
序列表
<110> 华中农业大学
<120> 莴苣基因RLL4在控制莴苣叶片颜色中的应用
<160> 4
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1119
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
atgaaaaacg tctcatttca atcagaacaa acccatccaa acccaccacc actagatccc 60
gatcaagagg atagatcgac gtcagcgacg aagtttgagt gggatttttc cgtctccgcc 120
gtggtttcat cctccgttgc cggtggaaac atctcggaca ctctcggcgt cgtagaggtt 180
aactcctccg gaaatctctt tgccaccggc ggtatagcta ggaagatcag agtttatagc 240
ttgaattcat tgctatcatc aagtagtcta gaggcaacat tgtttgacca tgctactgca 300
tgccattatt gcatatgtac cccagcaaaa ctcagcagcc tcaaatggaa acccggctcc 360
ggaagccagg tcatgggatc agccgactac gacggtgttg tcacggagta cgatcttgag 420
accaagatgc cggtttacga gcgtgacgaa cacagcggcc ggcgggtttg gagcatggac 480
tactcccact gggatccggt ggtcggagca tccggtgccg atgacggaac catgcaaatg 540
tgggacccgc gccatgatgg tgggaaatgt gtggctaaag tggtgttagg gagcccagtt 600
tgttgtgtgg agttcaaccc gtttggtggc gcattggtag ccgttggatg tgcagatcga 660
aaagcctacg tttacgatgt gaggaaaatc gttgacccgg tagcggtgtt tgatgggcat 720
cagaggacgg taagttacac gagattcctg gatgatcaca cggtggtgac gtccggcaca 780
gatgggtgtt tgaagatgtg ggacatagag aagcaacaca tgattcgcac gtataaaggg 840
cacacaaacc aaagaaggtt tgtgggatta tccatttgga gaaatcaagg attgattgga 900
tgtgggtctg agagcaacca gttgtttgta tatgataaga ggtggggtga acccatatgg 960
gtgcatgggt tcgaaccaga gggtggaaga aggtatgaag atgggttcgt gagtagcata 1020
tgttggagcc aagagggtga agatgagtgc acgttggtgg gtggtggttc cgatggagtt 1080
gtaaagattt tttccggaaa aagaaaaccg ttaacttaa 1119
<210> 2
<211> 372
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Lys Asn Val Ser Phe Gln Ser Glu Gln Thr His Pro Asn Pro Pro
1 5 10 15
Pro Leu Asp Pro Asp Gln Glu Asp Arg Ser Thr Ser Ala Thr Lys Phe
20 25 30
Glu Trp Asp Phe Ser Val Ser Ala Val Val Ser Ser Ser Val Ala Gly
35 40 45
Gly Asn Ile Ser Asp Thr Leu Gly Val Val Glu Val Asn Ser Ser Gly
50 55 60
Asn Leu Phe Ala Thr Gly Gly Ile Ala Arg Lys Ile Arg Val Tyr Ser
65 70 75 80
Leu Asn Ser Leu Leu Ser Ser Ser Ser Leu Glu Ala Thr Leu Phe Asp
85 90 95
His Ala Thr Ala Cys His Tyr Cys Ile Cys Thr Pro Ala Lys Leu Ser
100 105 110
Ser Leu Lys Trp Lys Pro Gly Ser Gly Ser Gln Val Met Gly Ser Ala
115 120 125
Asp Tyr Asp Gly Val Val Thr Glu Tyr Asp Leu Glu Thr Lys Met Pro
130 135 140
Val Tyr Glu Arg Asp Glu His Ser Gly Arg Arg Val Trp Ser Met Asp
145 150 155 160
Tyr Ser His Trp Asp Pro Val Val Gly Ala Ser Gly Ala Asp Asp Gly
165 170 175
Thr Met Gln Met Trp Asp Pro Arg His Asp Gly Gly Lys Cys Val Ala
180 185 190
Lys Val Val Leu Gly Ser Pro Val Cys Cys Val Glu Phe Asn Pro Phe
195 200 205
Gly Gly Ala Leu Val Ala Val Gly Cys Ala Asp Arg Lys Ala Tyr Val
210 215 220
Tyr Asp Val Arg Lys Ile Val Asp Pro Val Ala Val Phe Asp Gly His
225 230 235 240
Gln Arg Thr Val Ser Tyr Thr Arg Phe Leu Asp Asp His Thr Val Val
245 250 255
Thr Ser Gly Thr Asp Gly Cys Leu Lys Met Trp Asp Ile Glu Lys Gln
260 265 270
His Met Ile Arg Thr Tyr Lys Gly His Thr Asn Gln Arg Arg Phe Val
275 280 285
Gly Leu Ser Ile Trp Arg Asn Gln Gly Leu Ile Gly Cys Gly Ser Glu
290 295 300
Ser Asn Gln Leu Phe Val Tyr Asp Lys Arg Trp Gly Glu Pro Ile Trp
305 310 315 320
Val His Gly Phe Glu Pro Glu Gly Gly Arg Arg Tyr Glu Asp Gly Phe
325 330 335
Val Ser Ser Ile Cys Trp Ser Gln Glu Gly Glu Asp Glu Cys Thr Leu
340 345 350
Val Gly Gly Gly Ser Asp Gly Val Val Lys Ile Phe Ser Gly Lys Arg
355 360 365
Lys Pro Leu Thr
370
<210> 3
<211> 1119
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 3
atgaaaaacg tctcatttca atcagaacaa acccatccaa acccaccacc actagatccc 60
gatcaagagg atagatcgac gtcagcgacg aagtttgagt gggatttttc cgtctccgcc 120
gtggtttcat cctccgttgc cggtggaaac atctcggaca ctctcggcgt cgtagaggtt 180
aactcctccg gaaatctctt tgccaccggc ggtatagcta ggaagatcag agtttatagc 240
ttgaattcat tgctatcatc aagtagtcta gaggcaacat tgtttgacca tgctactgca 300
tgccattatt gcatatgtac cccagcaaaa ctcagcagcc tcaaatggaa acccggctcc 360
ggaagccagg tcatgggatc agccgactac gacggtgttg acacggagta cgatcttgag 420
accaagatgc cggtttacga gcgtgacgaa cacagcggcc ggcgggtttg gagcatggac 480
tactcccact gggatccggt ggtcggagca tccggtgccg atgacggaac catgcaaatg 540
tgggacccgc ggcatgatgg tgggaaatgt gtggctaaag tggtgttagg gagcccagtt 600
tgttgtgtgg agttcaaccc gtttggtggc gcattggtag ccgttggatg tgcagatcga 660
aaagcctacg tttacgatgt gaggaaaatc gttgacccgg tagcggtgtt tgatgggcat 720
cagaggacgg taagttacac gagattcctg gatgatcaca cggtggtgac gtccggcaca 780
gatgggtgtt tgaagatgtg ggacatagag aagcaacaca tgattcgcac gtataaaggg 840
cacacaaacc aaagaaggtt tgtgggatta tccatttgga gaaatcaagg attgattgga 900
tgtgggtctg agagcaacca gttgtttgta tatgataaga ggtggggtga acccatatgg 960
gtgcatgggt tcgaaccaga gggtggaaga aggtatgaag atgggttcgt gagtagcata 1020
tgttggagcc aagagggtga agatgagtgc acgttggtgg gtggtggttc cgatggagtt 1080
gtaaagattt tttccggaaa aagaaaaccg ttaacttaa 1119
<210> 4
<211> 372
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Lys Asn Val Ser Phe Gln Ser Glu Gln Thr His Pro Asn Pro Pro
1 5 10 15
Pro Leu Asp Pro Asp Gln Glu Asp Arg Ser Thr Ser Ala Thr Lys Phe
20 25 30
Glu Trp Asp Phe Ser Val Ser Ala Val Val Ser Ser Ser Val Ala Gly
35 40 45
Gly Asn Ile Ser Asp Thr Leu Gly Val Val Glu Val Asn Ser Ser Gly
50 55 60
Asn Leu Phe Ala Thr Gly Gly Ile Ala Arg Lys Ile Arg Val Tyr Ser
65 70 75 80
Leu Asn Ser Leu Leu Ser Ser Ser Ser Leu Glu Ala Thr Leu Phe Asp
85 90 95
His Ala Thr Ala Cys His Tyr Cys Ile Cys Thr Pro Ala Lys Leu Ser
100 105 110
Ser Leu Lys Trp Lys Pro Gly Ser Gly Ser Gln Val Met Gly Ser Ala
115 120 125
Asp Tyr Asp Gly Val Asp Thr Glu Tyr Asp Leu Glu Thr Lys Met Pro
130 135 140
Val Tyr Glu Arg Asp Glu His Ser Gly Arg Arg Val Trp Ser Met Asp
145 150 155 160
Tyr Ser His Trp Asp Pro Val Val Gly Ala Ser Gly Ala Asp Asp Gly
165 170 175
Thr Met Gln Met Trp Asp Pro Arg His Asp Gly Gly Lys Cys Val Ala
180 185 190
Lys Val Val Leu Gly Ser Pro Val Cys Cys Val Glu Phe Asn Pro Phe
195 200 205
Gly Gly Ala Leu Val Ala Val Gly Cys Ala Asp Arg Lys Ala Tyr Val
210 215 220
Tyr Asp Val Arg Lys Ile Val Asp Pro Val Ala Val Phe Asp Gly His
225 230 235 240
Gln Arg Thr Val Ser Tyr Thr Arg Phe Leu Asp Asp His Thr Val Val
245 250 255
Thr Ser Gly Thr Asp Gly Cys Leu Lys Met Trp Asp Ile Glu Lys Gln
260 265 270
His Met Ile Arg Thr Tyr Lys Gly His Thr Asn Gln Arg Arg Phe Val
275 280 285
Gly Leu Ser Ile Trp Arg Asn Gln Gly Leu Ile Gly Cys Gly Ser Glu
290 295 300
Ser Asn Gln Leu Phe Val Tyr Asp Lys Arg Trp Gly Glu Pro Ile Trp
305 310 315 320
Val His Gly Phe Glu Pro Glu Gly Gly Arg Arg Tyr Glu Asp Gly Phe
325 330 335
Val Ser Ser Ile Cys Trp Ser Gln Glu Gly Glu Asp Glu Cys Thr Leu
340 345 350
Val Gly Gly Gly Ser Asp Gly Val Val Lys Ile Phe Ser Gly Lys Arg
355 360 365
Lys Pro Leu Thr
370

Claims (1)

1.一种控制生菜颜色的方法,其步骤包括:利用设计的RLL4基因的特异引物LsWD40-OVER GFP-R:cccggggtcgacgggcatatgagttaacggttttctttttccgg和LsWD40-OVERGFP-F:caagttcttcactgttgatacatatgatgaaaaacgtctcatttcaatcag,用Phanta Super-Fidelity DNAPolyme rase酶从绿色生菜材料中扩增RLL4基因的CDS序列,将扩增产物同源重组到NdeI酶切的超量表达载体pRI101载体上,转化大肠杆菌Trans1-T1筛选阳性克隆;采用农杆菌介导的方法转化,农杆菌菌株为超毒力菌株GV3101,转基因的受体为深红的商品种改良红皱紫红生菜,转化后的生菜的叶片的红色变浅;所述的RLL4基因的CDS序列为SEQ ID NO.1所示。
CN201811210105.4A 2018-10-17 2018-10-17 莴苣基因rll4在控制莴苣叶片颜色中的应用 Expired - Fee Related CN110041415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811210105.4A CN110041415B (zh) 2018-10-17 2018-10-17 莴苣基因rll4在控制莴苣叶片颜色中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811210105.4A CN110041415B (zh) 2018-10-17 2018-10-17 莴苣基因rll4在控制莴苣叶片颜色中的应用

Publications (2)

Publication Number Publication Date
CN110041415A CN110041415A (zh) 2019-07-23
CN110041415B true CN110041415B (zh) 2020-12-01

Family

ID=67273219

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811210105.4A Expired - Fee Related CN110041415B (zh) 2018-10-17 2018-10-17 莴苣基因rll4在控制莴苣叶片颜色中的应用

Country Status (1)

Country Link
CN (1) CN110041415B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724218B (zh) * 2021-01-28 2022-04-22 华中农业大学 一种分离的莴苣Tr基因及其在控制莴苣对嗪胺灵过敏反应中的应用
CN114540371B (zh) * 2022-03-04 2023-10-17 华中农业大学 莴苣LsNRL4基因在控制莴苣叶绿色深浅和叶夹角性状中的应用
CN114703216B (zh) * 2022-03-16 2023-04-28 华中农业大学 莴苣LsWOX3L基因在控制莴苣刺有无性状中的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2488010T3 (en) * 2009-10-16 2018-03-05 Agriculture Victoria Serv Pty MANIPULATION OF THE FLAVONOID BIOSYNTHS ROAD

Also Published As

Publication number Publication date
CN110041415A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
US11578336B2 (en) Tobacco plant and method for manufacturing same
JP5850475B2 (ja) カドミウム吸収制御遺伝子、タンパク質、及びカドミウム吸収抑制イネ
CN110041415B (zh) 莴苣基因rll4在控制莴苣叶片颜色中的应用
JP5791049B2 (ja) 植物の深根性を制御する遺伝子Dro1とその利用
US11591610B2 (en) Tobacco plant and production method thereof
CN114071993B (zh) 栽培马铃薯的自交亲和性
CN114990139B (zh) CsHLS1基因或其编码的蛋白在调控黄瓜植株器官大小中的应用
CN111909941B (zh) 一种百合转录因子基因LrWRKY-L1及应用
CN109721649B (zh) 一种水稻株型调控相关基因、蛋白质与应用
CN112011547B (zh) 一种控制油菜叶形的主效基因及其应用
KR20110109063A (ko) 벼의 분질배유 유전자 FLO(a)와 분자마커 및 유전자 부위 정밀유전자지도
AU2007258877B2 (en) Plants with increased tolerance to water deficit
US11591606B2 (en) Tobacco plant and production method thereof
CN114717241B (zh) 一种水稻耐盐相关基因OsMSRFP及其编码蛋白质和应用
CN113957082B (zh) 一种低温下保护水稻叶绿体发育基因tsa及其编码蛋白质和应用
CN109456396A (zh) 一种水稻叶片衰老和穗型调控基因hk73及其编码的蛋白质、分子标记与应用
CN115074381A (zh) 调节禾本科植物株高或生物量性状的方法及应用
CN110229801B (zh) 一种控制水稻叶片衰老的基因及其编码的蛋白质
CN113999855B (zh) 一种水稻叶色调控基因mOsFC2及应用
CN114164291B (zh) 水稻粒长基因gl10等位基因的应用
CN112391403B (zh) Tgw10基因在用于改良农作物粒型性状中的应用
CN117327674A (zh) 大豆抗旱性基因及其编码的蛋白和应用
US20220090114A1 (en) Soybean Transgenic Event IND-00410-5
CN112877340A (zh) 一种水稻基因gsnl4及其编码的蛋白质的应用
CN117305344A (zh) 基因BnaSPL7在独脚金内酯生物合成以及培育转基因植物中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201201

Termination date: 20211017

CF01 Termination of patent right due to non-payment of annual fee