CN110041262B - 氮杂环卡宾配体及其钌催化剂、制备方法和应用 - Google Patents

氮杂环卡宾配体及其钌催化剂、制备方法和应用 Download PDF

Info

Publication number
CN110041262B
CN110041262B CN201910002812.2A CN201910002812A CN110041262B CN 110041262 B CN110041262 B CN 110041262B CN 201910002812 A CN201910002812 A CN 201910002812A CN 110041262 B CN110041262 B CN 110041262B
Authority
CN
China
Prior art keywords
formula
group
catalyst
reaction
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910002812.2A
Other languages
English (en)
Other versions
CN110041262A (zh
Inventor
陈建新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Premier new materials (Chengdu) Co.,Ltd.
Original Assignee
Chengdu Kaimei Business Information Consulting Center (limited Partnership)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Kaimei Business Information Consulting Center (limited Partnership) filed Critical Chengdu Kaimei Business Information Consulting Center (limited Partnership)
Priority to CN201910002812.2A priority Critical patent/CN110041262B/zh
Publication of CN110041262A publication Critical patent/CN110041262A/zh
Priority to US17/420,409 priority patent/US12023661B2/en
Priority to PCT/CN2019/101411 priority patent/WO2020140441A1/zh
Application granted granted Critical
Publication of CN110041262B publication Critical patent/CN110041262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2278Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/06Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D233/08Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms
    • C07D233/12Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms with alkyl radicals, containing more than four carbon atoms, directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D233/16Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • B01J2231/543Metathesis reactions, e.g. olefin metathesis alkene metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • B01J2531/0233Aza-Cp ligands, i.e. [CnN(5-n)Rn]- in which n is 0-4 and R is H or hydrocarbyl, or analogous condensed ring systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0286Complexes comprising ligands or other components characterized by their function
    • B01J2531/0288Sterically demanding or shielding ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/40Non-coordinating groups comprising nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/60Groups characterized by their function
    • B01J2540/62Activating groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/60Groups characterized by their function
    • B01J2540/64Solubility enhancing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3321Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclopentene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及氮杂环卡宾配体及其钌催化剂、制备方法及其应用。所述的氮杂环卡宾配体结构分别如式Ⅰa和Ⅰb所示,相应的钌催化剂结构分别如Ⅱa和Ⅱb所示。在该氮杂环卡宾配体结构中同时引入了大位阻及富电子基团后,显著提高了其钌络合物催化剂的催化活性、稳定性及应用范围。
Figure DDA0001934305150000011

Description

氮杂环卡宾配体及其钌催化剂、制备方法和应用
技术领域
本发明涉及一种氮杂环卡宾(NHC)配体的结构及其钌络合物催化剂和用途。
背景技术
对钌络合物催化剂(特别是Grubbs催化剂)的研究和开发及其在烯烃异位复分解(Metathesis)和氢化反应中的催化作用,在该领域中引起了广泛的关注。特别是分子内关环的烯烃易位复分解反应在全球有机药物领域得到了越来越广泛的应用;而聚合反应中的烯烃易位复分解反应在新材料等领域具有重要的用途。
第二代Grubbs催化剂由于在钌金属上接入比膦配体具有更强给电子能力和更高稳定性的氮杂环卡宾(NHC)配体,较第一代催化剂而言可具有更高的活性和选择性,而且稳定性也有所提高。Hoveyda研究小组在Grubbs催化剂中引入具有较大体积的亲核性络合物配体形成H-G催化剂,可以起到提高催化剂热稳定性的作用;Zhan科研小组又通过改变Hoveyda络合物配体的取代基,引入氨基磺酰基、硝基、羰基等吸电子取代基得到系列催化剂,进一步提高了钌络合物催化剂的活性。
Figure BDA0001934305130000011
目前对N-杂环卡宾(NHC)配体的研究发现,其结构和电子效应对催化剂的性能有直接的影响。通常情况下,增大咪唑环氮上取代基的空间效应(Angew.Chem.Int.Ed.2010,49,6940–6952.)和增加氮杂环卡宾的给电子能力(Chem.Soc.Rev.2011,40,5151-5169;)都有利于增强催化剂的活性和稳定性。
虽然,Hans-Jorg Schanz小组据此对H-G催化剂的结构进行了修饰,将H-G中氮杂环卡宾的咪唑环氮原子芳环取代基的4-位甲基换作给电子能力更强的二甲氨基得到催化剂ITap,进行烯烃复分解反应,与H-G催化剂进行活性对比。催化环辛烯(COE)发生ROMP(即开环聚合易位复分解)时,催化剂ITap活性更高;当催化二烯丙基丙二酸二甲酯(DEDAM)发生RCM(分子内关环易位复分解)时,H-G催化剂活性更高,也就是说针对不同类型的烯烃复分解反应,二者表现出不同的活性(Dalton Trans.,2008,5791–5799)。但这些催化剂仍存在催化活性、稳定性不够理想,在较高的温度下易发生分解等问题。
发明内容
鉴于此,本发明为解决上述现有催化剂的不足,提出了一种新结构形式的氮杂环卡宾(NHC)配体的结构及其钌络合物催化剂和用途。
本发明所述的氮杂环卡宾配体的结构,分别如式Ⅰa和Ⅰb所示:
Figure BDA0001934305130000021
式中:R1、R2、R5、R6各自独立地选自C1-C20烷基或环烷基、C1-C20烷氧基、C6-C20的芳基,或者R1和R2、和/或R5和R6各自与其所连接的N形成的杂环基;
R3、R4各自独立地选自取代或无取代的C6-C20芳基、取代或无取代的C6-C20芳氧基、取代或无取代的C2-C20杂环芳基,其中所述取代的基团为至少一个的C1-C10烷基、C1-C10烷氧基、羟基、硫羟基、醚基、硫醚基、酮基、醛基、酯基、胺基、亚胺基、酰胺基、硝基基、羧基、二硫化物基、碳酸酯基、异氰酸酯基、碳二亚胺基、烷氧羰基、氨基甲酸酯基或卤素。
作为在上述结构中所述式Ⅰa和/或式Ⅰb的一种优选形式是,式中的R3、R4各自独立地选自C6-C20芳基、C6-C20芳氧基、C2-C20杂环芳基。
所述式Ⅰa和/或Ⅰb中R3、R4的进一步优选形式,是各自独立地选自C6-C20芳基。
进一步,本发明上述式Ⅰa结构氮杂环卡宾配体中,优选的为式Ⅰaa、式Ⅰab、式Ⅰac或式Ⅰad所示的结构;更好的是式Ⅰaa所示的结构:
Figure BDA0001934305130000022
Figure BDA0001934305130000031
式Ⅰb结构氮杂环卡宾配体的优选结构如式Ⅰba所示:
Figure BDA0001934305130000032
本发明所述的具有上述氮杂环卡宾配体结构的钌络合物催化剂,结构分别如式Ⅱa和Ⅱb所示:
Figure BDA0001934305130000033
式中:R1、R2、R5、R6各自独立地选自C1-C20烷基或环烷基、C1-C20烷氧基、C6-C20的芳基,或者R1和R2和/或R5和R6各自与其所连接的N形成的杂环基;
R3、R4各自独立地选自取代或无取代的C6-C20芳基、取代或无取代的C6-C20芳氧基、取代或无取代的C2-C20杂环芳基,其中所述取代的基团为至少一个的C1-C10烷基、C1-C10烷氧基、羟基、硫羟基、醚基、硫醚基、酮基、醛基、酯基、胺基、亚胺基、酰胺基、硝基基、羧基、二硫化物基、碳酸酯基、异氰酸酯基、碳二亚胺基、烷氧羰基、氨基甲酸酯基或卤素;
R7为H、C1-C15烷基、C1-C15烷氧基、C1-C15硫醚基、C1-C15硅烷基、C1-C15硅氧基、C6-C15芳基、C6-C15芳氧基、C6-C15杂环芳基、C2-C15杂环基、亚砜基、砜基、C1-C15羰基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基、C1-C15磺酰胺基;
R8为选自H、F、Cl、Br、硝基、腈基、甲醛基、C1-C15氨基磺酰基(R2NSO2-)、C1-C15氨基羰基(R2NCO-)、C1-C15羰基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基或C1-C15磺酰胺基;
X1和X2为Cl或RCOO-,其中的R为C1-C20的烷基;
Y为氧、硫、氮或磷。
作为上述催化剂中的优选形式,可以包括:
所述式Ⅱa和/或Ⅱb中的X1和/或X2为氯,Y为氧;和/或
所述式Ⅱa和/或Ⅱb中的R7为异丙基或异丁基;和/或
所述式Ⅱa和/或Ⅱb中的R8为H、硝基、C1-C15氨基磺酰基。
本发明上述式Ⅱa结构钌催化剂的优选结构,如式Ⅱaa1、式Ⅱaa2或式Ⅱaa3所示:
Figure BDA0001934305130000041
所述式Ⅱb结构的所述钌催化剂的优选结构如式Ⅱba1、式Ⅱba2或式Ⅱba3所示;更好形式的催化剂如式IIba1所示:
Figure BDA0001934305130000042
根据目前对各种氮杂环卡宾配体结构及相应的金属络合物催化剂的相关研究和/或使用的报道,本发明上述的氮杂环卡宾配体结构及相应的钌络合物催化剂,可以完全采用这些现有的方式制备得到。
例如,本发明上述的氮杂环卡宾配体的制备可以采用包括如Guillaume Berthon-Gelloz et al,Dalton Trans.,2010,39,1444–1446等目前已有报道的相应方式实现:由相应的取代苯胺制备得到式(Ⅵ)或式(Ⅶ)的中间体后,再分别由式(Ⅵ)或式(Ⅶ)的中间体分别制备得到相应式Ⅰa或式Ⅰb结构的氮杂环卡宾配体。制备路线和过程如下:
Figure BDA0001934305130000051
式中:R1、R2、R5、R6各自独立地选自C1-C20烷基或环烷基、C1-C20烷氧基、C6-C20的芳基,或者R1和R2和/或R5和R6各自与其所连接的N形成的杂环基;
R3、R4各自独立地选自取代或无取代的C6-C20芳基、取代或无取代的C6-C20芳氧基、取代或无取代的C2-C20杂环芳基,其中所述取代的基团为至少一个的C1-C10烷基、C1-C10烷氧基、羟基、硫羟基、醚基、硫醚基、酮基、醛基、酯基、胺基、亚胺基、酰胺基、硝基基、羧基、二硫化物基、碳酸酯基、异氰酸酯基、碳二亚胺基、烷氧羰基、氨基甲酸酯基或卤素;
X为-NO2、I、Br、Cl、OSO2Ar、OSO2CF3
其中,作为最后完成相应式Ⅰa或式Ⅰb结构氮杂环卡宾配体制备的间接前体物(Ⅵ)及(Ⅶ)的中间产物(Ⅴ),至少可包括下述的几种形式的结构:
Figure BDA0001934305130000061
在第①步对所述该中间产物(Ⅴ)的制备时,例如当X为-NO2时,中间产物(Ⅴ)可以由原料对硝基苯胺依次经傅克反应、氢化反应后,再与卤代物反应制备得到;当X为所述的其它基团形式时,对位取代的X-苯胺可以经傅克反应后,再在钯催化剂催化下与二胺发生C-N偶联反应,制备中间产物(Ⅴ)。
除经中间产物(Ⅴ)的方式制备得到该间接前体物(Ⅵ)外,该间接前体物(Ⅵ)的制备,还可以使化合物(Ⅻ)先经第②步与乙二醛(或乙二醛衍生物)缩合后,再与二胺进行C-N偶联反应的方式制备得到。
在由间接前体物(Ⅵ)制备式Ⅰa结构氮杂环卡宾配体过程的第③步中,使用间接前体物(Ⅵ)与多聚甲醛反应制备得到直接前体化合物(Ⅲa);然后在惰性气体保护下,该直接前体化合物(Ⅲa)与叔丁醇钾反应后,即可原位制备得到式Ⅰa结构的NHC。其中,所述该直接前体化合物Ⅲa至少包括:
Figure BDA0001934305130000062
在由间接前体物(Ⅵ)制备式Ⅰb结构氮杂环卡宾配体时,可参考现包括如AnthonyJ.Arduengo,III et al,Tetrahedron,55(1999),14523-14534等文献中的方式,将间接前体物(Ⅵ)经硼氢化钠等还原后得到间接前体物(Ⅶ),再经与原甲酸三乙酯反应的④步得到相应的直接前体物(Ⅲb);然后同样在惰性气体保护下,该直接前体物(Ⅲb)与叔丁醇钾反应后,即可原位制备得到式Ⅰb结构的NHC。其中,所述该直接前体化合物(Ⅲb)至少包括,更好是式(Ⅲba)的形式:
Figure BDA0001934305130000071
由上述制备得到的式Ⅰa或式Ⅰb结构的氮杂环卡宾配体,或由其它适当途径获得的式Ⅰa或式Ⅰb结构的氮杂环卡宾配体,进一步制备本发明所述的钌络合物催化剂,同样可以参照Amir H.Hoveyda et al,J.Am.Chem.Soc.2000,122,8168-8179等目前对各种氮杂环卡宾配体的金属络合物催化剂的相关研究和/或使用的报道的制备方式,按下述方式之一进行:
方式1
Figure BDA0001934305130000072
方式2
Figure BDA0001934305130000073
式中:R7为H、C1-C15烷基、C1-C15烷氧基、C1-C15硫醚基、C1-C15硅烷基、C1-C15硅氧基、C6-C15芳基、C6-C15芳氧基、C6-C15杂环芳基、C2-C15杂环基、亚砜基、砜基、C1-C15羰基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基、C1-C15磺酰胺基;
R8为选自H、F、Cl、Br、硝基、腈基、甲醛基、C1-C15氨基磺酰基(R2NSO2-)、C1-C15氨基羰基(R2NCO-)、C1-C15羰基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基或C1-C15磺酰胺基;
R9,R10独立为丁基,环己基或者苯基;
X1和X2为Cl或RCOO-,其中的R为C1-C20的烷基;
Y为氧、硫、氮或磷。
其中,式(2a)的结构优选为:
Figure BDA0001934305130000081
此外,也可以在惰性气体保护下,由式Ⅰa或式Ⅰb结构NHC的直接前体物(Ⅲa)或(Ⅲb),与式(1a)形式的钌络合物和CuCl、式(2a)化合物反应后,直接制备得到本发明所述的式Ⅱa或Ⅱb形式的钌络合物催化剂。
相比于现有同类的NHC结构,本发明上述形式氮杂环卡宾(NHC)配体及其相应的钌络合物催化剂,通过在NHC配体的氮杂环上与氮原子相连的苯环的邻位接入了大位阻的-CH(R3(4))2基团,同时在苯环的对位引入了强给电子能力的-N(R1(2,5,6))2基团,在二者的共同作用下,可以显著提高该催化剂的催化活性,特别是在热稳定性能上的表现突出。实验结果表明,本发明所述的钌络合物催化剂除可具有目前同类催化剂的催化性能和应用领域外,由于其在100℃下能保持够稳定的显著特点,作为高效的催化剂,在例如包括分子内关环的烯烃易位复分解反应、分子间的交叉烯烃易位复分解反应或聚合反应中的烯烃易位复分解反应等在内的烯烃易位复分解反应和/或加氢反应等目前同类催化剂难以完成或催化效果不佳的应用领域中,本发明的该催化剂都能取得满意的效果,在新材料和药物合成等领域具有广泛的产业应用价值。
以下结合附图及实施例的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。在不脱离本发明上述技术思想情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包括在本发明的范围内。
附图说明
图1是本发明的钌络合物催化剂的UV吸收示意图。
具体实施方式
实施例1:化合物8的合成
Figure BDA0001934305130000082
取对硝基苯胺(40g,290mmol,1eq)和二苯甲醇(106g,580mmol,2eq)于1000mL单口烧瓶中,搅拌加热至100℃,直至固体完全溶解,然后滴加ZnCl2/浓HCl溶液,(19.4g溶于17.6mL37%浓盐酸),滴加过程中有白雾放出,滴加完毕,升温至160℃。TLC监测,反应至原料点消失。停止加热,降温至室温,加入300mL二氯甲烷溶解,用NH4Cl洗涤有机相,再用饱和食盐水洗涤有机相。无水硫酸钠干燥,除去溶剂,得到棕黄色固体粗品140g,乙酸乙酯/石油醚结晶,过滤,干燥,得浅黄色固体粉末(8)101g,产率74.3%。
1H NMR(300MHz,CDCl3):δ7.57(s,2H),7.34-7.26(m,12H),7.13-7.10(m,8H),5.37(s,2H),4.21(s,2H)。
实施例2:化合物XIII的合成
Figure BDA0001934305130000091
取原料化合物8(100g,212.7mmol)溶于1100mL氯仿和580mL甲醇中,加入10.0g钯碳,氢气换气后通入氢气,升温至45℃反应,TLC监测反应完全。滤除钯碳,得浅黄色液体,旋干溶剂,加入200mL二氯甲烷溶解,并在搅拌下缓慢滴加700mL石油醚,滴加完毕,溶浅黄色固体析出,打浆1h,过滤,收集滤饼,得淡粉色固体粉末(XIII)92.7g,产率99%。
1H NMR(300MHz,CD3OD):7.34-7.08(m,12H),7.10-7.08(m,8H),6.62(s,2H),5.58(s,2H)。
实施例3:化合物Ⅴa的合成(方法一)
Figure BDA0001934305130000092
取原料化合物XIII(40.0g,91.2mmol)溶于120mL N,N-二甲基甲酰胺中,加入K2CO3(37.6g,272.1mmol)、KI(4.5g,27.4mmol)。取溴代异丁烷(31.8g,220.0mmol)加入上述溶液中,升温至100℃反应。TLC监测反应完全。用乙酸乙酯/水萃取,用饱和食盐水洗涤有机相,Na2SO4干燥,旋干溶剂得棕黄色油物。加入乙酸乙酯/石油醚结晶,过滤得白色固体粉末(Ⅴa),22.2g,产率44.2%。
1H NMR(300MHz,CDCl3)δ7.30–7.19(m,12H),7.18–7.11(m,8H),5.86(s,2H),5.50(s,2H),2.91(br,2H),2.66-2.64(d,J=5.5Hz,4H),1.60-1.56(m,2H),0.62-0.60(d,J=6.5Hz,12H).
实施例4:化合物XII的合成
Figure BDA0001934305130000101
取对溴苯胺(5.0g,29mmol)和二苯甲醇(8.9g,48mmol)于250mL单口烧瓶中,搅拌加热至100℃,直至固体完全溶解,然后滴加ZnCl2/浓HCl溶液,滴加完毕,升温至160℃,反应2h。降温至室温,加入100mL二氯甲烷溶解,用NH4Cl洗涤有机相,再用饱和食盐水洗涤有机相。无水硫酸钠干燥,除去溶剂,加入乙酸乙酯打浆,过滤,干燥,得浅黄色固体粉末6.0g,产率50.0%。
1H NMR(300MHz,CDCl3)δ7.35–7.20(m,12H),7.14–7.03(m,8H),6.69(s,2H),5.40(s,2H).
实施例5:化合物Ⅴa的合成(方法二)
Figure BDA0001934305130000102
惰性气体下,取化合物XII(1.0g,1.98mmol)与二异丁基胺(333mg,2.58mmol)混合,加入反应管中,再加入Pd(IPr*)(acac)Cl(12.7mg,0.00595mmol),加入LiHMDS(六甲基二硅基胺基锂)(2.38mmol),取2mL 1,4-二氧六环溶解反应,升温至110℃,反应3h,反应完全。用20mL水和10mL二氯甲烷洗涤反应液,收集二氯甲烷相,用饱和食盐水洗涤,无水硫酸钠干燥,除去二氯甲烷,柱层析,得到淡粉色固体粉末0.48g,产率55.1%。
实施例6:化合物Ⅵ的合成
Figure BDA0001934305130000103
取原料化合物Va(20.0g,36.2mmol)溶于120mL氯仿中,加入400mL甲基叔丁基醚、500mL无水乙醇,升温至58℃。加入甲酸(410μL,10.9mmol)后滴加乙二醛(5.4mL,47.0mmol)。TLC监测反应至无原料点。将反应液过滤得到橙色固体,石油醚/乙酸乙酯混合溶剂打浆。过滤得到橙色固体粉末(Ⅵa)16.0g,产率78.5%。
1H NMR(300MHz,CDCl3)δ7.31(d,J=4.3Hz,2H),7.20(dq,J=14.2,7.0Hz,13H),7.04(d,J=7.1Hz,8H),6.07(s,2H),5.39(s,2H),2.81(d,J=6.9Hz,4H),1.71–1.54(m,4H),0.68(d,J=6.6Hz,12H).
实施例7:化合物IIIaa的合成
Figure BDA0001934305130000111
取原料化合物VIa(10.0g,8.87mmol)溶于三氯甲烷(160mL),升温至60℃,加入多聚甲醛(0.8g,26.60mmol),然后将新配制的4M HCl(4.9mL)溶液缓慢的滴加到反应液中,TLC监测反应完全。将反应液旋干,加入乙酸乙酯/石油醚结晶。过滤得到白固体粉末(IIIaa)5.93g,产率56.3%。
1H NMR(300MHz,CDCl3)δ7.21(d,J=28.3Hz,34H),6.86(s,8H),5.97(s,4H),5.44–5.32(m,2H),5.30(s,1H),5.18(s,4H),2.76(s,8H),1.58(s,14H),0.62(d,J=5.7Hz,23H).
实施例8:化合物Ⅶa的合成
Figure BDA0001934305130000112
取亚胺(10.00g,8.87mmol)于500mL单口瓶,加入500mL THF,在冰浴下缓慢加入硼氢化钠(3.35g,88.68mmol),氩气换气保护80℃回流,反应10h,TLC监测反应完全。反应完全后,在冰浴下向反应液滴加1M HCl溶液,滴加至无气泡冒出,恢复室温。二氯甲烷萃取,旋干溶剂。柱层析,得黄色固体6.42g,产率64.0%。
1H NMR(300MHz,CDCl3)δ7.27–7.11(m,6H),7.02(d,J=7.2Hz,4H),5.98(s,1H),5.75(s,1H),2.77(d,J=6.8Hz,2H),2.31(s,1H),1.58(dt,J=13.0,6.5Hz,1H),0.65(d,J=6.6Hz,6H).
实施例9:化合物IIIba的合成
Figure BDA0001934305130000121
将原料VIIa(6.00g,5.30mmol)溶于原甲酸三乙酯(150mL),60℃滴加入4M HCl(26.51mmol)的1,4-二氧六环溶液,溶液由橙黄色变为黑色,通入氮气,加热升温,100℃,溶液变为黄色澄清液,升温140℃,反应1.5h,TLC,无原料点。停止反应。将反应液冷却,除去溶剂,柱层析得浅黄色固体1.95g,产率31.2%。
1H NMR(300MHz,CDCl3)δ10.82(s,1H),7.35–7.17(m,32H),7.14–7.04(m,8H),5.98(s,4H),5.79(s,4H),2.78(d,J=7.0Hz,8H),2.55(s,4H),1.62–1.45(m,4H),0.64(d,J=6.6Hz,24H).
实施例10:化合物Ⅱaa1的合成
Figure BDA0001934305130000122
无水无氧条件下,将Grubbs第一代催化剂1a(1.22mmol)加入至100mL Schlenk瓶中,再将化合物IIIaa(2858mg,2.43mmol)和叔丁醇钾(286mg,2.55mmol)加入至反应瓶中,加入50mL正己烷。搅拌下在60℃反应5小时后,TLC监测反应完全。反应完全后减压除去正己烷。将上一步得到的中间体溶解在40mL二氯甲烷中,加入氯化亚铜(300mg,1.42mmol)搅拌5min,再将化合物2a1(296mg,1.82mmol)加入至反应瓶中,升温至40℃,TLC监测反应完全。反应完全后,柱层析,得到浅绿色固体粉末IIaa1 574mg,收率:32.3%。
1H NMR(400MHz,CDCl3)δ17.14(s,1H),7.53(s,6H),7.24–6.76(m,34H),6.67(s,4H),6.20(d,J=20.9Hz,4H),6.00(s,2H),5.84(s,2H),5.05(m,1H),2.89(d,8H),1.82–1.66(m,4H),1.26(d,6H),0.67(d,24H)。
实施例11:化合物Ⅱaa2的合成
Figure BDA0001934305130000131
无水无氧条件下,将Grubbs第一代催化剂1a(1.22mmol)加入至100mL Schlenk瓶中,再将化合物IIIaa(2858mg,2.43mmol)和叔丁醇钾(286mg,2.55mmol)加入至反应瓶中,加入50mL正己烷。搅拌下在60℃反应5小时后,TLC监测反应完全。反应完全后减压除去正己烷。将上一步得到的中间体溶解在40mL二氯甲烷中,加入氯化亚铜(300mg,1.42mmol)搅拌5min,再将化合物2a2(378mg,1.82mmol)加入至反应瓶中,升温至40℃,TLC监测反应完全。反应完全后,柱层析,得到浅绿色固体粉末IIaa2 561mg,收率:30.7%。
1H NMR(400MHz,CDCl3)δ17.22(s,1H),7.78(d,J=2.3Hz,1H),7.49(d,J=5.4Hz,4H),7.16-6.89(m,34H),6.66(s,4H),6.24(s,4H),5.93(s,2H),5.77(s,2H),5.16(m,1H),2.91(d,J=8.8Hz,8H),1.88–1.65(m,4H),1.28(m,6H),0.67(d,24H).
实施例12:化合物Ⅱaa3的合成
Figure BDA0001934305130000132
无水无氧条件下,将Grubbs第一代催化剂1a(1.22mmol)加入至100mL Schlenk瓶中,再将化合物IIIaa(2858mg,2.43mmol)和叔丁醇钾(286mg,2.55mmol)加入至反应瓶中,加入50mL正己烷。搅拌下在60℃反应5小时后,TLC监测反应完全。反应完全后减压除去正己烷。将上一步得到的中间体溶解在40mL二氯甲烷中,加入氯化亚铜(300mg,1.42mmol)搅拌5min,再将化合物2a3(378mg,1.82mmol)加入至反应瓶中,升温至40℃,TLC监测反应完全。反应完全后,柱层析,得到浅绿色固体粉末IIaa3 550mg,收率:28.9%。
1H NMR(400MHz,CDCl3)δ17.28(s,1H),8.08–7.95(m,1H),7.50(d,J=7.1Hz,4H),7.31(d,J=1.9Hz,1H),7.23–7.06(m,14H),7.00(s,10H),6.90(s,10H),6.65(s,4H),6.25(d,J=10.7Hz,4H),5.95(s,2H),5.79(s,2H),5.15(m,J=12.2,6.1Hz,1H),2.88(d,J=6.9Hz,8H),1.81–1.66(m,4H),1.27(d,6H),0.67(d,24H).
实施例13:化合物Ⅱba1的合成
Figure BDA0001934305130000141
无水无氧条件下,将Grubbs第一代催化剂1a(1.22mmol)加入至100mL Schlenk瓶中,再将化合物IIIba(2863mg,2.43mmol)和叔丁醇钾(477mg,4.25mmol)加入至反应瓶中,加入50mL正己烷。搅拌下在60℃反应5小时后,TLC监测反应完全。反应完全后减压除去正己烷。将上一步得到的中间体溶解在40mL二氯甲烷中,加入氯化亚铜(300mg,1.42mmol)搅拌5min,再将化合物2a1(296mg,1.82mmol)加入至反应瓶中,升温至40℃,TLC监测反应完全。反应完全后,柱层析,得到浅绿色固体粉末IIba1 568mg,收率:32.0%。
1H NMR(400MHz,CDCl3)δ17.45(s,1H),7.62-7.05(m,40H),6.72(s,4H),6.25(s,4H),6.07(s,4H),5.05(m,1H),2.89(d,8H),2.64(s,4H),1.82–1.66(m,4H),1.26(d,6H),0.67(d,24H).
实施例14:催化剂的热稳定性实验
现有的Ru络合物催化剂在高温下极易分解,稳定性不足是目前钌络合物催化剂产品的缺陷之一。参照文献资料(Plenio等发表在J.Am.Chem.Soc.,2012,134(2):1104-1114)报道,通过紫外吸收(UV)测试本发明的钌络合物催化剂的热稳定性。
配制催化剂Ⅱaa1的甲苯溶液25mL,浓度为2.0×10-5mol/L;首先取3mL催化剂Ⅱaa1的甲苯溶液测试其在室温下的UV-Vis吸收;再分别取3mL催化剂Ⅱaa1的甲苯溶液在惰性气体下分别于50℃、70℃、90℃、100℃加热4小时后,通过UV-Vis测试其特征吸收峰的变化。催化剂IIaa1在不同温度加热后的UV吸收图谱如图1所示,显示了具有满意的热稳定性。
实施例15:化合物Ⅴb的合成
Figure BDA0001934305130000142
取化合物XIII(20.00g,45.4mmol),加入至500mL圆底烧瓶中,加入300mL乙腈,搅拌下加入甲磺酸三聚乙二醇单甲醚酯(22.0g,90.8mmol),再加入碳酸铯(29.6g,90.8mmol),升温至82℃反应。反应10h后补加甲磺酸三聚乙二醇单甲醚酯(22.0g,90.8mmol)和碳酸铯(29.6g,90.8mmol)。继续反应10h后再次补加甲磺酸三聚乙二醇单甲醚酯(22.0g,90.8mmol)和碳酸铯(29.6g,90.8mmol)反应至原料消失。过滤除去无机盐,蒸掉溶剂后柱层析,得到棕红色油状液体20.86g,产率62.7%。
实施例16:化合物Ⅵb的合成
Figure BDA0001934305130000151
取制备原料(1.00g,1.37mmol)溶于30mL二氯甲烷中,向反应液加无水硫酸镁(1.20g),向其中滴加40%乙二醛溶液(230μL)溶液,向反应滴加甲酸(0.5mL),室温反应。反应时补加3次1.2当量乙二醛,甲酸(0.5mL),5当量无水硫酸镁。反应72h停止反应。反应液过硅藻土除去无机盐,蒸掉溶剂,柱层析,得橙黄色固体,产率53.0%。
1H NMR(300MHz,CDCl3)δ7.15(td,J=14.1,6.9Hz,7H),6.99(d,J=6.8Hz,4H),6.12(s,1H),5.32(s,1H),3.57(dd,J=6.0,3.1Hz,2H),3.52(dd,J=5.7,3.5Hz,4H),3.41–3.33(m,6H),3.23(s,3H).
实施例17:化合物Ⅲab的合成
Figure BDA0001934305130000152
取亚胺原料(50.0mg,0.033mmol)溶于CHCl3(1.5mL),升温至60℃,向其中加入多聚甲醛(3.0mg,0.099mmol)溶液,再向其中滴加4M HCl的1,4-二氧六环溶液(0.1mL),溶液由橙红色变为棕黑色,约2min溶液再渐渐变为棕黄色溶液。TLC监测反应至原料消失,停止反应。蒸掉反应液,柱层析,得到浅灰白色胶状产物29mg,产率56.2%。
1H NMR(300MHz,CDCl3)δ11.92(s,1H),7.33–7.21(m,10H),7.16(t,J=8.1Hz,22H),6.86(s,8H),6.08(s,4H),5.41(s,2H),5.19(s,4H),3.62–3.55(m,8H),3.55–3.46(m,16H),3.37(d,J=5.1Hz,24H),3.28–3.14(s,12H).
实施例18:化合物Ⅴc的合成
Figure BDA0001934305130000161
取化合物XIII(17.0g,38.6mmol)溶于DMF(60mL)中,加入K2CO3(17.5g,96.5mmol)、KI(1.7g,10.0mmol)。取溴代异戊烷(1.7g,10.0mmol)滴入上述溶液中,升温至100℃反应。加热反应4h,停止反应。用300mL乙酸乙酯、600mL水萃取,最后饱和食盐水洗涤。柱层析,蒸干溶剂得乳白色固体粉末固体9.50g,16.36mmol),产率42.2%。
实施例19:化合物Ⅵc的合成
Figure BDA0001934305130000162
取上一步产物原料(5.00g,8.62mmol)溶于甲基叔丁基醚(100mL)和EtOH(100mL),向其中滴加40%乙二醛溶液(1.63g,11.19mmol)溶液,再取甲酸(155mg,2.58mmol)滴入反应液,加热至60℃,反应液渐渐变橙色,约30min后有橙色固体析出。反应5h时补加80mg甲酸、0.8g当量40%乙二醛。反应10停止反应,过滤,滤出橙黄色固体,再用石油醚\乙酸乙酯混合溶剂打浆,得橙黄色固体2.70g,产率53.1%。
实施例20:化合物Ⅲac的合成
Figure BDA0001934305130000163
取VIc(100.0mg,0.083mmol)溶于无水THF(2mL),搅拌下加ZnCl2(12.0mg,0.100mmol),升温至45℃,搅拌5min。加多聚甲醛(2.6mg,0.100mmol),升温至70℃,搅拌5min。取TMSCl(9.6mg,0.100mmol)溶于无水THF(1mL),滴加入上述反应液。滴加完毕后保持70℃反应。加热6h停止反应,蒸干四氢呋喃,用二氯甲烷/正戊烷结晶,得棕色固体产物70mg,产率66.4%。
1H NMR(300MHz,CDCl3)δ10.73(s,1H),7.29–7.21(m,10H),7.18(m,16H),7.08(d,J=7.3Hz,8H),6.91–6.83(m,6H),6.00(s,4H),5.50(d,J=1.2Hz,2H),5.10(s,4H),2.98–2.83(m,8H),1.31–1.16(m,8H),1.08(d,J=8.4Hz,4H),0.69(d,J=6.5Hz,24H)。
实施例21:化合物Ⅴd的合成
Figure BDA0001934305130000171
惰性气体下,取化合物XII(1.0g,1.98mmol)与二苯基胺(437mg,2.58mmol)混合,加入反应管中,再加入Pd(IPr*)(acac)Cl(12.7mg,0.00595mmol),加入LiHMDS(六甲基二硅基胺基锂)(2.38mmol),取2mL1,4-二氧六环溶解反应,升温至110℃,反应3h,反应完全。用20mL水和10mL二氯甲烷洗涤反应液,收集二氯甲烷相,用饱和食盐水洗涤,无水硫酸钠干燥,除去二氯甲烷,柱层析,得到淡粉色固体粉末624mg,产率53.0%。
实施例22:化合物Ⅵd的合成
Figure BDA0001934305130000172
取上一步产物化合物Vd(10.0g,16.8mmol)溶于60mL氯仿中,加入200mL甲基叔丁基醚、250mL无水乙醇,升温至58℃。加入甲酸(190μL,5.1mmol)后滴加乙二醛(2.5mL,21.9mmol)。TLC监测反应至无原料点。将反应液过滤得到橙色固体,石油醚/乙酸乙酯混合溶剂结晶。过滤得到橙黄色固体粉末(VId)9.37g,产率92%。
实施例23:化合物Ⅲad的合成
Figure BDA0001934305130000173
取原料化合物VId(5.0g,4.14mmol)溶于三氯甲烷(100mL),升温至60℃,,加入多聚甲醛(373mg,12.4mmol),然后将新配制的4M HCl(2.3mL)溶液缓慢的滴加到反应液中,TLC监测反应完全。将反应液旋干,乙酸乙酯/石油醚结晶。最后过滤得到白固体粉末(IIIad)2.55g,产率52.0%。
1H NMR(300MHz,CDCl3)δ12.72(m,1H),7.10(dd,J=13.7,7.5Hz,40H),6.95(t,J=7.8Hz,12H),6.78(d,J=6.6Hz,8H),6.50(s,4H),5.55(s,2H),5.16(s,4H).
以下是本发明所述的钌络合物催化剂分别在烯烃易位复分解反应中的应用实例。
实施例24:3-环戊烯-1,1-二甲酸甲酯12的制备
3-环戊烯-1,1-二甲酸甲酯(12)是合成3-环戊烯-1-甲酸及其衍生物的中间体,后者主要用于碳环核苷、前列腺素等常见重要药物。选取二烯丙基丙二酸二甲酯(11)制备3-环戊烯-1,1-二甲酸甲酯(12)对实施例合成的钌络合物催化剂(Ⅱa和Ⅱb)进行分子内的烯烃易位复分解反应的催化活性测试,同时与H-G第二代催化剂(H-GⅡ)进行活性比较。
3-环戊烯-1,1-二甲酸甲酯12的制备:
Figure BDA0001934305130000181
烯烃分子内环化易位复分解反应:称取1.0g二烯丙基丙二酸二甲酯,加入2mL正庚烷,通入氮气常温搅拌20分钟;称取不同用量的催化剂,用1mL正庚烷溶解并加入至反应器中,升温至100℃,反应120分钟,计算或者测试转化率,结果见下表1。
烯烃分子内环化产物(12):1H NMR(300MHz,CDCl3):δ(ppm)=5.61(2H,s),3.74(6H,s),3.02(4H,s)。
表1转化率结果
序号 催化剂种类 催化剂用量 转化率(%)
1 H-GⅡ 1mol% 99
2 H-GⅡ 0.03mol% 92
3 Ⅱaa1(实施例10) 0.03mol% 99
4 Ⅱaa2(实施例11) 0.03mol% 99
5 Ⅱaa3(实施例12) 0.03mol% 99
6 Ⅱba1(实施例13) 0.03mol% 99
从以上的效果实施例看出,本发明的大位阻、富电子的NHC催化剂对二烯丙基丙二酸二甲酯(11)发生分子内烯烃易位复分解的催化活性显著优于同类催化剂H-GⅡ。
大环类化合物在药物,特别是抗病毒药物中具有广泛的用处。而烯烃复分解反应是构建大环类化合物的简便方法。抗丙肝药物丹诺瑞韦钠(Danoprevir Sodium)的中间体(16)分别使用了H-G第二代催化剂(US8299021B2,收率52%)和Zhan-1B催化剂(WO2011091757)催化烯烃中间体化合物(15)进行分子内烯烃易位复分解反应制得。通过用该中间体化合物(15)进行分子内关环反应,可以进一步显示本发明上述的钌络合物催化剂的活性。
丹诺瑞韦钠(Danoprevir Sodium)的中间体(16)制备路线如下:
Figure BDA0001934305130000191
实施例25:中间化合物14的制备过程:
惰性气体保护下,将反应体系冷却至-5℃左右,向反应瓶加入底物(S)-2-((叔丁氧基羰基)氨基)壬-8-烯酸乙酯(13.8g,30.5mmol)溶于THF(70mL),搅拌下将特戊酰氯(3.3g,27.8mmol)滴加入反应瓶,在-5℃下反应5h。之后向反应瓶滴加化合物13(10.0g,23.2mmol)的四氢呋喃溶液80mL,滴加完毕后再在-5℃下反应3h,之后恢复至室温,反应完全,停止搅拌,进行后处理。向反应体系中加入NH4Cl(50mL)水溶液淬灭反应,搅拌10min,将反应液中的THF用真空旋转蒸发仪,再用CH2Cl2(50mL×3)萃取水相,合并有机相并旋干。得到的粗产品进行硅胶柱层析纯化。得到化合物14,白色固体粉末12.1g,产率76.0%。
1H NMR(300MHz,CDCl3):δ(ppm)=7.56(s,1H),7.04(d,J=7.61Hz,1H),7.00-6.90(m,1H),5.73(dt,J=18.9Hz,9.6,2H),5.37(s,1H),5.27(dd,J=17.0,1.7Hz,1H),5.15-5.05(m,2H),5.02-4.87(m,2H),4.85-4.55(m,5H),4.35(t,J=7.0Hz,2H),4.24-3.98(m,3H),3.73(d,J=12.2Hz,1H),2.74(m,1H),2.48(d,J=8.4Hz,1H),2.35-2.20(m,2H),2.18-2.07(m,1H),2.06-1.93(m,3H),1.86(d,J=22.6Hz,1H),1.43(d,J=3.7Hz,3H),1.41-1.24(m,11H),1.24-1.10(m,4H)。
实施例26:中间化合物15的制备过程:
于100mL三口瓶中取制备的化合物14(5.0g,7.3mmol)溶于THF(30mL)。氮气保护下降温至-6~0℃之间,将10mL苯甲酰氯(1.3g,9.5mmol)的THF溶液滴加入反应瓶并保持温度反应2h。随后加入固体的叔丁醇锂(0.7g,9.5mmol),反应5h后TLC(石油醚:乙酸乙酯=2:1)监测反应完全。停止搅拌,向反应体系中加入50mL碳酸氢钠水溶液淬灭反应,搅拌10min,将反应液中的THF用真空旋转蒸发仪,再用CH2Cl2(50mL×3)萃取水相,合并有机相并旋干。得到的粗产品进行硅胶柱层析纯化。得到化合物15,白色固体粉末4.8g,产率83.0%。
1H NMR(300MHz,CDCl3):δ(ppm)=7.75(s,2H),7.49(d,J=7.0Hz,1H),7.42(d,J=7.0Hz,2H),7.26(s,2H),7.08-6.89(m,2H),5.78(dd,J=16.8,10.1Hz,2H),5.39(s,1H),5.19(s,3H),5.03-4.85(m,3H),4.76(d,J=6.4Hz,2H),4.63(s,2H),4.36(s,1H),4.21(s,2H),4.04(s,1H),3.88(s,1H),2.37(s,3H),2.03(d,J=3.4Hz,2H),1.73(s,2H),1.62(s,2H),1.56(s,2H),1.35(d,J=3.4Hz,10H),1.32-1.23(m,5H),0.86(d,J=7.3Hz,1H)。
实施例27:Danoprevir中间体(16)使用催化剂zhan-1B作为催化剂的制备过程:
称取50mg中间体化合物(15),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取2.33mg(0.05equiv.)催化剂zhan-1B加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)34.7mg,收率72.0%。
实施例28:Danoprevir中间体(16)使用催化剂zhan-1B作为催化剂的制备过程:
称取50mg中间体化合物(15),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.23mg(0.005equiv.)催化剂zhan-1B加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)27.1mg,收率56.3%。
Danoprevir中间体(16)的核磁检测数据:
1H NMR(300MHz,CDCl3):δ(ppm)=7.60(t,J=7.5Hz,2H),7.55-7.47(m,1H),7.43(dd,J=7.6Hz,3.4Hz,2H),7.25(d,J=7.3Hz,1H),7.06-6.89(m,2H),5.55(dd,J=18.5,7.9Hz,1H),5.39-5.23(m,2H),5.11(dd,J=21.9,8.0Hz,2H),4.73(d,J=6.4Hz,2H),4.68-4.49(m,2H),4.34(s,1H),4.24-4.13(m,3H),3.90(d,J=7.1Hz,1H),2.55(q,J=9.5Hz,1H),2.32(d,J=22.3Hz,2H),2.13(d,J=7.5Hz,2H),2.03(s,1H),1.79(s,1H),1.70-1.53(m,3H),1.53-1.35(m,4H),1.30(d,J=3.6Hz,9H),1.24(td,J=7.1,1.2Hz,5H)。
上述实施例27和实施例28作为对照实验,其由中间体化合物(15)→Danoprevir中间体(16)的制备采用的是与本发明的同类催化剂zhan1B,两例分别使用了两种不同用量的催化剂。以下实施例29~实施例34则是采用本发明的催化剂由中间体(15)制备Danoprevir中间体(16)。
实施例29:Danoprevir中间体(16)的制备(1):
称取50mg化合物(15),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.46mg(0.005equiv.)催化剂Ⅱaa1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)43.7mg,收率90.7%。
实施例30:Danoprevir中间体(16)的制备(2):
称取50mg化合物15,加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.47mg(0.005equiv.)催化剂Ⅱaa2加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)42.6mg,收率88.3%。
实施例31:Danoprevir中间体(16)的制备(3):
称取50mg化合物15,加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.49mg(0.005equiv.)催化剂Ⅱaa3加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)44.7mg,收率92.7%。
实施例32:Danoprevir中间体(16)的制备(4):
称取50mg化合物15,加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.46mg(0.005equiv.)催化剂Ⅱba1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)43.4mg,收率90.0%。
实施例33:Danoprevir中间体(16)的制备(5)(放大底物的规模):
称取500mg化合物15,加入50mL甲苯溶解。通入氮气常温搅拌20分钟,称取4.62mg(0.005equiv.)催化剂Ⅱaa1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)438.8mg,收率91.0%。
实施例34:Danoprevir中间体(16)的制备(6):
称取500mg化合物15,加入50mL甲苯溶解。通入氮气常温搅拌20分钟,称取4.63mg(0.005equiv.)催化剂Ⅱba1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末的Danoprevir中间体(16)439.3mg,收率91.1%。
上述的对比实验结果清楚显示,在用于Danoprevir中间体(16)的制备中,本发明的钌络合物催化剂与Zhan1B催化剂相比,催化分子内烯烃易位复分解的活性更高。
为了更好地评价本发明所述催化剂的活性和底物耐受性,选取烯烃中间体(15)的前体化合物(14)(氨基未被保护)直接进行分子内烯烃易位复分解反应制备Danoprevir中间体(17)。
Danoprevir中间体(17)的制备:
Figure BDA0001934305130000211
实施例35:Danoprevir中间体(17)使用H-G第二代催化剂的制备过程:
称取50mg化合物(14),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取1.05mg(0.025equiv.)催化剂H-G II催化剂加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)24.0mg,收率50.0%。
实施例36:Danoprevir中间体(17)使用H-G第二代催化剂的制备过程(降低了催化剂用量):
称取50mg化合物(14),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.21mg(0.005equiv.)催化剂H-G II催化剂加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)17.5mg,收率36.4%。
中间体(17)核磁:1H NMR(300MHz,CDCl3):δ(ppm)7.07-6.94(m,3H),5.51(s,1H),5.36(s,1H),5.24(t,J=9.1Hz,2H),4.84-4.50(m,10H),4.22-4.04(m,1H),2.17-2.01(m,4H),2.01-1.42(m,7H),1.34-1.26(d,J=2.8Hz,9H),1.24-1.21(t,J=6.9Hz,8H).
实施例37:Danoprevir中间体(17)的制备过程(使用本发明的催化剂)
称取50mg化合物(14),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.53mg(0.005equiv.)催化剂Ⅱaa1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)43.3mg,收率90.2%。
实施例38:Danoprevir中间体(17)的制备过程:
称取50mg化合物(14),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.55mg(0.005equiv.)催化剂Ⅱaa2加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)41.5mg,收率86.5%。
实施例39:Danoprevir中间体(17)的制备过程:
称取50mg化合物(14),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.57mg(0.005equiv.)催化剂Ⅱaa3加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)41.1mg,收率92.0%。
实施例40:Danoprevir中间体(17)的制备过程:
称取50mg化合物(14),加入5mL甲苯溶解。通入氮气常温搅拌20分钟,称取0.53mg(0.005equiv.)催化剂Ⅱba1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)43.0mg,收率89.7%。
实施例41:Danoprevir中间体(17)的制备过程:(放大底物规模)
称取500mg化合物(14),加入50mL甲苯溶解。通入氮气常温搅拌20分钟,称取5.32mg(0.005equiv.)催化剂Ⅱaa1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)434.0mg,收率90.5%。
实施例42:Danoprevir中间体(17)的制备过程:(放大底物规模)
称取500mg化合物(14),加入50mL甲苯溶解。通入氮气常温搅拌20分钟,称取5.32mg(0.005equiv.)催化剂Ⅱba1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)434.4mg,收率90.6%。
上述制备Danoprevir中间体(17)实例的结果也清楚表明,本发明的钌络合物催化剂催化分子内烯烃易位复分解反应的底物适应性更强,与H-G第二代催化剂相比活性更胜一筹。
在实施例35和实施例36中并未回收到催化剂。
由于本发明的钌络合物催化剂具有更好的稳定性,为了进一步评价本发明的钌络合物催化剂的稳定性,下述的实施例显示了本发明的所述催化剂在循环催化分子内关环反应中的活性变化。
实施例43:Danoprevir中间体(17)的制备(催化剂的回收循环使用)
催化剂IIaa1的循环(第一次):
称取500mg上述化合物(14),加入50mL甲苯溶解。通入氮气常温搅拌20分钟,称取5.32mg(0.005equiv.)催化剂IIaa1加入到反应器中,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)434.0mg,收率90.5%,同时回收催化剂。
催化剂IIaa1的循环(第二次):
氮气保护下,将分离回收的催化剂及500mg底物使用50mL甲苯溶解,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)418.2mg,收率87.2%,同时回收催化剂。
催化剂IIaa1的循环(第三次):
氮气保护下,将再次分离回收的催化剂及500mg底物使用50mL甲苯溶解,升温至90℃,反应4小时,柱层析得到白色固体粉末Danoprevir中间体(17)413.0mg,收率86.1%。
上述的实施例表明了本发明的钌络合物催化剂能循环使用,且在循环时同样能具有较好的活性和稳定性。
以下实验可以表明本发明的钌络合物催化剂在聚合反应的烯烃易位复分解反应中的活性。以二聚环戊二烯(18)作为聚合单体,用钌络合物催化剂催化进行开环易位聚合反应制备聚环戊二烯(19)。
聚环戊二烯(19)的合成:
Figure BDA0001934305130000241
实施例44:
称取1.0g二聚环戊二烯(18)加入至反应瓶中,35℃下加入2mL甲苯搅拌溶解,氮气保护下,加入0.37mg(单体:催化剂=30000:1)催化剂IIaa1,升温至80℃搅拌60分钟,加入甲醇析出聚合物,过滤,将聚合物粉碎,置于真空干燥箱中110℃干燥24小时,转化率96.7%。
实施例45:
称取1.0g二聚环戊二烯(18)加入至反应瓶中,35℃下加入19mL甲苯搅拌溶解,氮气保护下,加入0.38mg(单体:催化剂=30000:1)催化剂IIaa2,升温至60℃搅拌60分钟,加入甲醇析出聚合物,过滤,将聚合物粉碎,置于真空干燥箱中110℃干燥24小时,转化率97.5%。
实施例46:
称取1.0g二聚环戊二烯(18)加入至反应瓶中,35℃下加入19mL甲苯搅拌溶解,氮气保护下,加入0.40mg(单体:催化剂=30000:1)催化剂IIaa3,升温至60℃搅拌60分钟,加入甲醇析出聚合物,过滤,将聚合物粉碎,置于真空干燥箱中110℃干燥24小时,转化率97.7%。
实施例47:
称取1.0g二聚环戊二烯(18)加入至反应瓶中,35℃下加入19mL甲苯搅拌溶解,氮气保护下,加入0.37mg(单体:催化剂=30000:1)催化剂IIba1,升温至60℃搅拌60分钟,加入甲醇析出聚合物,过滤,将聚合物粉碎,置于真空干燥箱中110℃干燥24小时,转化率96.9%。
实施例48:
称取5.0g二聚环戊二烯(18)加入至反应瓶中,35℃下加入10mL甲苯搅拌溶解,氮气保护下,加入1.84mg(单体:催化剂=30000:1)催化剂IIaa1,升温至80℃搅拌60分钟,加入甲醇析出聚合物,过滤,将聚合物粉碎,置于真空干燥箱中110℃干燥24小时,转化率96.4%。
上述的对比实验结果已表明,本发明的钌络合物催化剂不仅可与目前同类的H-G第二代催化剂、Zhan催化剂等具有同样的应用领域,而且在催化烯烃易位复分解反应中还显示了能具有显著更为优越的活性,包括分子内烯烃易位复分解反应,分子间烯烃易位复分解或聚合反应的烯烃易位复分解反应。

Claims (11)

1.氮杂环卡宾配体,其特征是:结构分别如式Ⅰa和Ⅰb所示:
Figure FDA0002355445080000011
式中:R1、R2、R5、R6各自独立地选自C1-C20烷基、C1-C20烷氧基;
R3、R4各自独立地选自取代或无取代的C6-C20芳基,其中所述取代的基团为至少一个的C1-C10烷基、C1-C10烷氧基、羟基、醛基、硝基、羧基、碳酸酯基、异氰酸酯基、氨基甲酸酯基或卤素。
2.根据权利要求1所述的氮杂环卡宾配体,其特征在于:所述的式Ia和/或Ib中,R3、R4各自独立地选自C6-C20芳基。
3.根据权利要求1或2所述的氮杂环卡宾配体,其特征在于:式Ⅰa结构的氮杂环卡宾配体为式Ⅰaa、式Ⅰab或式Ⅰac所示的结构:
Figure FDA0002355445080000012
式Ⅰb结构氮杂环卡宾配体的结构如式Ⅰba所示:
Figure FDA0002355445080000013
4.具有权利要求1至3之一所述氮杂环卡宾配体的钌络合物催化剂,其特征是结构分别如式Ⅱa和Ⅱb所示:
Figure FDA0002355445080000021
式中:R1、R2、R5、R6各自独立地选自C1-C20烷基、C1-C20烷氧基;
R3、R4各自独立地选自取代或无取代的C6-C20芳基,其中所述取代的基团为至少一个的C1-C10烷基、C1-C10烷氧基、羟基、醛基、硝基、羧基、碳酸酯基、异氰酸酯基、氨基甲酸酯基或卤素;
R7为H、C1-C15烷基、C1-C15烷氧基、C1-C15硫醚基、C1-C15硅烷基、C1-C15硅氧基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基、C1-C15磺酰胺基;
R8为选自H、F、Cl、Br、硝基、腈基、甲醛基、C1-C15氨基磺酰基、氨基羰基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基或C1-C15磺酰胺基;
X1和X2为Cl或RCOO-,其中的R为C1-C20的烷基;
Y为氧、硫、氮或磷。
5.根据权利要求4所述的催化剂,其特征在于所述式Ⅱa和/或Ⅱb中的X1和/或X2为氯,Y为氧。
6.根据权利要求4所述的氮杂环卡宾钌络合物催化剂,其特征在于所述式Ⅱa和/或Ⅱb中的R7为异丙基或异丁基。
7.根据权利要求4所述的氮杂环卡宾钌络合物催化剂,其特征在于所述式Ⅱa和/或Ⅱb中的R8为H、硝基、C1-C15氨基磺酰基;其中,式Ⅱa结构的所述钌催化剂的结构如式Ⅱaa1、式Ⅱaa2或式Ⅱaa3所示:
Figure FDA0002355445080000022
式Ⅱb结构的所述钌催化剂的结构如式Ⅱba1、式Ⅱba2或式Ⅱba3所示:
Figure FDA0002355445080000023
8.权利要求1至3之一所述氮杂环卡宾配体的制备方法,其特征是按下述方式进行:
Figure FDA0002355445080000031
式中:R1、R2、R5、R6各自独立地选自C1-C20烷基、C1-C20烷氧基;
R3、R4各自独立地选自取代或无取代的C6-C20芳基,其中所述取代的基团为至少一个的C1-C10烷基、C1-C10烷氧基、羟基、醛基、硝基、羧基、碳酸酯基、异氰酸酯基、碳二亚胺基、氨基甲酸酯基或卤素;
X为-NO2、I、Br、Cl、OSO2Ar、OSO2CF3
9.权利要求4至6之一具有氮杂环卡宾配体的钌络合物催化剂的制备方法,其特征在于:按下述方式之一进行:
方式1:
Figure FDA0002355445080000041
方式2:
Figure FDA0002355445080000042
式中:R7为H、C1-C15烷基、C1-C15烷氧基、C1-C15硫醚基、C1-C15硅烷基、C1-C15硅氧基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基、C1-C15磺酰胺基;
R8为选自H、F、Cl、Br、硝基、腈基、甲醛基、C1-C15氨基磺酰基、氨基羰基、C1-C15酯基、C1-C15酰胺基、C1-C15脲基或C1-C15磺酰胺基;
R9,R10独立为丁基,环己基或者苯基;
X1和X2为Cl或RCOO-,其中的R为C1-C20的烷基;
Y为氧、硫、氮或磷。
10.权利要求4至7之一具有氮杂环卡宾配体的钌络合物催化剂在分子内关环的烯烃易位复分解反应、分子间的交叉烯烃易位复分解反应或聚合反应中的烯烃易位复分解反应中的应用。
11.权利要求4至7之一具有氮杂环卡宾配体的钌络合物催化剂在烯烃易位复分解反应中的应用。
CN201910002812.2A 2019-01-02 2019-01-02 氮杂环卡宾配体及其钌催化剂、制备方法和应用 Active CN110041262B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910002812.2A CN110041262B (zh) 2019-01-02 2019-01-02 氮杂环卡宾配体及其钌催化剂、制备方法和应用
US17/420,409 US12023661B2 (en) 2019-01-02 2019-08-19 Nitrogen heterocyclic carbene ligands and ruthenium catalysts thereof, preparation method therefor and application thereof
PCT/CN2019/101411 WO2020140441A1 (zh) 2019-01-02 2019-08-19 氮杂环卡宾配体及其钌催化剂、制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910002812.2A CN110041262B (zh) 2019-01-02 2019-01-02 氮杂环卡宾配体及其钌催化剂、制备方法和应用

Publications (2)

Publication Number Publication Date
CN110041262A CN110041262A (zh) 2019-07-23
CN110041262B true CN110041262B (zh) 2020-03-27

Family

ID=67274031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910002812.2A Active CN110041262B (zh) 2019-01-02 2019-01-02 氮杂环卡宾配体及其钌催化剂、制备方法和应用

Country Status (3)

Country Link
US (1) US12023661B2 (zh)
CN (1) CN110041262B (zh)
WO (1) WO2020140441A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110041262B (zh) * 2019-01-02 2020-03-27 成都开美思商务信息咨询中心(有限合伙) 氮杂环卡宾配体及其钌催化剂、制备方法和应用
CN115594636B (zh) * 2022-10-25 2023-07-25 西华大学 N-杂环卡宾配体、n-杂环卡宾钌络合物及其合成方法和应用
CN115722266B (zh) * 2022-11-24 2024-04-05 广东药科大学 一种氮杂卡宾-胺基-钌催化剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216355A (zh) * 2017-05-27 2017-09-29 中油海科燃气有限公司 一种钌卡宾络合物及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816170A (zh) 2005-07-25 2012-12-12 因特蒙公司 C型肝炎病毒复制的新颖大环抑制剂
CN101460513B (zh) * 2005-12-16 2014-08-27 马特里亚公司 有机金属钌配合物和制备四取代烯烃及其他受阻烯烃的相关方法
KR101781789B1 (ko) 2010-01-27 2017-09-26 에이비 파르마 리미티드. C형 간염 바이러스 억제제로 사용되는 다환 헤테로사이클릭 화합물
US20120149840A1 (en) * 2010-12-08 2012-06-14 Univ. of Southern Mississippi Res. Foundation Process for producing an aqueous polymer dispersion
CN110041262B (zh) * 2019-01-02 2020-03-27 成都开美思商务信息咨询中心(有限合伙) 氮杂环卡宾配体及其钌催化剂、制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107216355A (zh) * 2017-05-27 2017-09-29 中油海科燃气有限公司 一种钌卡宾络合物及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?;Albert Poater等;《Dalton Transactions》;20130207;第42卷(第20期);第7433-7439页,尤其Fig.1-9,第7437页左栏至右栏第1段 *
IPr* an easily accessible highly hindered N-heterocyclic carbene;Guillaume Berthon-Gelloz 等;《Dalton Transactions》;20091127;第39卷(第6期);第1444-1446页,尤其Scheme 1 *
Olefin metathesis catalysts bearing a pH-responsive NHC ligand: a feasible approach to catalyst separation from RCM products;Shawna L. Balof等;《Dalton Transactions》;20080912(第42期);第5791–5799页,尤其摘要,Scheme 1、5,第5796页右栏至第5797页右栏 *

Also Published As

Publication number Publication date
WO2020140441A1 (zh) 2020-07-09
US12023661B2 (en) 2024-07-02
CN110041262A (zh) 2019-07-23
US20220161246A1 (en) 2022-05-26

Similar Documents

Publication Publication Date Title
CN110041262B (zh) 氮杂环卡宾配体及其钌催化剂、制备方法和应用
EP2519350B1 (en) Highly active metathesis catalysis selective for romp and rcm
To et al. Iron-catalyzed one-pot sequential transformations: synthesis of quinazolinones via oxidative Csp3H bond activation using a new metal-organic framework as catalyst
CN104262590B (zh) 一种金属络合物配体、金属络合物及其制备方法和应用、高分子聚合物及其制备方法和应用
EP3296302A1 (en) Chiral spiro phosphorus-nitrogen-sulphur tridentate ligand, and preparation method and application thereof
CN105772094B (zh) 一种手性氮杂环卡宾类催化剂及其应用
Masoud et al. Synthesis of metathesis catalysts with fluorinated unsymmetrical N, N’-diaryl imidazoline-based NHC ligands
CN114436949B (zh) 一种四齿配体及金属络合物及其制备方法和应用
EP1670792B1 (en) Process for the preparation of chiral propionic acid derivatives
CN102503976A (zh) 一种α-位季碳的α,β-二胺酸衍生物及其合成方法和应用
CN109810147B (zh) 芘标记的苯并咪唑氮杂环卡宾钯金属配合物及制备和应用
CN101717408B (zh) 含双磷叶立德茂环卡宾前体的鏻盐化合物及其制备方法和用途
CN114907197A (zh) 一种双吖丙啶基光交联探针中间体及衍生物的制备方法
CN107641165A (zh) 钌金属催化剂DREAM‑2nd及其在烯烃关环复分解和双环戊二烯聚合反应中的应用
CN111454222B (zh) 一种2,4-(1h,3h)-喹唑啉二酮及其衍生物的合成方法
CN115594636B (zh) N-杂环卡宾配体、n-杂环卡宾钌络合物及其合成方法和应用
WO2019119516A1 (zh) 基于四甲基螺二氢茚骨架的双噁唑啉配体化合物及其中间体和制备方法与用途
CN109317194B (zh) 一种用于一步合成环二肽的催化剂及应用
CN113845550B (zh) 一种含有卤代苯环的柔性大位阻n-杂环卡宾钯配合物和制备方法及其应用
JP4011022B2 (ja) 高分子固定化アレンルテニウム錯体とその触媒並びにこれを用いた有機合成反応方法
CN114436996B (zh) 一种β2-氨基酸衍生物的制备方法
Kadu et al. A rapid and greener MOF-2 catalyzed Knoevenagel reaction at room temperature
EP3205656A1 (en) Solid-supported ruthenium-diamine complex, and method for manufacturing optically active compound
CN111377964A (zh) 一种吡唑联三氮唑膦化合物及其应用
CN114874127A (zh) 一种二氟羰基化吲哚酮类化合物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201230

Address after: 610000 Shunsheng Road, Zhengxing Street, Tianfu New District, Chengdu City, Sichuan Province

Patentee after: Premier new materials (Chengdu) Co.,Ltd.

Address before: 622, 6th floor, unit 1, building 8, No. 1700, North Tianfu Avenue, high tech Zone, Chengdu, Sichuan 610000

Patentee before: Chengdu Kaimei Business Information Consulting Center (L.P.)