CN110023822A - 时空增量光纤扫源 - Google Patents

时空增量光纤扫源 Download PDF

Info

Publication number
CN110023822A
CN110023822A CN201680090688.4A CN201680090688A CN110023822A CN 110023822 A CN110023822 A CN 110023822A CN 201680090688 A CN201680090688 A CN 201680090688A CN 110023822 A CN110023822 A CN 110023822A
Authority
CN
China
Prior art keywords
optical fiber
fiber
optical
source
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680090688.4A
Other languages
English (en)
Other versions
CN110023822B (zh
Inventor
黄建业
韦小明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hong Kong HKU
Original Assignee
University of Hong Kong HKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hong Kong HKU filed Critical University of Hong Kong HKU
Publication of CN110023822A publication Critical patent/CN110023822A/zh
Application granted granted Critical
Publication of CN110023822B publication Critical patent/CN110023822B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29358Multiple beam interferometer external to a light guide, e.g. Fabry-Pérot, etalon, VIPA plate, OTDL plate, continuous interferometer, parallel plate resonator
    • G02B6/29359Cavity formed by light guide ends, e.g. fibre Fabry Pérot [FFP]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4285Optical modules characterised by a connectorised pigtail
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1106Mode locking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B2006/0098Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings for scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0005Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type
    • G02B6/0008Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being of the fibre type the light being emitted at the end of the fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

时空增量光纤扫源包括用于生成光脉冲的激光脉冲生成器和个体光纤的光纤阵列(24)。光纤阵列(24)具有输入端(21)和输出端(23),其中在输入端(21)处的光纤基本上同时地接收光脉冲。输出端(23)处的光纤以光栅扫描图案(例如正方形图案)被布置,其中每个光纤中的光学延迟大于扫描图案方向上的先前一个。结果,光以完全光学的二维光栅扫描图案退出阵列(24)。它不具有移动部件,并因此不具有机械惯性,所以可以实现极其高速的扫描。

Description

时空增量光纤扫源
技术领域
本发明涉及用于提供超快无惯性空间扫描激光脉冲的光纤源。
背景技术
光学成像在过去十年中已经引起来自各个领域、尤其是工业检查和生物医学诊断的极大关注。随着科学研究已经越来越深入到这些领域的细节中,人们已经变得对动态行为越来越感兴趣,特别是那些涉及生命科学的动态行为,例如血液动力学、细胞学和神经学,所述动态行为提供可以帮助提供人体的更好理解的信息。特别是对疾病和其他组织功能性的超快动态诊断存在很大兴趣。为了可视化高速动态事件,要求光学成像器来提供高敏感度和高吞吐量。例如广泛使用的CCD/CMOS相机和光电倍增管(PMT)之类的现代光接收器可以提供出色的敏感度。另一方面,它们的成像速度受到很大限制,这导致模糊的图像。因此,增强光学系统的速度已成为近年中的热门话题。典型地,为了增加光学系统的有效速度,存在必须解决的两个主要问题:扫描速度和信号读出速度。
执行二维(2D)成像的常规方式是通过多维平移平台(translation stage)在对象上逐点扫描(即,光栅扫描)。不幸的是,机械惯性将这些庞大平台的移动速度限制到,典型地,若干mm/s。对于这类机械平台或执行器(actuator)的示例,参见Newport公司制造的LTA精密电动执行器,系列300862。https: //www. newport. com/Precision-Motorized- Actuators, -LTA-Series/300862/1033/info. asp x#tab_Specifications。因此,完成2D图像扫描花费几十分钟或者甚至几小时。
可以由机械平台通过光束来移动对象或样本,或者,不是移动样本,更有利的方式是通过使用高速扫描检流计镜(~kHz)或声光偏转器(AOD,几十kHz)在对象上扫描激光束,这可以将2D成像帧速率提升到100 Hz。参见通过引用在其整体上并入本文的X. Chen,U.Leischner,Z. Varga,H. Jia,D. Deca,N. L. Rochefort和A. Konnerth,“LOTOS-basedtwo-photon calcium imaging of dendritic spines in vivo”,Nat. Protoc. 7(10),1818-1829(2012)。虽然在后一种情况下,即在移动光束的情况下,确实可以执行视频速率成像,但是其仍然离针对那些高度动态对象的3D体积可视化的要求远。
除了扫描速度之外,光学信号的读出时间是对有效提升成像速度的另一个限制,并且它必须足够快以获取快速扫描信号。传统上,通过CCD/CMOS相机读出光学信号,然而CCD/CMOS相机展示出不可接受的时延并导致慢的帧速率,典型地100Hz,并因此导致长的读出时间。参见通过引用在其整体上并入本文的日本京都的Shimadzu公司的超视觉HPV-2高速视频相机,http: //www. shimadzu.com/an/test/hpv/hpv2_1. html。为了克服那些问题,最近已经提出了例如傅立叶域模式锁定(FDML)扫源(swept source)之类的波长扫源,以利用那些高速光电探测器(photodetector,PD)用于快速成像,并使能对于2D成像必要的视频速率。参见通过引用在其整体上并入本文的R. Huber,M. Wojtkowski和J. G.Fujimoto,“Fourier Domain Mode Locking (FDML):A new laser operating regime andapplications for optical coherence tomography”,Opt. Express 14,3225-3237(2006)。不幸的是,波长扫源是点源,并且其对于2D/3D成像而言,经由例如检流计扫描来执行点扫描仍然是必要的。
光学时间拉伸(Optical time-stretch)是新兴的强大的全光学技术,其可以进一步将波长扫速率增强高达MHz范围。参见通过引用在其整体上并入本文的K. Goda,K. K.Tsia和B. Jalali,“Serial time-encoded amplified imaging for real-timeobservation of fast dynamic phenomena”,Nature 458,1145-1149 (2009) 。然而,它具有与FDML的问题相同的问题,即要求额外的扫描。具体地,需要机械或电子扫描单元来执行2D成像。更重要的是,诸如在传统流式细胞仪中使用的波长扫源之类的波长扫源以kHz水平操作并且展示出具有典型地在mW水平处的有限的瞬时峰值功率的宽脉冲波形。时间拉伸的性质,即高频线性调频,也限制瞬时峰值功率。因此,它不能用于例如多光子成像之类的要求高峰值功率的那些应用。参见通过引用在其整体上并入本文的N. G. Horton,K. Wang,D. Kobat, C. G. Clark,F. W. Wise,C. B. Schaffer和C. Xu,“In vivo three-photonmicroscopy of subcortical structures within an intact mouse brain”,Nature Photon.,7,205-209 (2013) 。
发明内容
本发明提供了一种2D空间扫源作为新的激光源,以克服上面提及的所有限制,并将2D成像的帧速率提升到前所未有的水平——几十MHz,即在<100ns之内的2D图像捕获。利用时空增量光纤扫源(STIFSS)来实现本发明。利用STIFSS,将激光束应用到一束光纤的一端。在该束的另一端处,将光纤布置在光栅显示器中。显示器的光纤依次具有不同的长度,使得光束在显示器中显现为光栅扫描,而不具有对于光束或对象的机械或电子移动的需要。这类快速图像捕获对于其中传统光栅扫描是不可能的那些应用、特别地对于高吞吐量流式细胞仪而言是至关重要的。
与具有低瞬时功率(mW)的传统扫源不同,2D空间扫STIFSS可以提供高达kW水平的峰值功率,这将允许在诸如双光子或者甚至三光子共聚焦显微镜检查之类的应用中使用。此外,单个空间像素的停留时间(dwell time)处于亚皮秒(sub-ps)的量级——比CCD/CMOS相机的停留时间快若干数量级。此外,它的超宽操作波长范围(超过倍频程)使能例如超快多光子成像、光谱编码成像、超光谱成像之类的大规模应用。更重要的是,它是用于光学成像系统的具有成本效益的解决方案。
STIFSS的主要元素是:(1)超快飞秒(fs)脉冲生成;(2)脉冲预线性调频;以及(3)超快空间扫。对于fs脉冲生成,采用简单的光纤环形腔体来执行非线性偏振旋转(nonlinear polarization rotation,NPR)模式锁定。这产出fs脉冲序列。为了简化腔体,设计致密的光学集成模块(OIM)来提供多个光学功能:泵浦组合、偏振敏感的单向操作以及信号分接。增益介质是一块稀土掺杂的光纤,其由光纤尾纤激光二极管泵浦。该fs激光腔体的操作条件由内嵌(in-line)的偏振控制器优化。腔体长度L确定2D帧。
预线性调频单元基本上是一块长度是~100 m的单模光纤(SMF)。主要利用它来补偿后来由空间扫单元(SSU)引发的线性调频。设计所述系统使得预线性调频中的色散分别地与SSU中的色散相反。
对于空间扫,通过光纤准直器将预线性调频脉冲发射到自由空间望远镜中。望远镜扩展从准直器输出的光束大小,典型地若干mm,以匹配后续光纤束或阵列的孔径。在望远镜之后,扩展的激光束耦合到2D像素延迟光纤束或阵列中,以基于光纤中的差分延迟实现空间扫。
附图说明
当结合以下详细描述和附图考虑时,本发明的前述和其他目的和优点将变得更清楚,其中相同的标记在各个视图中表示相同的元素,并且其中:
图1A是根据本发明的时空增量光纤扫源(STIFSS)的示意图并且图1B是根据本发明的2D像素延迟光纤阵列的示意图;
图2是图示本发明原理的1D像素延迟光纤阵列的示意图,其中插图示出了一维输出光纤阵列的输入和输出端的白光显微图像;
图3A是在光谱展宽之前的Yb-增益光纤STIFSS的光谱的图并且图3B是在光谱展宽之后的相同光谱的图;
图4A是在SSU之前具有处于1.0μm的Yb-增益光纤的一维STIFSS的时间脉冲序列的强度图,图4B是图4A的放大版本,图4C是在SSU之后具有Yb-增益光纤的一维STIFSS的时间脉冲序列的强度图,并且图4D是图4C的放大版本;
图5A是针对在29 MHz的线扫描速率处的一维STIFSS的成像设置的图。图5B示出了图5A中的成像平面处的光学照明图案,图5C是在图5A的设置中被用作样本目标的USAF 1951分辨率目标,并且图5D是利用图5A的STIFSS捕获的图5C的目标的图像;
图6A是通过在SSU之前对Yb-增益光纤激光进行倍频、在530 nm处的STIFSS的时间脉冲序列的强度图,图6B是图6A的放大版本,其具有示出了倍频之后的模式锁定脉冲的光谱的插图,图6C是通过在SSU之后对Yb-增益光纤激光进行倍频、在530 nm处的STIFSS的时间脉冲序列的强度图,并且图6D是图6C的放大版本;
图7A是在SSU之前具有Er-增益光纤的STIFSS的时间脉冲序列的强度图,图7B是图7A的放大版本,其具有示出了来自激光腔体的模式锁定脉冲的光谱的插图,图7C是在SSU之后具有Er-增益光纤的STIFSS的时间脉冲序列的强度图,并且图7D是图7C的放大版本;以及
图8A是在SSU之前具有Tm-增益光纤的STIFSS的时间脉冲序列的强度图,图8B是图8A的放大版本,其具有示出了直接从激光腔体输出的模式锁定脉冲的光谱的插图,图8C是在SSU之后具有Tm-增益光纤的STIFSS的时间脉冲序列的强度图,图8D是图8C的放大版本。
具体实施方式
本发明的时空增量光纤扫源(STIFSS)向成像的每个帧提供超快无惯性空间扫描激光脉冲。如图1B中示出的那样,通过光纤阵列的光纤中的差分时间延迟将sub-ps脉冲序列线性地映射到2D空间分布中。每个空间像素提供sub-ps停留时间。该全新的激光源可以直接应用于现有的光学成像系统,并且它可以以几十MHz的帧速率执行2D成像,所述帧速率比机械光栅扫描系统的帧速率快若干数量级,所述机械光栅扫描系统典型地在kHz的范围中操作。
如图1A中示出的,STIFSS可以被划分成三个部分:1)具有波长窗口管理的高功率超短脉冲生成(超快飞秒(fs)脉冲生成),2)脉冲预线性调频以及3)超快空间扫。对于高功率超短脉冲生成,采用简单的光纤环形腔体10来执行非线性偏振旋转(NPR)模式锁定,从而提供在几十MHz处的sub-ps或fs脉冲序列。为了简化腔体,基于光纤的光学集成模块(OIM)12用于提供多个光学功能:用于泵浦和信号组合的波分复用(wavelength-divisionmultiplexing,WDM),以及用于信号提取的光学耦合(OC)。具体地,OIM 12提供泵浦组合、偏振敏感的单向操作以及信号分接。增益介质是一块稀土掺杂的光纤11,其由光纤尾纤激光二极管14泵浦。为了使能高平均输出功率,增益光纤11具有包括内包层和外包层的双包层设计,这已经在商业上可用。内包层主要将信号界定(confine)在小芯(~10μm)中用于单模操作,而外包层促进具有更大的模式大小(~100μm)的多模泵浦激光的传播。这样,可以通过使用典型地提供在功率上的几十瓦特的具有成本效益的高功率多模泵浦激光二极管来泵浦激光腔体。受益于最先进的双包层增益光纤的高效率,例如,在1.0μm处> 70%(参见);输出信号的平均光学功率可以达到若干瓦特。为了确保激光腔体输送超短脉冲,在光纤腔体内部采用模式锁定器16。模式锁定器可以是有源的(例如,强度调制器),或者是无源的(例如,半导体可饱和吸收器和非线性偏振旋转器)。腔体长度L将确定2D帧速率。基本上,脉冲激光可以是双向的或单向的,而后一种情况要求附加的隔离器。
为了满足用于特定应用的不同感兴趣波长,激光腔体的操作波长必须是可切换的或足够宽以供不同用户的选择。为了满足该需要,可以设计具有两个波长工程方案的STIFSS系统:第一,来自光纤腔体的模式锁定脉冲的中心波长被设计成通过选择不同的掺杂光纤而被简单地改变,例如对于900 nm 是Nd-掺杂、对于1.0μm是Yb-掺杂、对于1.5μm是Er-掺杂以及对于2.0μm是Tm-掺杂。第二,通过使用例如光子晶体光纤(PCF)之类的高度非线性光纤,可以进一步展宽光纤腔体外部的波长范围。利用这两个方案,波长窗口对于不同的应用是非常灵活的。
为了管理归因于光纤中的色散问题的脉冲展宽效应,并在STIFSS的最终输出处获得被变换限制的超短脉冲接近(approaching),在光谱展宽之后立即利用预线性调频单元19来先对具有相反色散的脉冲进行线性调频,这可以补偿在后来的传播期间、主要地在跟随预线性调频单元19的空间扫单元(SSU)中将经历的色散。可以通过色散元件来实现该预线性调频,所述色散元件例如单模光纤(SMF)或线性调频的光纤Bragg光栅(fiber Bragggrating,FBG)。它可以是一块SMF,在长度上是~100 m。应当指出,目标是使预线性调频中的色散分别地等于由SSU引入的色散以及与由SSU引入的色散相反。
对于由SSU 26执行的空间扫,通过光纤准直器20将预线性调频脉冲应用到自由空间望远镜22。由两个光学透镜组成的望远镜扩展光纤准直器的光束大小,典型地1-2 mm,以匹配光纤阵列24的输入孔径(参见图1B)。在望远镜之后,扩展的激光束耦合到2D像素延迟光纤阵列中,用于空间扫。如图1B中示出的,光纤阵列是例如400个光纤的特殊设计的光纤束,并且每个光纤具有100μm的芯和125μm的包层。利用针对光纤顺序的随机顺序将像素延迟光纤束的输入端21以圆形形状封装;而另一端23是以正方形形状的(以~2.5×2.5 mm大小的20×20光纤)。令输入处的光纤处于随机图案使归因于不均匀的输入光的输出中的光变化的可能性减小。另外,输出端处的光纤的布置可以是任何方便的扫描形状,例如,用于宽屏幕显示器的矩形。以一顺序布置输出光纤,使得对应于~100 ps的时间延迟,以~2 cm的增量长度实现连续光纤。因此,以如图1B的表格插图25中示出的光栅样式(rasterfashion)排序从光纤束的输出端退出(exit)的脉冲。因此,如图1A的右插图13中示出的,同时输入的脉冲将以100 ps的时间延迟一个接一个地退出光纤束,即以全光学的方式执行空间扫描。该束的光纤可以具有0.22的数值孔径(NA),并且覆盖从400 nm至2000 nm的波长范围,参见图1B的插图27。由于来自光纤激光腔体的每个脉冲将生成2D空间扫图案,如图1A的右侧示出的那样,因此2D扫描速率与光纤激光的重复率——即由腔体长度L确定的重复率相一致。
为了证明该概念,利用具有范围从530 nm至1900 nm的光学波长的STIFSS的一维(1D)版本进行初步研究。应用该设计来执行超快成像。如图2中示出的,将58-光纤构造成纤维束或阵列30,其中在输入端32处,58个光纤以圆圈被随机地束缚(bound)在一起,而在输出端34处,它们被配置成具有2 cm的长度增量的1×58阵列。对于芯/包层,光纤分别具有190/200μm的大小。对于第一测试,利用Yb-掺杂的增益光纤构造激光腔体。图3A中图示了直接从光纤腔体输出的模式锁定脉冲的光谱,所述模式锁定脉冲的光谱以1064 nm为中心、具有~10 nm的带宽。如图3B中示出的,穿过高度非线性光纤之后的光谱被大幅地展宽以覆盖从~700 nm至~1700 nm的范围。在图4A(在图4B中被放大)和图4C(在图4D中被放大)中分别图示了在SSU 26之前和在SSU 26之后的时间波形。如图4B和4D中示出的,在SSU 26的输入处测量的单个窄脉冲已在空间上分布到宽脉冲波形(对应于100×58 ps,约5.8 ns)上。还清楚地示出了来自个体光纤像素的子脉冲,即沿着1D光纤阵列面在空间扫。对应于2 cm的光纤长度增量,相邻像素之间的时间间隔是~100 ps。通过激光源的重复率来确定线扫描速率,如图4A和图4C中示出的,即在该情况下是29 MHz。应指出,通过改变激光种子源的重复率,例如改变腔体长度,线扫描速率是可缩放的。图4中示出的性能是在1.0μm处。
然后,如图5A中示出的,应用具有Yb-增益光纤的STIFSS来执行超快显微镜检查。来自STIFSS 50的空间扫波形序列通过形成光束扩展器的两个中继光学透镜(L1和L2)被发射到光学成像部件中(图5A)。在成像平面处存在如图5B中示出的线性照明浴(单个线光栅光扫描),所述线性照明浴的像素在时间上以~100 ps的间隔步进。利用样本的空间信息来编码这些像素。用于该研究的样本是如图5C中示出的USAF 1951分辨率目标。在样本之后,利用另一个光学透镜(L3)将STIFSS脉冲序列聚焦到用于光学探测的高速光电探测器PD上。PD可以是单像素光电二极管,其目前具有几十GHz的带宽。在图5D中描绘了利用该超快STIFSS捕获的图像。在该测试中,照明浴在水平方向上,而机械扫描是自顶向下执行的。在这种情况下,光学线扫描速率是29 MHz。
除了具有Yb-增益光纤的STIFSS之外,还在没有光谱展宽的情况下在其他中心波长处执行测试,这可能对于其他领域中的应用而言有用。具体地,将从Yb-增益光纤腔体输出的脉冲倍频到530 nm,这是通过正好在SSU之前插入KTP非线性晶体来实现的。在图6中示出了530-nm STIFSS的性能。具体地,图6A示出了具有Yb-增益光纤并且在SSU之前倍频到530 nm的STIFSS的时间脉冲序列。图6B是图6A的放大版本,其具有示出了倍频之后的模式锁定脉冲的光谱的插图。图6C示出了具有Yb-增益光纤并且在SSU之后在530 nm处倍频的STIFSS的时间脉冲序列。图6D是图6C的放大版本。在图6B和6D中清楚地示出了空间扫操作。应当指出,归因于所使用的2-GHz硅可见窗口PD的有限带宽,子像素脉冲从图示消失。
图7和8分别示出了在具有Er-增益和Tm-增益光纤的STIFSS的性能。具体地,图7A示出了在SSU之前具有Er-增益光纤的STIFSS的时间脉冲序列,并且图7B是图7A的放大版本,其具有示出了来自激光腔体的模式锁定脉冲的光谱的插图。图7C图示了在SSU之后具有Er-增益光纤的STIFSS的时间脉冲序列,并且图7D是图7C的放大版本。图7中示出的性能是在1.5μm处。
图8A图示了在SSU之前具有Tm-增益光纤的STIFSS的时间脉冲序列,并且图8B是图8A的放大版本,其具有示出了直接从激光腔体输出的模式锁定脉冲的光谱的插图。图8C示出了在SSU之后具有Tm-增益光纤的STIFSS的时间脉冲序列,并且图8D是图8C的放大版本。图8中示出的性能是在2.0μm处。
对于图7和8中图示的测试,分别利用Er-掺杂和Tm-掺杂的增益光纤构造种子源的光纤腔体。应当指出,这两种情况的时间脉冲分组不像1.0-μm版本的时间脉冲分组(图4)那样宽。这是因为在测试过程中归因于在1.5和2.0μm处缺少望远镜,在SSU的输入处的光束大小未被优化。此外,在2.0μm STIFSS的情况下的子脉冲的消失是归因于来自光纤腔体的原始种子脉冲的更宽的脉冲宽度(>300 ps),如图8B中示出的。因此,可以改进结果。应当记住,利用单个SSU已经实现了宽波长范围(530-2000 nm)。
因此,本发明提供了一种超快单射(single-shot)成像系统以增强2D成像速度。以多光子显微镜检查为例,sub-ps停留时间与无惯性2D扫描一起使能前所未有的超快荧光成像。另一个应用是流式细胞术的实时2D成像。与仅可以提供模糊点的常规细胞术不同,本发明的2D空间扫源可以使能几十m/s流动2D图像。此外,它不仅可以经由2D空间编码提供形态学图像(morphological image),而且还可以作为其高峰值功率的结果来提供化学信息。
虽然已经参考本发明的优选实施例具体地示出和描述了本发明,但是本领域中的技术人员应理解,在不脱离本发明的精神和范围的情况下,可以在形式和细节方面在其中做出各种改变。

Claims (11)

1.一种时空增量光纤扫源,包括:
用于生成光脉冲的光脉冲生成器;以及
具有输入端和输出端的个体光纤的光纤阵列,输入端处的光纤基本上同时地接收光脉冲,输出端处的光纤以光栅扫描图案被布置,其中每个光纤中的光学延迟大于扫描图案方向上的先前一个,由此光以光栅扫描图案退出阵列作为扫源。
2.根据权利要求1所述的扫源,其中光脉冲生成器包括:
光纤环形腔体,其执行偏振旋转模式锁定;
激光二极管,其将光脉冲泵浦到光纤环形腔体中;
光纤环形腔体内部的模式锁定器,用于确保超短脉冲的输送;
基于光纤的光学集成模块,其提供用于泵浦和信号组合的波分复用,以及用于信号提取的光耦合,所述集成模块提供来自所述光纤环形腔体的输出脉冲;以及
预线性调频单元,其接收来自集成模块的输出并且先对脉冲进行线性调频以补偿在光通过光纤阵列的通路期间将经历的色散。
3.根据权利要求2所述的扫源,其中光纤环形腔体的光纤是具有双包层的稀土掺杂的光纤。
4.根据权利要求2所述的扫源,其中激光二极管是高功率多模光纤尾纤泵浦激光二极管。
5.根据权利要求2所述的扫源,其中模式锁定器是有源或无源的。
6.根据权利要求5所述的扫源,其中有源模式锁定器是强度调制器,并且无源模式锁定器是半导体可饱和吸收器或非线性偏振旋转器。
7.根据权利要求1所述的扫源,进一步包括准直器和光束扩展器,其中准直器从光脉冲生成器接收光脉冲并将光脉冲传递到光束扩展器,光束扩展器继而将光脉冲引导到光纤阵列的输入。
8.根据权利要求2所述的扫源,其中通过在光纤阵列之前放置非线性光纤光学器件来改变光脉冲生成器的波长范围。
9.根据权利要求1所述的扫源,其中通过控制光纤长度来控制光纤中的光学延迟。
10.根据权利要求1所述的扫源,其中输入处的光纤阵列的光纤以圆形图案被随机布置,并且在输出端处它们以矩形光栅扫描图案被布置。
11.一种图像生成器,包括:
根据权利要求1的扫源;
第一透镜系统,用于从接收自扫源的光来形成准直光,并将准直光引导到成像平面处的样品上;
在成像平面之后的第二透镜系统,用于收集由成像平面处的样品编码的光;以及
光电探测器,用于接收编码的光并且从其形成图像。
CN201680090688.4A 2016-11-09 2016-12-01 时空增量光纤扫源 Active CN110023822B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/347,602 US9977184B1 (en) 2016-11-09 2016-11-09 Spatio-temporally incremental fiber swept source
US15/347,602 2016-11-09
PCT/CN2016/108267 WO2018086173A1 (en) 2016-11-09 2016-12-01 Spatio-temporally incremental fiber swept source

Publications (2)

Publication Number Publication Date
CN110023822A true CN110023822A (zh) 2019-07-16
CN110023822B CN110023822B (zh) 2023-05-02

Family

ID=62064460

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680090688.4A Active CN110023822B (zh) 2016-11-09 2016-12-01 时空增量光纤扫源

Country Status (4)

Country Link
US (1) US9977184B1 (zh)
EP (1) EP3538948A4 (zh)
CN (1) CN110023822B (zh)
WO (1) WO2018086173A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3558091A4 (en) 2016-12-21 2020-12-02 Acucela, Inc. MINIATURIZED AFFORDABLE OPTICAL COHERENCE TOMOGRAPHY SYSTEM FOR OPHTHALMIC APPLICATIONS IN THE HOME
JP7402866B2 (ja) 2018-06-20 2023-12-21 アキュセラ インコーポレイテッド 家庭用眼科用途のための小型化モバイル低コスト光干渉断層撮影システム
JP2023508946A (ja) 2019-12-26 2023-03-06 アキュセラ インコーポレイテッド 自宅ベースの眼科用途のための光干渉断層撮影患者整列システム
CN113126279B (zh) * 2019-12-31 2022-10-18 成都理想境界科技有限公司 一种光纤扫描器及近眼显示系统
US10959613B1 (en) 2020-08-04 2021-03-30 Acucela Inc. Scan pattern and signal processing for optical coherence tomography
WO2022035809A1 (en) 2020-08-14 2022-02-17 Acucela Inc. System and method for optical coherence tomography a-scan decurving
US11393094B2 (en) 2020-09-11 2022-07-19 Acucela Inc. Artificial intelligence for evaluation of optical coherence tomography images
US11911105B2 (en) 2020-09-30 2024-02-27 Acucela Inc. Myopia prediction, diagnosis, planning, and monitoring device
CN117222353A (zh) 2021-03-24 2023-12-12 奥克塞拉有限公司 轴向长度测量监测器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892468A (en) * 1973-09-28 1975-07-01 Bell Telephone Labor Inc Optical scanner utilizing organ arrays of optical fibers
CN1322307A (zh) * 1998-10-08 2001-11-14 先进激光技术公司 光束显示器
CN1713020A (zh) * 2005-07-21 2005-12-28 中国科学院光电技术研究所 利用微透镜或微棱镜阵列进行扫描的光学相干层析系统
US20100224794A1 (en) * 2008-06-24 2010-09-09 Olympus Corporation Multiphoton-excited measuring device
CN104854423A (zh) * 2012-12-06 2015-08-19 周超 空分复用光学相干断层扫描设备及方法
KR20150116649A (ko) * 2014-04-08 2015-10-16 한양대학교 산학협력단 광 기반 어레이를 구비하는 광 기반 다중초점 다중광자 현미경 및 광 기반 어레이를 제조하는 장치 및 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4952022A (en) * 1989-03-02 1990-08-28 Xerox Corporation Fiber optic line illuminator with deformed end fibers and method of making same
US6587189B1 (en) 1999-11-29 2003-07-01 Srs Technologies Robust incoherent fiber optic bundle decoder
US6909094B2 (en) 2003-02-12 2005-06-21 Philip Norris Usa Inc. System and method for terahertz imaging using a single terahertz detector
US7468997B2 (en) * 2006-01-20 2008-12-23 Praevium Research, Inc. System for swept source optical coherence tomography
US20130215431A1 (en) * 2010-06-16 2013-08-22 The Board Of Trustees Of The Leland Stanford Junior University Optical coherence tomography system and method therefor
US9164240B2 (en) * 2011-03-31 2015-10-20 Lightlab Imaging, Inc. Optical buffering methods, apparatus, and systems for increasing the repetition rate of tunable light sources
KR20140147321A (ko) * 2013-06-19 2014-12-30 한국전자통신연구원 파장 훑음 광원 장치 및 그것의 작동 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892468A (en) * 1973-09-28 1975-07-01 Bell Telephone Labor Inc Optical scanner utilizing organ arrays of optical fibers
CN1322307A (zh) * 1998-10-08 2001-11-14 先进激光技术公司 光束显示器
CN1713020A (zh) * 2005-07-21 2005-12-28 中国科学院光电技术研究所 利用微透镜或微棱镜阵列进行扫描的光学相干层析系统
US20100224794A1 (en) * 2008-06-24 2010-09-09 Olympus Corporation Multiphoton-excited measuring device
CN104854423A (zh) * 2012-12-06 2015-08-19 周超 空分复用光学相干断层扫描设备及方法
KR20150116649A (ko) * 2014-04-08 2015-10-16 한양대학교 산학협력단 광 기반 어레이를 구비하는 광 기반 다중초점 다중광자 현미경 및 광 기반 어레이를 제조하는 장치 및 방법

Also Published As

Publication number Publication date
CN110023822B (zh) 2023-05-02
WO2018086173A1 (en) 2018-05-17
US9977184B1 (en) 2018-05-22
US20180128972A1 (en) 2018-05-10
EP3538948A4 (en) 2020-06-10
EP3538948A1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
CN110023822A (zh) 时空增量光纤扫源
Andresen et al. Two-photon lensless endoscope
CN108303806B (zh) 一种深度成像超分辨显微成像系统
Sivankutty et al. Ultra-thin rigid endoscope: two-photon imaging through a graded-index multi-mode fiber
Wu et al. Speed scaling in multiphoton fluorescence microscopy
Cadroas et al. All-fiber femtosecond laser providing 9 nJ, 50 MHz pulses at 1650 nm for three-photon microscopy
Duocastella et al. Acousto-optic systems for advanced microscopy
US20070290145A1 (en) System and Method for Carrying Out Fibre-Type Multiphoton Microscopic Imaging of a Sample
US20150015879A1 (en) Methods and apparatus for imaging with multimode optical fibers
CN106092986B (zh) 脑组织的无标记高分辨成像系统
CN107534261A (zh) 用于在时间上拉伸/压缩光学脉冲的空间啁啾腔室
JP6912555B2 (ja) レンズレス内視顕微鏡撮像用光ビームを伝送及び制御するための装置及び方法
CN108333151B (zh) 一种基于飞秒脉冲整形的超分辨显微成像系统及成像方法
CN105467572A (zh) 单波长实现多光子脉冲sted-spim显微系统
CN103616330A (zh) 基于超连续产生的宽带激光光源激发的超分辨sted显微成像系统
He et al. Deep-tissue two-photon microscopy with a frequency-doubled all-fiber mode-locked laser at 937 nm
US9494781B2 (en) Plane-projection multi-photon microscopy
CN108897126A (zh) 一种荧光成像系统
CN107632402A (zh) 一种用于实时观测微纳瞬变现象的连续/突发/相差三模超快显微成像方法
CN103852877B (zh) 一种超高分辨率非线性光学显微系统
CN103885166A (zh) 基于布拉格衍射晶体的超高分辨非线性激发荧光显微系统
US20110199676A1 (en) Confocal microscope
Kim et al. Masked illumination scheme for a galvanometer scanning high‐speed confocal fluorescence microscope
CN105300934A (zh) 一种单通道光学超分辨成像仪器
Bianchini et al. An inertia-free beam scanning device for single-wavelength 2PE-STED nanoscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant