CN110023463A - 液化前天然气的预处理 - Google Patents

液化前天然气的预处理 Download PDF

Info

Publication number
CN110023463A
CN110023463A CN201780067756.XA CN201780067756A CN110023463A CN 110023463 A CN110023463 A CN 110023463A CN 201780067756 A CN201780067756 A CN 201780067756A CN 110023463 A CN110023463 A CN 110023463A
Authority
CN
China
Prior art keywords
tower
gas
stream
absorption tower
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780067756.XA
Other languages
English (en)
Inventor
T.K.贾斯金
F.亚明
G.古贝利奥卢
V.帕拉西奥斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CB&I Technology Inc
Original Assignee
Lummus Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lummus Technology Inc filed Critical Lummus Technology Inc
Publication of CN110023463A publication Critical patent/CN110023463A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0247Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0295Start-up or control of the process; Details of the apparatus used, e.g. sieve plates, packings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/543Distillation, fractionation or rectification for separating fractions, components or impurities during preparation or upgrading of a fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/50Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/04Mixing or blending of fluids with the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/60Natural gas or synthetic natural gas [SNG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/04Recovery of liquid products
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/32Compression of the product stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/10Control for or during start-up and cooling down of the installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了从天然气去除高凝固点组分的方法和系统。进料气在热交换器中冷却并分离成第一蒸气部分和第一液体部分。第一液体部分使用热交换器再热并分离成高凝固点组分流和非凝固组分流。可将一部分非凝固组分流至少部分液化并由吸收塔接收。可冷却第一蒸气部分并由吸收塔接收。使用该吸收塔产生基本上不含高凝固点凝固组分的塔顶蒸气产物及包含凝固组分和非凝固组分的塔底产物液体流。

Description

液化前天然气的预处理
发明领域
本公开涉及液化前预处理天然气流的系统、方法和工艺,更具体而言,涉及从天然气流去除重质或高凝固点烃。
背景
通常希望在液化天然气之前从天然气流去除组分如酸性气体(例如,H2S和CO2)、水和重质或高凝固点烃,因为这些组分可能在液化天然气(LNG)流中凝固。高凝固点烃包括与异戊烷等重或更重的所有组分(C5+)和芳烃,特别是苯,其具有非常高的凝固点。
待液化的天然气的来源可包括来自管道或来自特定油田的气体。管道输气常在800psia和1200psia之间的压力下完成。因此,预处理方法应优选能够在800psia或更高的入口压力下良好地运行。
去往液化装置的进料气的示例性规格含有少于百万分之一体积(ppmv)的苯及少于0.05摩尔%的戊烷和更重(C5+)组分。高凝固点烃组分去除设施通常位于去除汞、酸性气体和水的预处理设施的下游。
用于预处理LNG进料气以去除高凝固点烃的简单且常见系统涉及使用入口气体冷却器、用于去除冷凝液体的第一分离器、用以进一步冷却来自第一分离器的蒸气的膨胀器(或Joule-Thompson (JT)阀或制冷装置)、用于去除另外的冷凝液体的第二分离器、以及用于加热来自第二分离器的冷蒸气的再热器。再热器和入口气体冷却器通常构成单个热交换器。来自第一和第二分离器的液体流将含有进料气的苯和C5+组分以及进料气中也已冷凝的一部分较轻的烃。这些液体流可通过与入口气体的热交换而再热。这些液体流还可进一步分离以从可被运送至LNG装置的组分分离以浓缩高凝固点组分,而无需凝固。
在其中去往现有LNG装置的进料气变为比预期含有更多苯的情况下,高凝固点烃去除装置将不能够满足所需的苯去除以避免在液化装置中凝固。另外,高凝固点组分去除装置中的特定位置可能由于苯的增加而凝固。LNG设施可能因不再接受具有较高苯浓度的气体来源而不得不降低产量,或者如果苯浓度不能降低则完全停止生产。
而且,虽然进料气压力可能随时间改变,但在去除重质烃的现有方法中存在的最低系统压力可有多高的极限。高于此压力,则蒸气和液体的物理性质将不允许有效的分离。常规系统必须比仅仅为了满足这些物理性质要求所需多得多地降低压力,并且伴随着压力的这种降低将存在能量效率的牺牲。
本领域需要提供从天然气流改善地去除高凝固点烃的系统和方法。本领域还需要更高效地从天然气流去除高凝固点烃。本公开针对这些需要提供了解决方案。
发明概述
一种从天然气去除高凝固点组分的方法包括在热交换器中冷却进料气。在分离容器中将进料气分离成第一蒸气部分和第一液体部分。使用热交换器再热第一液体部分。可在进入热交换器之前、在离开热交换器之后、或在进入热交换器之前和离开热交换器之后降低第一液体部分的压力。经再热的第一液体部分可提供给蒸馏柱、蒸馏塔或脱丁烷塔。经再热的第一液体部分被分离成高凝固点组分流和非凝固组分流。将一部分非凝固组分流至少部分液化。在一些实施方案中,可通过用热交换器冷却并降低压力来实现部分液化。在一些实施方案中,在这样的冷却和减压之前先增加非凝固组分流的压力(例如,通过使用压缩机)。经冷却和减压的非凝固组分流由吸收塔接收。吸收塔可包括一个或多个传质级。经分离进料气的第一蒸气部分可被冷却和减压并由吸收塔接收。使用吸收塔产生基本上不含高凝固点凝固组分的塔顶蒸气产物及包含凝固组分和非凝固组分的塔底产物液体流。来自吸收塔的塔顶蒸气产物可使用热交换器再热。来自吸收塔的塔底产物液体流可被加压和再热,并且可使至少一部分经再热的塔底产物液体流与进料气混合,然后进入热交换器中。该方法可还包括使用膨胀器-压缩机压缩经再热的塔顶蒸气产物以产生压缩气体流。可进一步压缩此压缩气体流以产生更高压力的残余气体流。此更高压力的残余气体流可被送至天然气液化设施。
在一些实施方案中,可升高来自蒸馏柱、蒸馏塔或脱丁烷塔的塔顶流的压力(例如,通过使用压缩器)。在一些实施方案中,可使一部分经压缩的塔顶流与一部分高压残余气体流混合,并将所得的合并流在热交换器中冷却并用作吸收塔的塔顶进料。在一些实施方案中,在吸收塔的上部进料点处接收的流可以喷雾引入。
在一些实施方案中,可升高来自蒸馏塔、蒸馏柱或脱丁烷塔的一部分非凝固组分流的压力并运送通过热交换器,其中使用经再热的塔顶蒸气产物冷却来使非凝固组分流部分液化,并且非凝固组分流的冷却部分可被运送到吸收塔的侧入口。
一部分更高压力的残余气体流可在热交换器中冷却、减压并作为吸收塔的塔顶进料运送。来自吸收塔的一部分塔底产物液体流可被运送至一个或多个另外的塔,所述一个或多个另外的塔包括脱甲烷塔、脱乙烷塔、脱丙烷塔和脱丁烷塔。
吸收塔操作压力可为约300psia至约850psia。例如,高于400psia、600psia、700psia和800psia之一。作为另一个实例,400-750psia、500-700psia和600-700psia。作为又一个实例,600-625psia、625-650psia、650-675psia和675-700psia。吸收塔操作压力可在比入口气体压力低约100-400psia内。例如,比入口气体压力低200-300psia。作为另一个实例,比入口气体压力低200-225psia、225-250psia、250-275psia和275-300psia。
用于从天然气去除高凝固点组分的系统包括用于冷却进料气的热交换器;用于将进料气分离成第一蒸气部分和第一液体部分的分离容器,其中第一液体部分在热交换器中再热;用于将经再热的第一液体部分分离成高凝固点组分流和非凝固组分流的第二分离容器;和用于接收经冷却和减压的非凝固组分流并接收经冷却和减压的第一蒸气部分的吸收塔。来自吸收塔的塔顶蒸气产物可用热交换器再热,塔顶蒸气产物基本上不含高凝固点组分。来自吸收塔的塔底产物液体流包含高凝固点组分和非凝固组分。在一些实施方案中,来自吸收塔的塔底产物液体流可被加压和再热,并且可使至少一部分经再热的塔底产物液体流与进料气混合,然后进入热交换器中。
从以下结合附图对优选实施方案的详细描述,本公开的系统和方法的这些及其他特征对本领域技术人员来说将更显而易见。
附图简述
因此,本公开所属领域技术人员将容易理解如何实现和使用本公开的装置和方法而无需过多的实验,下面将参考某些附图详细描述其优选实施方案。
图1为根据本文中一个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统和工艺的示意图;
图2为示意在图1的工艺过程中在气流中各个点处苯和混合丁烷的示例性浓度的示意图;
图3为根据本文第二个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统和工艺的示意图;
图4为根据本文第三个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统和工艺的示意图;
图5为根据本文第四个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统和工艺的示意图;
图6为根据本文第五个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统和工艺的示意图;
图7为根据本文第六个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统和工艺的示意图;和
图8为根据本文第七个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统和工艺的示意图。
结合附图从对本发明的以下详细描述,本公开的这些及其他方面对本领域普通技术人员来说将更显而易见。
详述
下面将参考附图,其中相同的附图标记表示本公开的类似结构特征或方面。
本文描述了新的低温工艺以在液化之前从经预处理的天然气流提取凝固组分(重质烃,包括但不必限于苯、甲苯、乙苯、二甲苯(BTEX)和环己烷)。
首先处理粗进料气以在液化之前去除凝固组分如CO2、水和重质烃。CO2和水的去除通过若干工业上可获得的工艺实现。然而,通过低温工艺去除凝固烃组分取决于要去除的组分的类型和量。对于组分如C2、C3、C4含量低但含有将在液化过程中凝固的烃的进料气,凝固组分的分离将更困难。
定义:如本文所用,术语“高凝固点烃”是指环己烷、苯、甲苯、乙苯、二甲苯和其他化合物,包括具有至少五个碳原子的大多数烃。如本文所用,术语“苯化合物”是指苯,并还指甲苯、乙苯、二甲苯和/或其他取代的苯化合物。如本文所用,术语“富甲烷气体流”是指具有高于50体积%甲烷的气体流。如本文所用,术语“增压装置”是指升高气体或液体流的压力的部件,包括压缩机和/或泵。如本文所用,“C4”是指丁烷和较轻的组分如丙烷、乙烷和甲烷。
表1:较重烃的性质(例如,选择的烃的凝固点)
参见表1,其显示了进料流中可能有的一些较重烃的性质(例如,凝固点),苯具有与正己烷和正庚烷相似的沸点和蒸气压。然而,苯的凝固点高约175°F。其中,正辛烷、对二甲苯和邻二甲苯也具有导致在比天然气中常见的其他组分基本上尚未冷凝为液体的温度高的温度下凝固的物理性质。
在实施方案中,本文所述的工艺通常具有混合烃进料流,其具有在100至20,000摩尔ppm C5+、或10至500摩尔ppm苯的范围内的高凝固点烃含量及在80至98摩尔%或90至98摩尔%的范围内的甲烷含量。富甲烷产物流通常具有在0至500摩尔ppm C5+、或0至1摩尔ppm苯的范围内的高凝固点烃含量及在85至98摩尔%或95至98摩尔%的范围内的甲烷含量。
在实施方案中,本文所述的工艺可在第一分离容器中使用-90至50°F和500至1200psia的范围内的温度和压力;或者,-90至10℉和500至1000psia。例如,-65至10°F和800至1000psia。在实施方案中,本文所述的工艺可在第二分离容器(例如,吸收塔或蒸馏柱)中使用在-170至-10°F和400至810psia的范围内的温度和压力。例如,-150至-80°F和600至800psia。
液化装置的入口气体的典型规格为苯<1摩尔ppm并且戊烷和更重组分<500摩尔ppm。表3和6示意了在液化之前可能需要预处理的典型进料气流的组成。凝固组分的分离是困难的,因为在冷却工艺过程中,液体流中没有足够量的C2、C3或C4来稀释凝固组分的浓度和防止它们凝固。在启动此工艺的过程中,在不存在任何C2至C4组分的情况下,当要从气体冷凝的第一组分为重质馏分时,该问题将被大大放大。为了克服此问题,已经开发了将在启动和正常运行的过程中消除凝固问题的工艺和系统。
就解释和示意而非限制的目的而言,图1中示出了根据本公开的用于重烃去除的方法、工艺和系统的示例性实施方案的局部视图并笼统地用附图标记100命名。如将要描述的那样,图2-8中提供了根据本公开的系统和方法的其他实施方案或其方面。本文所述的系统和方法可用于从天然气流去除重质烃,例如,用于从贫天然气流去除苯。
如前所述,通常需要在液化之前预处理天然气以防止高凝固点烃在天然气液化装置中凝固。在要去除的高凝固点烃组分中,苯常常是最难去除的。苯具有非常高的冷凝温度和高的凝固点温度。典型的液化烃入口气体纯度规格为苯少于百万分之一体积(ppmv)并且所有戊烷和更重组分的合并浓度小于0.05%。
此外,气体液化装置通常设计用于入口压力为800psia或更高的操作。预处理装置常常在800psia或更高的入口压力、800psia或更高的去往液化的出口压力下运行。这利用了可用的气体压力。液化装置也能够在较低的入口气体压力下运行,但容量和效率较低。然而,充分利用600psia-900psia入口压力范围内的能量是有挑战的。
而且,用作基础情况的气体组合物提出额外的挑战,因为苯浓度高(500ppm或更高)并且气体为贫气,具有大约97%的甲烷。因此,可冷凝以稀释冷凝苯的较重的烃非常少,从而增大了苯凝固的可能性。
通常,希望在尽可能高的压力下操作以降低气体再压缩要求。还希望使压降最小化以减少再压缩资本和操作成本。在接近入口高压运行下的运行将限制被膨胀器(或减压阀)提取的能量的量。然而,较高的运行压力与冷的运行温度相结合可能导致更接近烃的临界条件的运行;蒸气和液体之间的密度差小于在较低压力下的运行;液体表面张力较低;并且组分的相对挥发度差异较小。
常规的系统和工艺涉及多个冷却和分离步骤以避免苯的凝固,以及在低压下的运行以实现最终分离,即使在入口压力高时。而且,这些系统复杂并需要大量的功耗来进行再压缩。
本文的实施方案提供了一种可处理含有高浓度和高量苯的气体的简化装置。此外,本文的实施方案以高的入口压力处理高苯含量气体,通过最小化允许系统工作而不使入口气体中所含的苯或其他凝固组分凝固所需的压降来最小化再压缩功率要求,并在高压力系统中保持将允许可靠的分离操作的物理性质如密度和表面张力。
本文的实施方案还提供了允许在高凝固点去除工艺的入口处的入口气体压力高于600psia(例如,900psia)的系统和工艺。由该工艺递送的压力也可在高压下(例如,900psia)。可在凝固组分去除工艺过程中降低气体压力。使减压最小化是有利的,因为需要较少的再压缩资本和操作成本。此外,本文的实施方案使设备数量和成本最小化来实现所需的分离而不产生废产物如燃料气体流。在本文的各种实施方案中仅产生两种产物:去往液化装置的进料气;和具有苯液体产物的低蒸气压C5+。而且,本文的实施方案提供了一种无凝固地运转的工艺。
参见附图,图1示出了根据本文的一个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统100的示意图。如图所示,将含有苯(例如,40mols/hr或500ppmv)的进料气流2提供给系统100,与流28混合,成为流4,并提供给交换器6,在这里冷却,形成部分冷凝流8,该流进入冷分离器10。流12,其为来自冷分离器10的蒸气,进入减压装置14(例如,膨胀器或JT阀),其降低压力和温度并从流12提取能量。离开减压装置14的降温流16已被部分冷凝,并被运送至塔(例如,吸收塔) 70。塔70包括用于一个或多个传质级的内部构件(例如,塔盘和/或填料)。随着来自流16的蒸气上升并与来自流52的基本上不含C5+并吸收苯的下落液体相接触,塔70中发生传热和传质。来自塔70的蒸气流54在交换器6中再热以提供流4的冷却,并作为流56离开。流56被提供给膨胀器-压缩机58,在这里,压力被升高,并作为流60离开。流60被引导至残余物压缩机62并作为流64离开。在某些实施方案中,流64被进给到LNG液化设施。在某些实施方案中,如下文将更详细地讨论的,流64的一部分可作为流80分流以进一步处理或使用。流64符合针对进入液化装置的苯和C5+烃的规格。典型的液化装置规格为苯1ppmv或更低并且C5+ 0.05摩尔%或更低。
源自塔70底部的液体流18在泵20中升压,作为流22离开。该流22经过液位控制阀24并作为流26离开。此部分气化并自动制冷的流26在交换器6中再热,作为流28离开,与进料气2混合,并作为混合进料气流4的一部分被再次冷却。这些交换器路线是必要的,因为在不增加再循环液体流4的情况下,流2将随其冷却而凝固。出于能量平衡,需要再热从吸收塔塔底离开的流。
作为液体流30源自冷分离器10的冷再循环流在液位控制阀32上降低压力,作为流34离开。此部分气化并自动制冷的流34通过在交换器6中与进料气流2交换而被再热,作为流36离开。在某些实施方案中,可在热交换之前、热交换之后或者热交换之前和之后降低液体流30的压力。该流36在脱丁烷塔38中或在蒸馏柱、蒸馏塔或任何合适的组分分离方法中分离。一部分作为流40离开,其含有被去除的高凝固点烃(例如,苯和其他C5+组分)。一部分脱丁烷的流作为脱丁烷塔塔顶流47离开脱丁烷塔38并经过压缩机44和冷却器48,成为被压缩的脱丁烷塔塔顶产物流50。一部分经压缩的脱丁烷塔塔顶产物流50在进入吸收塔70之前在交换器6中冷却。该回路的再热和再冷路线对于能量平衡也是必要的。
经压缩的脱丁烷塔塔顶流50满足将其运送至产物气体以液化所需的纯度。然而,一部分经压缩的脱丁烷塔塔顶流50必须被运送至吸收塔70的塔顶。这部分经压缩的脱丁烷塔塔顶流50通过交换器6被运送回,在交换器6处,其被部分液化并作为流55离开,然后通过阀53减压并进入塔70塔顶处的上部进料点。也就是说,流52在一个或多个平衡级上方运送,膨胀器出口流16进入塔70的塔顶蒸气流54的传质级下方以满足低于1ppmw苯浓度规格的处理要求。因此,塔70接收流52和流16作为进料。
值得指出的是,去往LNG的流64仅含有0.0024ppm的苯,而典型的规格是低于1.0ppm。它几乎“没有”苯并且无法检测到。这种极好的性能提供了非常大的余地而难以“不合规格”。因此,可预期此工艺在较高的压力和温度下在塔中运行并仍满足所需的蒸气产物苯纯度。
残余气体压缩机62的功率要求估计为7300HP,脱丁烷塔塔顶压缩机所需的功率估计为973HP。基于百万标准立方英尺气体每天(MMscfd)的被处理入口气体,(7300+973)HP/728.5MMscfd等于11.36HP/MMscfd。脱丁烷塔塔顶冷凝器也可能需要制冷压缩。或者,可将脱丁烷塔塔顶冷凝负荷并入到主热交换器6中。另一替代方案是将经压缩的脱丁烷塔塔顶流被冷却时产生的液体的一部分再循环以充当吸收塔的回流。
图2为使用上面图1中所述的系统100去除高凝固点烃的工艺过程中气体流中苯和混合丁烷的示例性浓度的示意图。如图所示,提供了该工艺的关键点的苯摩尔比以帮助理解系统100。还提供了丁烷的摩尔比,作为为防止苯凝固而提供的稀释量的指示。下表2示出了在图2的各个点处苯和丁烷的相应浓度。
下表2示出了此工艺中的再循环如何降低非凝固液体(其包含C4)中苯的浓度,并且还示出了如何在分离器10中去除所有的入口苯。分离器10塔顶中的苯仅为从塔70再循环回冷分离器10的苯。再热吸收塔塔底流18并将其进料回进料气2中使得进料气2中的几乎所有凝固组分都含在分离器10的分离容器液体出口流中。以再循环2表示的第二个回路几乎不含可测量的苯。
表2:图2中所示工艺中代表性的点处苯和混合丁烷的浓度
图3为根据本文第二个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统300的示意图。系统300与上面在图1的上下文中描述的系统100相似。系统300包括附加的步骤,其中离开残余物压缩机62的经压缩残余气体流的一部分(流80)被取出以进一步处理。将流80与经压缩的脱丁烷塔塔顶流50混合,此合并流在交换器6中冷却,并将合并的部分冷凝流用作去往吸收塔70的塔顶进料。
进料气组成和条件与图1中系统100的那些相同,并且入口压力和塔70处的压力不变。在此情况下,例如,再循环1100mol/hr的DeC4塔顶馏出物,并再循环7800mol/hr的残余气体。结果是在去往LNG装置的处理气中苯浓度低于0.01ppm苯并且C5+低于0.002%。在此工艺中,在工艺中的任何点处与苯凝固最接近的温度差异都大于10℃。残余物压缩和脱丁烷塔塔顶压缩的总功率为约12.5HP/MMscfd的入口气体。
本实施方案中此布置的一个重要益处在于,它表明增加了在流51中运送至LNG装置的过量C4-溶剂的速率。由再循环流80提供的额外回流速率导致该较高的过量C4-速率,因为可获得更多的过剩溶剂。这表明用作LNG装置制冷系统的制冷剂补给的C2和C3回收是可能的。用于制冷补给的任何C2和C3组分的回收通过在图3的系统300中指示为脱丁烷塔38的单个DeC4之外添加更多蒸馏塔来实现。LNG装置制冷剂补给对C2和C3的估计需求可通过安装另外的蒸馏塔来处理脱丁烷塔塔顶馏出物或通过在脱丁烷塔上游安装另外的塔以进行回收。
图4为根据本文第三个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统400的示意图。本示例性实施方案指示了如果不再循环脱丁烷塔塔顶流50时的一些操作困难。在无此再循环的情况下,存在凝固的可能性,因为仅使用残余气体再循环流80回流到膨胀器出口塔可能是不够的。
将一部分经压缩的残余气体流64作为流80取出,然后将该流在交换器6中冷却,降低冷却的流的压力,并将冷却的流作为塔顶流运送至吸收塔70。进料气组成和条件与图1和3中示出和描述的前述实施方案相同,操作压力不变,并且液体再循环保持在1100mol/hr下。脱丁烷塔塔顶流50经由图4中的管线51全部送至LNG。在这种情况下,进料气2与再循环28合并成为流4并且当在交换器6中冷却时在1℃至2℃的温度下发生凝固。在膨胀器14中的初始冷却中也存在凝固的可能。经处理的气体具有0.56ppm的苯含量和0.0056%的C5+含量,满足LNG进料要求。对于含有较少苯或较多丙烷和丁烷的进料气,这种布置可能是可行的。然而,由于显著降低的液体流量,故塔70的运行也可能更困难。HP/MMscfd为约12.75。
图5为根据本文第四个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统500的示意图。在该实施方案中,将去往塔70的塔顶液体进料以喷雾引入,这对于简化或作为对现有设施的改造可能是有利的。
在塔70中使用至少一个平衡级以满足纯化气体中低于1ppmv的苯规格。如果不包括此单级,则纯化气体将含2ppm的苯,与之相对,使用此单级,纯化气体含0.25ppm的苯。图5中示出的布置以喷雾向塔70引入塔顶液体进料并且吸收塔70配置为不使用任何传质设备如塔盘或填料。这产生单级接触。相对于上文先前描述的实施方案,进料气组成、速率和操作压力未改变。使用这种布置,去往LNG装置的纯化气体含0.25ppm的苯和0.005%的戊烷+,符合规格。再压缩加DeC4塔顶压缩机总共需要的功率为11.8HP/处理的MMscfd。去往喷雾器的液体速率为1100mol/hr。注意,如果将膨胀器出口流与经再压缩的DeC4塔顶流简单混合并运送至膨胀器出口分离器,则去往LNG的纯化气体将不符合苯规格。
任选地,可改造现有的分离器以喷射流来向现有的膨胀器出口分离器增加至少部分传质级,使其作为简单的短塔运行。在此情况下,通过增加喷雾器和附加的热交换器,可将本实施方案的简单型式实践于现有设施。
图6为根据本文第五个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统600的示意图。图6中示出的回流布置可比常规系统或本文先前描述的某些实施方案产生更多的C2和C3以供LNG制冷剂补给。
如图6中所示,流12的一部分被取出,运送通过热交换器17并使用塔顶气流54进行冷却以部分液化,然后将流12的经冷却部分通过阀19运送至吸收塔70的侧入口。DeC4塔顶至塔顶塔进料为1100mol/hr,如在上述其他实施方案中那样。新的侧进料为7800mol/hr(与图1中的残余物回流速率相同)。入口气体速率和组成与前面的实施方案相同。再压缩加DeC4塔顶压缩机总共需要的功率为12.1HP/处理的MMscfd。去往LNG设施的气体含不到0.0003ppm的苯和不到0.0002%的C5+。而且,使合并形成回流的两个流52和16保持分离并以分开的进料点去往塔70将产生改善的苯回收率。
图7为根据本文第六个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统700的示意图。图7中示出的实施方案提供多个回流,这将提高残余气体流的纯度。一部分残余气体作为流80被送回,在热交换器6中冷却并通过阀82,然后在上部进料点处进入塔70。应指出,在其他实施方案中,此步骤可在单独的交换器中进行。使用回流流52作为在侧入口处进入塔70的中间流。使用残余气体作为塔顶回流流,并且作为中间流的DeC4塔顶馏出物产生非常纯的产物流64以及大量可被分馏以供制冷剂补给的C2和C3。这种布置在塔70中回收的丙烷和乙烷比在图1示出的实施方案中所取得的要多得多。该HP/MMscfd为13.8。最接近凝固的温度差异为5.5℃。使用残余物回流作为单独的流产生非常高的凝固组分回收率和高于典型的C2和C3回收率。然而,塔顶段中的塔负荷低,其中仅存在残余物回流。虽然以较高的回流速率取得较高的液体负荷会增大马力,但取决于应用,这种类型的布置在某些情况下可能是优选的。
图8为根据本文第七个实施方案的用于从混合烃气体流去除高凝固点烃的示例性系统800的示意图。在此实施方案中,使用了另外的塔。如图所示,流28的一部分作为流29被送至蒸气/液体分离器90并且分离的液体作为流91离开。流91进入区域92中指示的一个或多个另外的塔,这些塔可包括脱甲烷塔、脱乙烷塔、脱丙烷塔和/或脱丁烷塔。脱乙烷塔可用来以流93向LNG装置提供制冷剂级乙烷,脱丙烷塔可用来以流94向LNG装置提供制冷剂级丙烷。在一些实施方案中,一部分脱乙烷塔和/或脱丙烷塔塔顶流,如流95所示,可被运送以提供液化装置的制冷剂补给、运送至其他制冷服务设施或供出售。其他服务设施不需要的甲烷、乙烷、丙烷和丁烷可作为流95被运送回以与流28的旁路部分合并并运送至与流2会合。
在某些实施方案中,可用减压阀代替本文所述任何实施方案中的膨胀器14。在某些实施方案中,可使用压缩机来提高进入装置的气体的压力,从而允许新的高效设计。
在各种实施方案中,吸收塔塔顶的压力高于400psia,例如为675psia,所有情况下降低吸收塔压力将产生更高的C2和C3回收率及更高过量的脱丁烷塔塔顶馏出物。如果需要,降低吸收塔压力将增加可用于制冷剂系统补给的C2和C3的量。注意,可将一部分残余气体冷却、部分冷凝并减压,然后用于吸收塔塔顶中的热交换,而不是作为回流。
下表3和6为上面在图1的上下文中描述的实施方案的示例性总物料平衡加再循环流。表3提供了系统100的流信息,其中进料压力为900psia、进料中含500ppm的苯并且塔70压力为675psia;也被称为“基础情况”。
表3:物料平衡流
良好的物理性质确保了分离蒸气和液体的能力。在上述实施方案中的一个或多个中,吸收塔70可使用四个理论级。下表4示出了使用四个级的吸收塔70中的示例性蒸气和液体性质。
表4:吸收塔中的蒸气和液体性质
此数据表明非常好的分离条件。这可能是由于本文所述实施方案的多个再循环速率、组成和尤其是路线。对于在675psia下轻质烃的操作来说,这些性质令人意外地好。
表5:工艺中与苯凝固的温度接近程度
如上表5中所示,由于上游苯的去除及丁烷和其他组分的高稀释率,上述实施方案中的系统在装置中的最冷段即膨胀器出口和塔距离凝固达40℃和90℃。
下表6提供了入口1000psia和吸收塔800psia的“高压情况”的物料平衡流信息,其中进料中含400ppm的苯。主工艺回路中的最小压力为800psia。最低液体表面温度为2.86达因/cm。蒸气和液体密度仍可接受,尽管它们接近合理的极限。这种情况代表在非常高的压力下操作的可行性。工艺流程图与图1的先前的实施例相同。在此情况下,将残余气体再压缩至1000psia加上DeC4塔顶压缩所需的马力为7573HP,或10.4HP/MMscfd。在工艺中的任何点处与苯的凝固最接近的温度差异为5℃。
表6:物料平衡流
对于本文的各种实施方案,物理性质都非常适合于分离器中和塔中的分离,并且在新的重叠再循环中存在过量的液体,其被取出并送至LNG装置。这样,本文的实施方案可在甚至更高的压力下运行,同时进一步降低再压缩要求。随着压力增加,由于挥发度的变化并且因为在可得压降较小的情况下需要较高的液体速率来保持回收率,故过量液体速率将降低。
例如,使用900psia进料气并且吸收塔70塔顶处压力从675psia增至700psia的操作使用所有可用的过量溶剂,并且冷分离器温度降低2℉。在入口热交换中,最接近凝固的温度差异变为5.2℃。就分离来说的物理性质仍然良好,最贴近的点在塔70的塔顶中,表面张力为5.4达因/cm2,蒸气密度为5.3 lbs/ft3,液体密度为26 lbs/ft3。在此实施例中,入口气体仍含500ppm的苯,而溶剂再循环速率保持不变。
作为另一个实例,在725psia下操作也是可能的,但进料气中的苯含量为400ppm而不是500ppm。物理性质对于分离来说仍是可接受的。在入口热交换中,最接近凝固的温度差异变为5℃。还此外,也可能在750psia下操作,在进料气中含300ppm苯的情况下。
在其中吸收塔运行压力增加的上述情况下,进料气压力保持在900psia下。随着吸收塔压力增加并且进料气和处理气压力保持恒定于900psia,再压缩和脱丁烷塔塔顶压缩的功率要求将显著降低。在吸收塔塔顶压力从675psia变为750psia的这些情况下,每MMscfd入口气体的总压缩功率从11.36降至8.04 HP/MMscfd。
减小分离所需的减压会对装置压缩功率要求产生很大影响。值得指出的是,在这些较高的压力下对于传质和分离有利的物理性质是被再循环的大量丁烷和其他组分的结果,它们产生对于分离来说具有更好物理性质的更高分子量的更富的流,并同时在液相中提供苯的稀释,从而防止凝固,这一点非常重要。如上面表5中所示,塔70(设计中设备中的最冷件)距离凝固最远。
下表7汇总了两种示意性情况研究之间的物理性质变化。基础情况是其中系统在入口处具有900psia的压力并且在吸收塔处675psia的情形。高压情况是其中系统在入口处具有1000psia的压力并且在吸收塔处800psia的情形。
表7:两种示意性情况研究之间的物理性质变化
在比800psia塔操作压力略高的其他实施方案中,例如805psia,满足产品规格并且甚至进一步降低功率要求。然而,应采用更富的进料气或更高的再循环来确保良好的物理性质。
在向吸收塔70添加级之前,对于基础情况进料,不能达到苯的产品规格。然而,使用DeC4塔顶馏出物再循环和向吸收塔70添加级的本文实施方案以非常宽的余地达到苯的规格,如上文高压情况中所见。基础情况变得如此稳健,以致高压情况成为可能。高压情况中组分的相对挥发度(K-值)在基础情况的155%至369%的范围内。此量度表明使组分保持在液相中并可用于吸收苯而不是损失到产物气体中要困难得多。然而,本文实施方案的设计允许根据需要回收苯。由于压力高,故蒸气和液体的物理性质也不太有利。然而,它们仍在工业上可接受的限度内以允许良好的蒸气/液体分离和吸收塔的正常运行。再循环布置提供了保持足够量的丁烷和具有合适物理性质的较轻液体的措施来操作吸收塔并回收苯和戊烷及较重的组分。
因此,本文的实施方案产生具有两个回路的系统,所述回路以独特的方式重叠以保留和再循环液体,同时纯化产物气体并还改善装置最冷段中的物理性质以实现高压下的可靠分离,从而降低功率要求(例如,降低10%-30%;或者,降低30-50%;或者,降低10-50%),同时还处理含有较高苯浓度的气体。本文的实施方案可:
- 在非常高的压力下去除凝固组分;
- 仅使用最小的压降;
- 避免凝固;
- 以合理的流物理性质运行;
- 最大限度地减少设备数量;和
- 即使再压缩机停机,也允许LNG设施以非常低的入口压降运行。
这种高压入口应用使用与任何较早的情况相似的HP/MMscfd,并在最高压力下提供纯化气体。能够在最高入口压力下处理气体并且运行压降极小是最高效的运行。
如上所述及附图中所示的本公开的方法和系统提供了在比常规系统高的压力下去除高凝固点烃。虽然已结合优选实施方案示出和描述了本公开的装置和方法,但本领域技术人员应容易理解,可在不偏离本公开的范围的情况下对其进行改变和/或修改。

Claims (22)

1.一种从天然气去除高凝固点组分的方法,所述方法包括:
在热交换器中冷却进料气;
在分离容器中将进料气分离成第一蒸气部分和第一液体部分;
使用热交换器再热第一液体部分;
将经再热的第一液体部分分离成高凝固点组分流和非凝固组分流;
将非凝固组分流至少部分液化;
在吸收塔的上部进料点处接收所述至少部分液化的非凝固组分流;
在吸收塔的下部进料点处接收已经冷却的经分离进料气的第一蒸气部分;
使用吸收塔产生基本上不含高凝固点凝固组分的塔顶蒸气产物及包含凝固组分和非凝固组分的塔底产物液体流;和
使用热交换器再热来自吸收塔的塔顶蒸气产物。
2.根据权利要求1所述的方法,其中所述吸收塔包括一个或多个传质级。
3.根据权利要求1或权利要求2所述的方法,所述方法还包括使用膨胀器-压缩机压缩经再热的塔顶蒸气产物以产生压缩气体流。
4.根据权利要求3所述的方法,所述方法还包括压缩压缩气体流以产生更高压力的残余气体流。
5.根据权利要求4所述的方法,所述方法还包括将更高压力的残余气体流送至天然气液化设施。
6.根据权利要求4或权利要求5所述的方法,其中分离经再热的第一液体部分包括使用蒸馏柱、蒸馏塔或脱丁烷塔。
7.根据权利要求6所述的方法,所述方法还包括将更高压力的残余气体流的一部分与非凝固组分流合并、在热交换器中冷却合并流并使用合并流作为吸收塔的塔顶进料。
8.根据权利要求1-7中任一项所述的方法,其中将非凝固组分流至少部分液化包括在热交换器处对非凝固组分流的至少一部分冷却和减压。
9.根据权利要求8所述的方法,其中在被部分液化之前在压缩机处增加非凝固组分流的压力。
10.根据权利要求1-9中任一项所述的方法,其中在吸收塔的上部进料点处接收的流以喷雾引入。
11.根据权利要求1-10中任一项所述的方法,所述方法还包括将非凝固组分流的一部分运送通过热交换器,其中使用经再热的塔顶蒸气产物进行冷却以部分液化非凝固组分流,并且还将非凝固蒸气流的该冷却部分运送至吸收塔的侧入口。
12.根据权利要求1-11中任一项所述的方法,所述方法还包括将更高压力的残余气体流的一部分通过热交换器和阀运送至吸收塔。
13.根据权利要求1-12中任一项所述的方法,所述方法还包括将来自吸收塔的塔底产物液体流的一部分运送至一个或多个另外的塔,所述一个或多个另外的塔选自脱甲烷塔、脱乙烷塔、脱丙烷塔和脱丁烷塔。
14.根据权利要求1-13中任一项所述的方法,其中所述吸收塔操作压力高于400psia、600psia、700psia和800psia之一。
15.根据权利要求1-14中任一项所述的方法,其中所述吸收塔操作压力在400psia、250psia、225psia和150psia的入口气体压力之一内。
16.根据权利要求1-15中任一项所述的方法,其中所述高凝固点组分从天然气的去除在高凝固点组分不凝固的情况下进行。
17.一种用于从天然气去除高凝固点组分的系统,所述系统包括:
用于冷却进料气的热交换器;
用于将进料气分离成第一蒸气部分和第一液体部分的分离容器,其中第一液体部分在热交换器中再热;
用于将经再热的第一液体部分分离成高凝固点组分流和非凝固组分流的第二分离容器;和
用于接收经冷却和减压的非凝固组分流及经冷却和减压的第一蒸气部分的吸收塔;
其中来自吸收塔的塔顶蒸气产物用热交换器再热,塔顶蒸气产物基本上不含高凝固点组分;和
其中来自吸收塔的塔底产物液体流包含高凝固点组分和非凝固组分。
18.根据权利要求17所述的系统,其中所述吸收塔包括一个或多个传质级。
19.根据权利要求17或权利要求18所述的系统,所述系统还包括膨胀器-压缩机以压缩经再热的塔顶蒸气产物而产生压缩气体流,以及压缩机以压缩压缩气体流以产生更高压力的残余气体流。
20.根据权利要求17-19中任一项所述的系统,其中第二分离容器为蒸馏柱、蒸馏塔或脱丁烷塔。
21.根据权利要求17-20中任一项所述的系统,所述系统还包括喷雾器以向吸收塔的上部进料点引入所述流。
22.根据权利要求17-21中任一项所述的系统,所述系统还包括一个或多个另外的塔以接收来自吸收塔的塔底产物液体流的一部分,所述一个或多个另外的塔选自脱甲烷塔、脱乙烷塔、脱丙烷塔和脱丁烷塔。
CN201780067756.XA 2016-09-06 2017-04-06 液化前天然气的预处理 Pending CN110023463A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/257100 2016-09-06
US15/257,100 US11402155B2 (en) 2016-09-06 2016-09-06 Pretreatment of natural gas prior to liquefaction
PCT/US2017/026464 WO2018048478A1 (en) 2016-09-06 2017-04-06 Pretreatment of natural gas prior to liquefaction

Publications (1)

Publication Number Publication Date
CN110023463A true CN110023463A (zh) 2019-07-16

Family

ID=61280563

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780067756.XA Pending CN110023463A (zh) 2016-09-06 2017-04-06 液化前天然气的预处理

Country Status (12)

Country Link
US (2) US11402155B2 (zh)
EP (2) EP4310161A3 (zh)
JP (1) JP6967582B2 (zh)
KR (1) KR102243894B1 (zh)
CN (1) CN110023463A (zh)
AU (1) AU2017324000B2 (zh)
BR (1) BR112019004232B1 (zh)
CA (1) CA3035873C (zh)
MX (1) MX2019002550A (zh)
PE (1) PE20190850A1 (zh)
SA (1) SA519401248B1 (zh)
WO (1) WO2018048478A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3039080B1 (fr) * 2015-07-23 2019-05-17 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methode de purification d'un gaz riche en hydrocarbures
US10330382B2 (en) 2016-05-18 2019-06-25 Fluor Technologies Corporation Systems and methods for LNG production with propane and ethane recovery
BR112019003090A2 (pt) 2016-09-09 2019-05-21 Fluor Technologies Corporation métodos e configuração para reformar usina de ngl para alta recuperação de etano
CA3073035C (en) * 2017-08-24 2022-07-26 Exxonmobil Upstream Research Company Method and system for lng production using standardized multi-shaft gas turbines, compressors and refrigerant systems
MX2020003412A (es) 2017-10-20 2020-09-18 Fluor Tech Corp Implementacion de fase de plantas de recuperacion de liquido de gas natural.
WO2020223333A1 (en) * 2019-04-29 2020-11-05 Conocophillips Company Solvent injection and recovery in a lng plant
US11806639B2 (en) 2019-09-19 2023-11-07 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
WO2021055019A1 (en) * 2019-09-19 2021-03-25 Exxonmobil Upsteam Research Company Pretreatment, pre-cooling, and condensate recovery of natural gas by high pressure compression and expansion
WO2021055021A1 (en) * 2019-09-19 2021-03-25 Exxonmobil Upstream Research Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
AU2020367823A1 (en) * 2019-10-17 2022-05-12 Conocophillips Company Standalone high-pressure heavies removal unit for LNG processing
CN114854448B (zh) * 2021-02-03 2024-03-26 中国石油天然气集团有限公司 重整产氢中液化气的回收装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB800888A (en) * 1956-06-11 1958-09-03 Texaco Development Corp Process for the simultaneous production of acetylene and a mixture of nitrogen and hydrogen
CN101290184A (zh) * 2008-06-05 2008-10-22 北京国能时代能源科技发展有限公司 一种化工尾气的液化分离方法及设备
US20080271480A1 (en) * 2005-04-20 2008-11-06 Fluor Technologies Corporation Intergrated Ngl Recovery and Lng Liquefaction
CN101824344A (zh) * 2009-03-04 2010-09-08 鲁姆斯科技公司 氮去除和等压开放式制冷的天然气液回收
CN102027303A (zh) * 2008-05-16 2011-04-20 鲁姆斯科技公司 等压开路致冷ngl回收

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3542673A (en) 1967-05-22 1970-11-24 Exxon Research Engineering Co Recovery of c3-c5 constituents from natural gas by compressing cooling and adiabatic autorefrigerative flashing
US3568458A (en) 1967-11-07 1971-03-09 Mc Donnell Douglas Corp Gas separation by plural fractionation with indirect heat exchange
DE1551607B1 (de) 1967-11-15 1970-04-23 Messer Griesheim Gmbh Verfahren zur Tieftemperatur-Rektifikation eines Gasgemisches
US3622504A (en) 1969-01-10 1971-11-23 Hydrocarbon Research Inc Separation of heavier hydrocarbons from natural gas
US3815376A (en) 1969-07-31 1974-06-11 Airco Inc Process and system for the production and purification of helium
US4019964A (en) 1974-04-11 1977-04-26 Universal Oil Products Company Method for controlling the reboiler section of a dual reboiler distillation column
GB1549743A (en) 1975-06-16 1979-08-08 Uop Inc Method for controlling the heat input to a reboiler section of distillation column and apparatus equipped for operation under such control
US4272270A (en) 1979-04-04 1981-06-09 Petrochem Consultants, Inc. Cryogenic recovery of liquid hydrocarbons from hydrogen-rich
US4436540A (en) * 1982-10-15 1984-03-13 Exxon Research & Engineering Co. Low pressure separation for light hydrocarbon recovery
FR2578637B1 (fr) 1985-03-05 1987-06-26 Technip Cie Procede de fractionnement de charges gazeuses et installation pour l'execution de ce procede
US4698081A (en) 1986-04-01 1987-10-06 Mcdermott International, Inc. Process for separating hydrocarbon gas constituents utilizing a fractionator
US4854955A (en) 1988-05-17 1989-08-08 Elcor Corporation Hydrocarbon gas processing
US5325673A (en) 1993-02-23 1994-07-05 The M. W. Kellogg Company Natural gas liquefaction pretreatment process
US5685170A (en) 1995-11-03 1997-11-11 Mcdermott Engineers & Constructors (Canada) Ltd. Propane recovery process
AU707336B2 (en) 1996-03-26 1999-07-08 Conocophillips Company Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
US5737940A (en) 1996-06-07 1998-04-14 Yao; Jame Aromatics and/or heavies removal from a methane-based feed by condensation and stripping
US5799507A (en) 1996-10-25 1998-09-01 Elcor Corporation Hydrocarbon gas processing
US5724833A (en) 1996-12-12 1998-03-10 Phillips Petroleum Company Control scheme for cryogenic condensation
US5890378A (en) 1997-04-21 1999-04-06 Elcor Corporation Hydrocarbon gas processing
US5881569A (en) * 1997-05-07 1999-03-16 Elcor Corporation Hydrocarbon gas processing
US6116050A (en) 1998-12-04 2000-09-12 Ipsi Llc Propane recovery methods
WO2001088447A1 (en) 2000-05-18 2001-11-22 Phillips Petroleum Company Enhanced ngl recovery utilizing refrigeration and reflux from lng plants
US6401486B1 (en) 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
CA2410540C (en) 2000-08-11 2007-03-13 Fluor Corporation High propane recovery process and configurations
US20020112993A1 (en) 2000-09-13 2002-08-22 Puglisi Frank Paul Fractionater revamp for two phase feed
TW573112B (en) 2001-01-31 2004-01-21 Exxonmobil Upstream Res Co Process of manufacturing pressurized liquid natural gas containing heavy hydrocarbons
US6742358B2 (en) 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
UA76750C2 (uk) 2001-06-08 2006-09-15 Елккорп Спосіб зрідження природного газу (варіанти)
US6425266B1 (en) 2001-09-24 2002-07-30 Air Products And Chemicals, Inc. Low temperature hydrocarbon gas separation process
US6698237B2 (en) 2001-12-11 2004-03-02 Advanced Extraction Technologies, Inc. Use of stripping gas in flash regeneration solvent absorption systems
US7051553B2 (en) 2002-05-20 2006-05-30 Floor Technologies Corporation Twin reflux process and configurations for improved natural gas liquids recovery
US7069744B2 (en) 2002-12-19 2006-07-04 Abb Lummus Global Inc. Lean reflux-high hydrocarbon recovery process
US7484385B2 (en) 2003-01-16 2009-02-03 Lummus Technology Inc. Multiple reflux stream hydrocarbon recovery process
US6662589B1 (en) * 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
FR2855526B1 (fr) 2003-06-02 2007-01-26 Technip France Procede et installation de production simultanee d'un gaz naturel apte a etre liquefie et d'une coupe de liquides du gaz naturel
US6925837B2 (en) 2003-10-28 2005-08-09 Conocophillips Company Enhanced operation of LNG facility equipped with refluxed heavies removal column
CA2543195C (en) 2003-10-30 2009-02-10 Fluor Technologies Corporation Flexible ngl process and methods
US7219513B1 (en) * 2004-11-01 2007-05-22 Hussein Mohamed Ismail Mostafa Ethane plus and HHH process for NGL recovery
MY146497A (en) 2004-12-08 2012-08-15 Shell Int Research Method and apparatus for producing a liquefied natural gas stream
FR2879729B1 (fr) * 2004-12-22 2008-11-21 Technip France Sa Procede et installation de production de gaz traite, d'une coupe riche en hydrocarbures en c3+ et d'un courant riche en ethane
US7257966B2 (en) 2005-01-10 2007-08-21 Ipsi, L.L.C. Internal refrigeration for enhanced NGL recovery
US20060260355A1 (en) 2005-05-19 2006-11-23 Roberts Mark J Integrated NGL recovery and liquefied natural gas production
US20070157663A1 (en) 2005-07-07 2007-07-12 Fluor Technologies Corporation Configurations and methods of integrated NGL recovery and LNG liquefaction
CN101460800B (zh) 2006-06-02 2012-07-18 奥特洛夫工程有限公司 液化天然气的处理
MX2008015056A (es) 2006-06-27 2008-12-10 Fluor Tech Corp Configuraciones y metodos de recuperacion de etano.
US7721526B2 (en) 2006-06-28 2010-05-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbofan engine
FR2921470B1 (fr) * 2007-09-24 2015-12-11 Inst Francais Du Petrole Procede de liquefaction d'un gaz naturel sec.
US8381544B2 (en) 2008-07-18 2013-02-26 Kellogg Brown & Root Llc Method for liquefaction of natural gas
GB2469077A (en) 2009-03-31 2010-10-06 Dps Bristol Process for the offshore liquefaction of a natural gas feed
US20110067441A1 (en) * 2009-09-21 2011-03-24 Ortloff Engineers, Ltd. Hydrocarbon Gas Processing
EP2629869A1 (de) 2010-10-21 2013-08-28 Bayer Intellectual Property GmbH Verfahren zur vereinfachten abtrennung eines reaktionsprodukts aus reaktionsgasgemischen mittels mindestens zweimaliger teilweiser kondensation
BR112015002328B1 (pt) 2012-08-03 2024-01-09 Air Products And Chemicals, Inc Método de remoção de hidrocarbonetos pesados de uma corrente de alimentação de gás natural, e equipamento para a remoção de hidrocarbonetos pesados a partir de uma corrente de alimentação de gás natural
US20140060114A1 (en) 2012-08-30 2014-03-06 Fluor Technologies Corporation Configurations and methods for offshore ngl recovery
WO2014047464A1 (en) * 2012-09-20 2014-03-27 Fluor Technologies Corporation Configurations and methods for ngl recovery for high nitrogen content feed gases
US9423175B2 (en) 2013-03-14 2016-08-23 Fluor Technologies Corporation Flexible NGL recovery methods and configurations
WO2015138846A1 (en) 2014-03-14 2015-09-17 Lummus Technology Inc. Process and apparatus for heavy hydrocarbon removal from lean natural gas before liquefaction
US20160069610A1 (en) * 2014-09-04 2016-03-10 Ortloff Engineers, Ltd. Hydrocarbon gas processing
US10126049B2 (en) * 2015-02-24 2018-11-13 Ihi E&C International Corporation Method and apparatus for removing benzene contaminants from natural gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB800888A (en) * 1956-06-11 1958-09-03 Texaco Development Corp Process for the simultaneous production of acetylene and a mixture of nitrogen and hydrogen
US20080271480A1 (en) * 2005-04-20 2008-11-06 Fluor Technologies Corporation Intergrated Ngl Recovery and Lng Liquefaction
CN102027303A (zh) * 2008-05-16 2011-04-20 鲁姆斯科技公司 等压开路致冷ngl回收
CN101290184A (zh) * 2008-06-05 2008-10-22 北京国能时代能源科技发展有限公司 一种化工尾气的液化分离方法及设备
CN101824344A (zh) * 2009-03-04 2010-09-08 鲁姆斯科技公司 氮去除和等压开放式制冷的天然气液回收

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国石油天然气总公司劳资局: "《采气工》", 28 February 2001, 石油工业出版社 *

Also Published As

Publication number Publication date
EP4310161A2 (en) 2024-01-24
BR112019004232A2 (pt) 2019-05-28
KR20190046946A (ko) 2019-05-07
BR112019004232B1 (pt) 2022-07-19
AU2017324000B2 (en) 2021-07-15
CA3035873C (en) 2024-05-14
JP6967582B2 (ja) 2021-11-17
WO2018048478A1 (en) 2018-03-15
US20220373257A1 (en) 2022-11-24
MX2019002550A (es) 2019-09-18
US11402155B2 (en) 2022-08-02
EP3510128A1 (en) 2019-07-17
AU2017324000A1 (en) 2019-03-21
KR102243894B1 (ko) 2021-04-22
JP2019529853A (ja) 2019-10-17
EP4310161A3 (en) 2024-06-12
PE20190850A1 (es) 2019-06-18
EP3510128A4 (en) 2020-05-27
US20180066889A1 (en) 2018-03-08
CA3035873A1 (en) 2018-03-15
SA519401248B1 (ar) 2023-01-09

Similar Documents

Publication Publication Date Title
CN110023463A (zh) 液化前天然气的预处理
RU2194930C2 (ru) Способ сжижения потока природного газа, содержащего по меньшей мере один замораживаемый компонент
US9823015B2 (en) Method for producing a flow rich in methane and a flow rich in C2+ hydrocarbons, and associated installation
RU2641778C2 (ru) Комплексный способ извлечения газоконденсатных жидкостей и сжижения природного газа
JP6561077B2 (ja) 液化前のリーン天然ガスからの重質炭化水素の除去方法及び装置
US9759481B2 (en) Method for producing a flow which is rich in methane and a cut which is rich in C2+ hydrocarbons from a flow of feed natural gas and an associated installation
JP2002508054A (ja) 天然ガスの改良液化方法
EA016149B1 (ru) Способ и устройство для выделения и разделения на фракции сырьевого потока смешанных углеводородов
US20080256977A1 (en) Hydrocarbon recovery and light product purity when processing gases with physical solvents
US11946355B2 (en) Method to recover and process methane and condensates from flare gas systems
US11097220B2 (en) Method of preparing natural gas to produce liquid natural gas (LNG)
WO2010040735A2 (en) Methods of treating a hydrocarbon stream and apparatus therefor
EA007771B1 (ru) Установка для получения газового бензина и способ работы этой установки
RU2423653C2 (ru) Способ для сжижения потока углеводородов и установка для его осуществления
CA2935708C (en) A method to recover and process methane and condensates from flare gas systems
US20110126584A1 (en) Method and apparatus for treating a hydrocarbon stream and method of cooling a hydrocarbon stream
WO2019193740A1 (ja) 天然ガス処理方法、及び天然ガス処理装置
KR20230107567A (ko) 초기 천연가스 스트림으로부터 에탄을 추출하는 방법과 장치
SA02230353B1 (ar) إنتاج غاز طبيعي مسال LNG production في وحدات معالجة قرية cryogenic processing plants للغاز الطبيعي natural gas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination