US20140060114A1 - Configurations and methods for offshore ngl recovery - Google Patents
Configurations and methods for offshore ngl recovery Download PDFInfo
- Publication number
- US20140060114A1 US20140060114A1 US14/014,226 US201314014226A US2014060114A1 US 20140060114 A1 US20140060114 A1 US 20140060114A1 US 201314014226 A US201314014226 A US 201314014226A US 2014060114 A1 US2014060114 A1 US 2014060114A1
- Authority
- US
- United States
- Prior art keywords
- absorber
- natural gas
- stream
- fractionator
- overhead product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000011084 recovery Methods 0.000 title abstract description 33
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 120
- 239000006096 absorbing agent Substances 0.000 claims abstract description 94
- 239000007789 gas Substances 0.000 claims abstract description 87
- 239000003345 natural gas Substances 0.000 claims abstract description 56
- 238000005057 refrigeration Methods 0.000 claims abstract description 20
- 239000007791 liquid phase Substances 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 22
- 239000012071 phase Substances 0.000 claims description 20
- 239000012808 vapor phase Substances 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000010992 reflux Methods 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 abstract description 12
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 12
- 238000007599 discharging Methods 0.000 abstract 1
- 230000008569 process Effects 0.000 description 9
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical class CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 235000013844 butane Nutrition 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical class CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- -1 naphtha Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000004058 oil shale Substances 0.000 description 1
- 230000000135 prohibitive effect Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/40—Features relating to the provision of boil-up in the bottom of a column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/30—Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/72—Processing device is used off-shore, e.g. on a platform or floating on a ship or barge
Definitions
- the field of the invention is removal and recovery of natural gas liquids (NGL) from feed gases to meet pipeline hydrocarbon dew point and heating value specifications, especially for offshore applications.
- NTL natural gas liquids
- Numerous NGL processing plants with high NGL recovery from a feed gas include cryogenic fractionation and turbo-expansion processes as described in U.S. Pat. No. 4,157,904 to Campbell et al., U.S. Pat. No. 4,251,249 to Gulsby, U.S. Pat. No. 4,617,039 to Buck, U.S. Pat. No. 4,690,702 to Paradowski et al., U.S. Pat. No. 5,275,005 to Campbell et al., U.S. Pat. No. 5,799,507 to Wilkinson et al., and U.S. Pat. No. 5,890,378 to Rambo et al., and U.S. Pat. App. No.
- NGL recovery processes use high expansion ratio turboexpanders to produce low levels of refrigeration, which requires recompression of the residue gas.
- additional external refrigeration is often required.
- process configurations are complex and are difficult to operate.
- Campbell et al. describe in U.S. Pat. No. 6,182,469 a plant in which feed gas is cooled in a heat exchanger using cold residue gas and side reboilers as depicted in Prior Art FIG. 1 .
- the condensed feed gas liquids are then separated in a separator and fed to the demethanizer.
- an absorber may be added upstream of a demethanizer as depicted in Prior Art FIG. 2 .
- the liquids from the feed separator and the absorber bottoms are fed to the demethanizer.
- the absorber overhead is cooled and refluxed by chilling with the demethanizer overhead vapor.
- the inventive subject matter is directed to configurations and methods of recovery of C4 and heavier hydrocarbons, and moderate recovery (up to 90%) of C3 from a gas stream to meet hydrocarbon dew point and heating value specification of a pipeline gas produced from the gas stream.
- two columns are operated at different pressures with the first column (absorber) operating at a relatively high pressure of about 550 psig and with the second column (fractionator) operating at about 450 psig.
- the absorber By operating the absorber at relatively high pressure, the compression ratio of the residue gas is reduced, thereby minimizing the overall compression horsepower.
- the fractionator operating at about 450 psig, it should be noted that the separation of methane from the ethane and heavier components can be accomplished with less heating requirement due to the favorable relative volatility between components, resulting in a smaller diameter column.
- the vapor stream from the fractionator overhead is advantageously utilized for stripping in the absorber.
- the fractionator overhead stream is compressed and the “free” heat of compression is used to efficiently remove the methane components from the NGL from the absorber.
- the liquid portion of the expander discharge is used as reflux to the absorber, which is entirely different from heretofore known configurations and methods, which require the expander discharge to be fed to the mid or the lower section of the absorber, as illustrated in FIGS. 1-4 .
- the expander discharge typically contains about 80% vapor, and by feeding the vapor portion in the top of the absorber, the vapor traffic in the mid- and lower portion of the absorber is significantly reduced, and hence the size of the absorber is smaller.
- the column has to be designed to handle the total flow, and not just the liquid flow as presented herein.
- the size of the absorber in a currently known gas plant is typically 12 ft in diameter for a 1,000 MMscfd feed gas as compared to the absorber size of 10 ft in diameter using configurations and methods presented herein, which significantly reduces space requirement, associated equipment cost and weight, which are of primary importance in an offshore environment.
- the second fractionator operates at a lower pressure and temperature, which is not only more efficient in terms of separation, but also allows the use of residue gas compression heat for reboiling the fractionator, thereby eliminating steam requirement or hot oil heating of heretofore known systems and methods.
- the fractionator is operated at a pressure between 450 to 550 psig, and that the overhead vapor is compressed to the absorber pressure that is at least 50 psi, and more typically at least 100 psi, and mostly typically at 155 psi higher than the absorber, and that the compressor discharge vapor has a temperature and volume that is sufficient for use as a stripping vapor to the absorber.
- contemplated methods will also include a step of expanding the vapor phase in a turbo expander and reducing pressure of the liquid phase in a second expansion device before feeding the liquid phase to a feed exchanger. While not limiting to the inventive subject matter, it is typically preferred that the feed gas cooling is performed without use of external refrigeration. In yet another step, the bottom of the absorber is also letdown in pressure via a JT valve providing additional chilling to the feed gas in the feed exchanger.
- a processing plant for hydrocarbon dew point control of a natural gas feed gas delivered from a feed gas source will include a feed gas exchanger that is fluidly coupled to the feed gas source and configured to cool the feed gas using a liquid phase of the cooled feed gas and an bottom product of an absorber.
- Contemplated plants will also include a phase separator that is fluidly coupled to the feed gas exchanger and that is configured to separate the cooled feed gas into the liquid phase and a vapor phase.
- the fractionator comprises a top section that is configured to produce a vapor phase that is compressed and used as a stripping gas in the absorber.
- FIG. 1 is a schematic of one known configuration for NGL recovery in which feed gas is cooled in a heat exchanger using cold residue gas and side reboilers.
- FIG. 2 is a schematic of another known configuration for NGL recovery in which an absorber/fractionator column is positioned upstream of a demethanizer.
- FIG. 3 is a schematic of yet another known configuration for NGL recovery in which reboiler and feed gas compression are integrated in feed chilling.
- FIG. 4 is a schematic of a further known configuration for NGL recovery in which reboiler and compressed residue gas recycle are integrated in feed chilling.
- FIG. 5 is a schematic of an exemplary configuration for NGL recovery according to the inventive subject matter.
- FIG. 6 is a table listing calculated compositions of gas streams in the exemplary NGL recovery plant of FIG. 5 .
- the inventor has discovered various configurations and methods of NGL recovery in which capital and operating cost can be significantly reduced, and especially in offshore applications, where a rich feed gas is processed and where C4+ recovery with moderate C2 and C3 recovery is required.
- contemplated configurations and methods significantly reduce complexity and cost by reducing the number of equipment services, by elimination of external refrigeration and external heating while lowering residue gas compression requirements.
- the feed gas (typically a natural gas comprising C1, C2, C3, and C4, and heavier components) is cooled at relatively high pressure to thereby effect partial condensation.
- the vapor and liquid phases are then separated, with the liquid phase being expanded to a lower pressure to so provide cooling to the feed gas.
- the liquid phase is fed to the lower section of a fractionation column, while the vapor phase is expanded via a turboexpander and fed into the top section of a first fractionator (absorber).
- relatively high pressures typically 550 to 650 psig
- residue gas recompression requirements are significantly reduced.
- FIG. 5 One exemplary plant configuration is depicted in FIG. 5 , in which wet feed gas 1 at a pressure of about 1,000 psig and a temperature of about 100° F., having a typical composition as shown in the table of FIG. 6 , is dried in a molecular sieve drier 51 , forming stream 2 .
- the so dried gas stream 2 is cooled to a temperature of about ⁇ 65° F. in exchanger 52 , forming stream 3 , utilizing the refrigeration content from residue gas stream 9 and liquid streams 6 and 11 .
- the so chilled gas stream 3 is then separated in phase separator 53 into a liquid portion, stream 5 , and a vapor portion, stream 4 .
- the liquid portion 5 is letdown in pressure via JT valve 54 to a pressure of about 475 psig, chilled to about ⁇ 106° F. forming stream 6 , which is heated in exchanger 52 to about 70° F. prior to entering as stream 7 to the lower section of fractionator 59 .
- the vapor portion 4 is expanded via the turboexpander 55 to about 550 psig at about ⁇ 109° F. to form stream 8 , which is fed to the top of absorber 70 .
- the term “about” in conjunction with a numeral refers to a range of that numeral starting from 20% below the absolute of the numeral to 20% above the absolute of the numeral, inclusive.
- turboexpander 55 the energy of expansion of gas within the turboexpander 55 may used to drive compressor 56 or other device to recover expansion energy. In some embodiments, the energy of expansion in turboexpander 55 can be used to also drive compressor 57 .
- the vapor portion 4 is being expanded via the turboexpander 55 in such a way that partially condenses vapor portion 4 to produce a two-phase stream 8 comprising a vapor phase and a liquid phase.
- at least 5 vol. % of stream 8 is in the vapor phase.
- at least 10 vol. % of stream 8 is in the vapor phase.
- at least 20 vol % of stream 8 is in the vapor phase.
- at least 30 vol % of stream 8 is in the vapor phase.
- at least 40 vol % of stream 8 is in the vapor phase.
- at least 60 vol % of stream 8 is in the vapor phase.
- At least 80 vol % of stream 8 is in the vapor phase.
- the remainder of the expanded stream is in the liquid phase to serve as a reflux stream. Therefore, in some embodiments, at least 5 vol % of stream 8 is in a liquid phase. In yet some embodiments, at least 20 vol % of stream 8 is in a liquid phase. In yet some other embodiments, at least 30 vol % of stream 8 is in a liquid phase. In yet some embodiments, at least 40 vol % of stream 8 is in a liquid phase. In yet some embodiments, at least 60 vol % of stream 8 is in a liquid phase. In yet some embodiments, at least 80 vol % of stream 8 is in a liquid phase.
- the operating pressure of the absorber 70 is in the range of about 550 to about 650 psig or higher, and the top section temperature is about ⁇ 100° F., and the bottom section is about ⁇ 15° F. It should be noted that only the liquid portion from the expander discharge is used as the reflux and the vapor portion forms part of the residue gas.
- the absorber is stripped with hot compressor discharge stream 16 from the fractionator column 59 .
- the overhead gas stream 9 comprises the residue gas from the absorber 70 and at least some of the vapor portion of stream 8 .
- overhead gas stream 9 has a methane content of about 95 mol %.
- Overhead gas stream 9 that comes out of absorber 70 has a low temperature (at about ⁇ 100° F.), and the refrigeration content of the overhead gas stream 9 is used to chill natural gas feed 2 .
- the absorber bottom stream 10 is letdown in pressure to about 450 psig and chilled to ⁇ 14° F., forming stream 11 , and the refrigerant content is used to chill the feed gas in exchanger 52 to form stream 21 .
- the heated gas is flashed to the top of the fractionator column 59 .
- the warmed gas stream 17 that comes out of the heat exchanger 52 is being compressed by compressor 56 , and turns into compressed gas stream 18 .
- gas stream 18 is further compressed by compressor 57 to form compressed gas stream 19 , which is used for reboiling products from the fractionator 59 in reboiler 62 .
- So cooled residue gas stream 15 is then fed to air cooler 58 prior to leaving the plant as residue gas stream 20 (e.g., as pipeline gas). It should be recognized that such configuration does not require external heating or fuel gas heater while producing on spec product which is advantageous for offshore operation and eliminating noxioius or otherwise undesireable emissions.
- Fractionator 59 uses reboiler 62 to maintain the methane content in the bottom liquid stream 12 to preferably no more than 2 mol % or as required to meet the vapor pressure specification of the NGL product. Because of the relatively low operating pressure in the fractionator, the reboiler can use the low temperature compression heat from the residue gas compressor discharge stream 19 for reboiling fractionator bottom product 13 , eliminating external heating requirement.
- the fractionator 59 is configured to produce a fractionator overhead product 14 that is passed to compressor 63 . As mentioned above, the compressed stream 16 is then passed into the bottom section of the absorber 70 , while a portion of the bottom product leaves as C2+ NGL product stream 12 .
- suitable feed gases will include C1, C2 and C3+, and may further comprise N2 and CO2. Consequently, it should be appreciated that the nature of the feed gas may vary considerably, and all feed gases in plants are considered suitable feed gases no long as they comprise C1 and C3 components, and more typically C1 to C5 and heavier components, and most typically C1 to C6 and heavier components. Therefore, particularly preferred feed gases include natural gas (e.g., after regasification from LNG, after CO2 removal where produced from a gas well), refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite.
- natural gas e.g., after regasification from LNG, after CO2 removal where produced from a gas well
- refinery gas e.g., after regasification from LNG, after CO2 removal where produced from a gas well
- synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale
- Suitable gases may also contain relatively lesser amounts of heavier hydrocarbons such as propane, butanes, pentanes and the like, as well as hydrogen, nitrogen, carbon dioxide and other gases.
- the pressure of the feed gas may vary. However, it is generally preferred that the feed gas has a pressure between about 700 psig to about 1400 psig, and more typically between about 900 psig to about 1200 psig.
- contemplated configurations and methods use a single fractionator to recover at least 95% of the C4 and heavier hydrocarbons, and 60% to 80% of the C3 component, and 20% to 50% C2 component, without the use of external refrigeration. Therefore, it should be noted that feed gas cooling and/or cooling of the vapor product are performed without use of external refrigeration (e.g., at least 90% of refrigeration requirements are produced from expansion of process streams). It should also be recognized that white a single column configuration can also be used with two separate columns stacked on top of each other, with functions corresponding to the absorber and fractionator are also deemed suitable for use herein. It is still further contemplated that the dryer, separator, fractionator, heat exchanger, JT-valves, residue gas compressor, and turboexpander used in present configurations and methods are conventional devices well known to the skilled artisan.
- the phase separator produces a C5+ enriched liquid and a C5+ depleted vapor from a feed gas.
- C5 enriched liquids may advantageously be fractionated in the lower section of the fractionator to meet the product liquid specification.
- contemplated configurations and processes allow handling of a rich feed gas composition, thereby eliminating the complexity of a refrigeration unit of most prior arts.
- contemplated processes maintain constant operating conditions for the NGL recovery plant by removal of the C5+ components in the feed gas.
- contemplated configurations will achieve at least 60%, and more typically 78% propane recovery, and at least 85%, and more typically 95% butane recovery (see FIG. 6 ).
- Further contemplations, configurations, and methods suitable for use herein are described in U.S. Pat. Nos. 6,601,406, 6,837,7070, 7,051,552, 7,051,552 and 7,377,127, all of which are incorporated by reference herein.
- a natural gas processing plant does not have to include all of the features described above to achieve efficiency in NGL recovery.
- a natural processing plant may include only a subset of the features described above. In some of these embodiments, the natural processing, plant may also include additional features that are not disclosed herein.
- a natural gas processing plant of some embodiments may include a turboexpander and an absorber.
- the turboexpander is configured to reduce pressure of a vapor stream to generate a two-phase stream having a liquid phase and a vapor phase.
- the absorber is configured to receive the two phase stream in a position such as to allow use of the liquid phase as a reflux.
- the absorber is further configured to produce an absorber overhead product and an absorber bottom product.
- the vapor stream that enters into the turboexpander comprises natural gas feed that is cooled by a heat exchanger.
- the absorber overhead product is led back into the heat exchanger in which refrigeration content of the absorber overhead product is used to chill the natural gas stream.
- the absorber overhead product is being compressed and used to reboil content within a fractionator.
- the vapor stream that enters into the turboexpander comprises natural gas feed that is cooled by a heat exchanger.
- the absorber bottom product is recycled back into the heat exchanger in which refrigeration content of the absorber bottom product is used to chill the natural gas stream.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
A natural gas two-column processing plant allows for recovery of at least 95% of C4 and heavier hydrocarbons, and about 60 to 80% of C3 hydrocarbons from a rich feed gas stream in which the first column (absorber) operates at a higher pressure than the second column, with the absorber receiving a compressed gas from the second column, and a turboexpander discharging a two-phase stream to the top of the absorber. Most typically, contemplated configurations and methods operate without the use of external refrigeration.
Description
- This application claims priority to U.S. provisional application with the Ser. No. 61/694,949, which was filed on Aug. 30, 2012, and which is incorporated by reference herein.
- The field of the invention is removal and recovery of natural gas liquids (NGL) from feed gases to meet pipeline hydrocarbon dew point and heating value specifications, especially for offshore applications.
- Numerous systems and methods are known in the art to recover C2, C3, and heavier components from natural gas, but all or almost all of them are configured for high recovery (i.e., over 90%) of NGL and require use of a turboexpander and deep refrigeration, which are costly and can only be economically justified if there are significant downstream markets. However, this is not case with offshore NGL recovery systems where space is at a premium and economic viability of the installation depends on a relatively small footprint and low operating and capital cost. Therefore, in all or almost all cases, high capital investment and operating costs required for high recovery typically cannot be justified. On the other hand, pipeline operators are required to produce a sales gas to meet the pipeline specification on the hydrocarbon dew point and heating value for safety in transmission. In most cases, recovery of over 95% of the C4 and heavier hydrocarbons from the feed gas may be required, while C3 recovery can be as low as 60%, and C2 recovery is incidental, and can be as low as 30%. In view of the changed demand, the complexity of currently known NGL processing plants that allow over 90% C3 recovery is excessive and often cannot be justified from an economical perspective.
- Numerous NGL processing plants with high NGL recovery from a feed gas include cryogenic fractionation and turbo-expansion processes as described in U.S. Pat. No. 4,157,904 to Campbell et al., U.S. Pat. No. 4,251,249 to Gulsby, U.S. Pat. No. 4,617,039 to Buck, U.S. Pat. No. 4,690,702 to Paradowski et al., U.S. Pat. No. 5,275,005 to Campbell et al., U.S. Pat. No. 5,799,507 to Wilkinson et al., and U.S. Pat. No. 5,890,378 to Rambo et al., and U.S. Pat. App. No. 2002/0166336 to Wilkinson et al., and WO 2011/126710 to Johnke et al. These and all other extrinsic materials discussed herein are incorporated by reference in their entirety. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
- While all of these processes can achieve very high NGL recovery, several difficulties still remain. Among other things, the NGL recovery processes use high expansion ratio turboexpanders to produce low levels of refrigeration, which requires recompression of the residue gas. Moreover, when processing a rich gas stream with relatively high levels of C5+ hydrocarbons, additional external refrigeration is often required. Typically, such process configurations are complex and are difficult to operate. For example, Campbell et al. describe in U.S. Pat. No. 6,182,469 a plant in which feed gas is cooled in a heat exchanger using cold residue gas and side reboilers as depicted in Prior Art
FIG. 1 . The condensed feed gas liquids are then separated in a separator and fed to the demethanizer. Alternatively, as described by Sorensen in U.S. Pat. No. 5,953,935, an absorber may be added upstream of a demethanizer as depicted in Prior ArtFIG. 2 . In such configurations, the liquids from the feed separator and the absorber bottoms are fed to the demethanizer. To further increase NGL recovery in such configurations, the absorber overhead is cooled and refluxed by chilling with the demethanizer overhead vapor. - In still further known configurations, as described in U.S. Pat. No. 6,244,070 to Lee et al. and U.S. Pat. No. 5,890,377 to Foglietta, the reboiler duties are integrated in feed chilling, and in these configurations, liquids from the intermediate separators are fed to various positions in the downstream demethanizer for NGL recovery. These processes also include various means of providing cooling to the NGL processes. Exemplary known configurations following such schemes are depicted in Prior Art
FIGS. 3 and 4 . While such complex configurations are suited to achieve high C2 and C3 recovery to over 95%, they tend to be cost prohibitive and not suitable for offshore applications. - Therefore, although various configurations and methods are known to recover NGL from a feed gas, all or almost all of them suffer from one or more disadvantages when dewpointing and moderate C3 recovery is required. Therefore, there is still a need to provide methods and configurations for improved NGL recovery.
- The inventive subject matter is directed to configurations and methods of recovery of C4 and heavier hydrocarbons, and moderate recovery (up to 90%) of C3 from a gas stream to meet hydrocarbon dew point and heating value specification of a pipeline gas produced from the gas stream.
- In one preferred aspect of the inventive subject matter, two columns are operated at different pressures with the first column (absorber) operating at a relatively high pressure of about 550 psig and with the second column (fractionator) operating at about 450 psig. By operating the absorber at relatively high pressure, the compression ratio of the residue gas is reduced, thereby minimizing the overall compression horsepower. With the fractionator operating at about 450 psig, it should be noted that the separation of methane from the ethane and heavier components can be accomplished with less heating requirement due to the favorable relative volatility between components, resulting in a smaller diameter column.
- In another preferred aspect of the invention, the vapor stream from the fractionator overhead is advantageously utilized for stripping in the absorber. In one embodiment of this process, the fractionator overhead stream is compressed and the “free” heat of compression is used to efficiently remove the methane components from the NGL from the absorber.
- It should also be particularly appreciated that only the liquid portion of the expander discharge is used as reflux to the absorber, which is entirely different from heretofore known configurations and methods, which require the expander discharge to be fed to the mid or the lower section of the absorber, as illustrated in
FIGS. 1-4 . The expander discharge typically contains about 80% vapor, and by feeding the vapor portion in the top of the absorber, the vapor traffic in the mid- and lower portion of the absorber is significantly reduced, and hence the size of the absorber is smaller. In heretofore known configurations and methods where the expander is discharged to the lower section of the absorber, the column has to be designed to handle the total flow, and not just the liquid flow as presented herein. For example, the size of the absorber in a currently known gas plant is typically 12 ft in diameter for a 1,000 MMscfd feed gas as compared to the absorber size of 10 ft in diameter using configurations and methods presented herein, which significantly reduces space requirement, associated equipment cost and weight, which are of primary importance in an offshore environment. - Additionally, it should be recognized that the second fractionator operates at a lower pressure and temperature, which is not only more efficient in terms of separation, but also allows the use of residue gas compression heat for reboiling the fractionator, thereby eliminating steam requirement or hot oil heating of heretofore known systems and methods.
- It is further generally preferred that the fractionator is operated at a pressure between 450 to 550 psig, and that the overhead vapor is compressed to the absorber pressure that is at least 50 psi, and more typically at least 100 psi, and mostly typically at 155 psi higher than the absorber, and that the compressor discharge vapor has a temperature and volume that is sufficient for use as a stripping vapor to the absorber.
- Additionally, contemplated methods will also include a step of expanding the vapor phase in a turbo expander and reducing pressure of the liquid phase in a second expansion device before feeding the liquid phase to a feed exchanger. While not limiting to the inventive subject matter, it is typically preferred that the feed gas cooling is performed without use of external refrigeration. In yet another step, the bottom of the absorber is also letdown in pressure via a JT valve providing additional chilling to the feed gas in the feed exchanger.
- In another preferred aspect of the inventive subject matter, a processing plant for hydrocarbon dew point control of a natural gas feed gas delivered from a feed gas source (e.g., LNG import terminal, regasification etc.) will include a feed gas exchanger that is fluidly coupled to the feed gas source and configured to cool the feed gas using a liquid phase of the cooled feed gas and an bottom product of an absorber. Contemplated plants will also include a phase separator that is fluidly coupled to the feed gas exchanger and that is configured to separate the cooled feed gas into the liquid phase and a vapor phase. Most typically, the fractionator comprises a top section that is configured to produce a vapor phase that is compressed and used as a stripping gas in the absorber.
- Various objects, features, aspects and advantages of the present invention will become apparent from the following detailed description of preferred embodiments of the invention, along with the accompanying drawings.
- Prior Art
FIG. 1 is a schematic of one known configuration for NGL recovery in which feed gas is cooled in a heat exchanger using cold residue gas and side reboilers. - Prior Art
FIG. 2 is a schematic of another known configuration for NGL recovery in which an absorber/fractionator column is positioned upstream of a demethanizer. - Prior Art
FIG. 3 is a schematic of yet another known configuration for NGL recovery in which reboiler and feed gas compression are integrated in feed chilling. - Prior Art
FIG. 4 is a schematic of a further known configuration for NGL recovery in which reboiler and compressed residue gas recycle are integrated in feed chilling. -
FIG. 5 is a schematic of an exemplary configuration for NGL recovery according to the inventive subject matter. -
FIG. 6 is a table listing calculated compositions of gas streams in the exemplary NGL recovery plant ofFIG. 5 . - The inventor has discovered various configurations and methods of NGL recovery in which capital and operating cost can be significantly reduced, and especially in offshore applications, where a rich feed gas is processed and where C4+ recovery with moderate C2 and C3 recovery is required. Among other advantages, contemplated configurations and methods significantly reduce complexity and cost by reducing the number of equipment services, by elimination of external refrigeration and external heating while lowering residue gas compression requirements.
- In particularly preferred configurations and methods, the feed gas (typically a natural gas comprising C1, C2, C3, and C4, and heavier components) is cooled at relatively high pressure to thereby effect partial condensation. The vapor and liquid phases are then separated, with the liquid phase being expanded to a lower pressure to so provide cooling to the feed gas. After reduction in pressure, the liquid phase is fed to the lower section of a fractionation column, while the vapor phase is expanded via a turboexpander and fed into the top section of a first fractionator (absorber). As the absorber is operated at relatively high pressures (typically 550 to 650 psig), residue gas recompression requirements are significantly reduced.
- One exemplary plant configuration is depicted in
FIG. 5 , in whichwet feed gas 1 at a pressure of about 1,000 psig and a temperature of about 100° F., having a typical composition as shown in the table ofFIG. 6 , is dried in a molecular sieve drier 51, formingstream 2. The sodried gas stream 2 is cooled to a temperature of about −65° F. inexchanger 52, formingstream 3, utilizing the refrigeration content fromresidue gas stream 9 andliquid streams chilled gas stream 3 is then separated inphase separator 53 into a liquid portion,stream 5, and a vapor portion,stream 4. - The
liquid portion 5 is letdown in pressure viaJT valve 54 to a pressure of about 475 psig, chilled to about −106°F. forming stream 6, which is heated inexchanger 52 to about 70° F. prior to entering asstream 7 to the lower section offractionator 59. Thevapor portion 4 is expanded via theturboexpander 55 to about 550 psig at about −109° F. to formstream 8, which is fed to the top ofabsorber 70. As used herein, the term “about” in conjunction with a numeral refers to a range of that numeral starting from 20% below the absolute of the numeral to 20% above the absolute of the numeral, inclusive. For example, the term “about −150° F.” refers to a range of −120° F. to −180° F., and the term “about 1500 psig” refers to a range of 1200 psig to 1800 psig. Moreover, and unless the context dictates the contrary, all ranges set forth herein should be interpreted as being inclusive of their endpoints, and open-ended ranges should be interpreted to include commercially practical values. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary. It is noted that in some embodiments, the energy of expansion of gas within theturboexpander 55 may used to drivecompressor 56 or other device to recover expansion energy. In some embodiments, the energy of expansion inturboexpander 55 can be used to also drivecompressor 57. - It is contemplated that the
vapor portion 4 is being expanded via theturboexpander 55 in such a way that partially condensesvapor portion 4 to produce a two-phase stream 8 comprising a vapor phase and a liquid phase. In some embodiments, at least 5 vol. % ofstream 8 is in the vapor phase. In some embodiments, at least 10 vol. % ofstream 8 is in the vapor phase. In yet some embodiments, at least 20 vol % ofstream 8 is in the vapor phase. In yet some other embodiments, at least 30 vol % ofstream 8 is in the vapor phase. In yet some embodiments, at least 40 vol % ofstream 8 is in the vapor phase. In yet some embodiments, at least 60 vol % ofstream 8 is in the vapor phase. In yet some embodiments, at least 80 vol % ofstream 8 is in the vapor phase. The remainder of the expanded stream is in the liquid phase to serve as a reflux stream. Therefore, in some embodiments, at least 5 vol % ofstream 8 is in a liquid phase. In yet some embodiments, at least 20 vol % ofstream 8 is in a liquid phase. In yet some other embodiments, at least 30 vol % ofstream 8 is in a liquid phase. In yet some embodiments, at least 40 vol % ofstream 8 is in a liquid phase. In yet some embodiments, at least 60 vol % ofstream 8 is in a liquid phase. In yet some embodiments, at least 80 vol % ofstream 8 is in a liquid phase. - The operating pressure of the
absorber 70 is in the range of about 550 to about 650 psig or higher, and the top section temperature is about −100° F., and the bottom section is about −15° F. It should be noted that only the liquid portion from the expander discharge is used as the reflux and the vapor portion forms part of the residue gas. The absorber is stripped with hotcompressor discharge stream 16 from thefractionator column 59. - In some embodiments, the
overhead gas stream 9 comprises the residue gas from theabsorber 70 and at least some of the vapor portion ofstream 8. In some embodiments,overhead gas stream 9 has a methane content of about 95 mol %.Overhead gas stream 9 that comes out ofabsorber 70 has a low temperature (at about −100° F.), and the refrigeration content of theoverhead gas stream 9 is used to chillnatural gas feed 2. Theabsorber bottom stream 10 is letdown in pressure to about 450 psig and chilled to −14° F., formingstream 11, and the refrigerant content is used to chill the feed gas inexchanger 52 to formstream 21. The heated gas is flashed to the top of thefractionator column 59. - After being used to chill
natural gas feed 2, the warmedgas stream 17 that comes out of theheat exchanger 52 is being compressed bycompressor 56, and turns into compressedgas stream 18. In some embodiments,gas stream 18 is further compressed bycompressor 57 to formcompressed gas stream 19, which is used for reboiling products from thefractionator 59 inreboiler 62. So cooledresidue gas stream 15 is then fed toair cooler 58 prior to leaving the plant as residue gas stream 20 (e.g., as pipeline gas). It should be recognized that such configuration does not require external heating or fuel gas heater while producing on spec product which is advantageous for offshore operation and eliminating noxioius or otherwise undesireable emissions. -
Fractionator 59 uses reboiler 62 to maintain the methane content in thebottom liquid stream 12 to preferably no more than 2 mol % or as required to meet the vapor pressure specification of the NGL product. Because of the relatively low operating pressure in the fractionator, the reboiler can use the low temperature compression heat from the residue gascompressor discharge stream 19 for reboilingfractionator bottom product 13, eliminating external heating requirement. Thefractionator 59 is configured to produce a fractionatoroverhead product 14 that is passed tocompressor 63. As mentioned above, the compressedstream 16 is then passed into the bottom section of theabsorber 70, while a portion of the bottom product leaves as C2+NGL product stream 12. - With respect to the feed gas it is generally contemplated that suitable feed gases will include C1, C2 and C3+, and may further comprise N2 and CO2. Consequently, it should be appreciated that the nature of the feed gas may vary considerably, and all feed gases in plants are considered suitable feed gases no long as they comprise C1 and C3 components, and more typically C1 to C5 and heavier components, and most typically C1 to C6 and heavier components. Therefore, particularly preferred feed gases include natural gas (e.g., after regasification from LNG, after CO2 removal where produced from a gas well), refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite. Suitable gases may also contain relatively lesser amounts of heavier hydrocarbons such as propane, butanes, pentanes and the like, as well as hydrogen, nitrogen, carbon dioxide and other gases. Depending on the particular feed gas, the pressure of the feed gas may vary. However, it is generally preferred that the feed gas has a pressure between about 700 psig to about 1400 psig, and more typically between about 900 psig to about 1200 psig.
- With respect to most suitable applications, contemplated configurations and methods use a single fractionator to recover at least 95% of the C4 and heavier hydrocarbons, and 60% to 80% of the C3 component, and 20% to 50% C2 component, without the use of external refrigeration. Therefore, it should be noted that feed gas cooling and/or cooling of the vapor product are performed without use of external refrigeration (e.g., at least 90% of refrigeration requirements are produced from expansion of process streams). It should also be recognized that white a single column configuration can also be used with two separate columns stacked on top of each other, with functions corresponding to the absorber and fractionator are also deemed suitable for use herein. It is still further contemplated that the dryer, separator, fractionator, heat exchanger, JT-valves, residue gas compressor, and turboexpander used in present configurations and methods are conventional devices well known to the skilled artisan.
- Among other advantages of contemplated configurations, it should be particularly recognized that the phase separator produces a C5+ enriched liquid and a C5+ depleted vapor from a feed gas. Thus, so produced C5 enriched liquids may advantageously be fractionated in the lower section of the fractionator to meet the product liquid specification. Additionally, it should be recognized that by using a feed cooler and feed phase separator, and further by cooling of the vapors from the feed cooler and separation of the cooled vapors in the separator (to form a C5+ enriched liquid and a C5+ depleted vapor) most, if not all of the heavier components are removed from the feed gas. Consequently, the composition of the material flowing through the cold section is substantially stabilized as processing of heavy components in the feed gas in the upper section of the fractionator can be eliminated. Therefore, the heat duties, the turbo expander, and the fractionator will operate at the most efficient points. Thus, contemplated configurations and processes allow handling of a rich feed gas composition, thereby eliminating the complexity of a refrigeration unit of most prior arts. Viewed from another perspective, contemplated processes maintain constant operating conditions for the NGL recovery plant by removal of the C5+ components in the feed gas.
- According to previously performed calculations (data not shown), contemplated configurations will achieve at least 60%, and more typically 78% propane recovery, and at least 85%, and more typically 95% butane recovery (see
FIG. 6 ). Further contemplations, configurations, and methods suitable for use herein are described in U.S. Pat. Nos. 6,601,406, 6,837,7070, 7,051,552, 7,051,552 and 7,377,127, all of which are incorporated by reference herein. It is contemplated that a natural gas processing plant does not have to include all of the features described above to achieve efficiency in NGL recovery. Thus, a natural processing plant may include only a subset of the features described above. In some of these embodiments, the natural processing, plant may also include additional features that are not disclosed herein. - For example, a natural gas processing plant of some embodiments may include a turboexpander and an absorber. The turboexpander is configured to reduce pressure of a vapor stream to generate a two-phase stream having a liquid phase and a vapor phase. The absorber is configured to receive the two phase stream in a position such as to allow use of the liquid phase as a reflux. The absorber is further configured to produce an absorber overhead product and an absorber bottom product. Preferably but not necessarily, the vapor stream that enters into the turboexpander comprises natural gas feed that is cooled by a heat exchanger. In some of these embodiments, the absorber overhead product is led back into the heat exchanger in which refrigeration content of the absorber overhead product is used to chill the natural gas stream.
- Preferably but not necessarily, after being used to chill the natural gas feed, the absorber overhead product is being compressed and used to reboil content within a fractionator. Moreover, the vapor stream that enters into the turboexpander comprises natural gas feed that is cooled by a heat exchanger. In some of these embodiments, the absorber bottom product is recycled back into the heat exchanger in which refrigeration content of the absorber bottom product is used to chill the natural gas stream.
- It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the spirit of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms “comprises” and “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C . . . and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.
Claims (24)
1. A method of processing a natural gas stream, comprising:
cooling the natural gas stream and separating the cooled natural gas stream into a vapor portion and a liquid portion;
using a turboexpander to reduce pressure of the vapor portion to thereby generate a two-phase stream having a liquid phase and a vapor phase;
feeding the two phase stream to an absorber such that the liquid phase is a reflux in an absorber that produces an absorber overhead product and an absorber bottom product;
reducing the bottom product in pressure and feeding the bottom product after pressure reduction into a fractionator that produces a fractionator bottom product and a fractionator overhead product; and
compressing the fractionator overhead product and using the compressed fractionator overhead product as a stripping gas in the absorber.
2. The method of claim 1 , further comprising a step of using refrigeration content of the absorber overhead product for the step of cooling the natural gas stream.
3. The method of claim 1 or claim 2 , further comprising a step of using refrigeration content of the liquid portion and the bottom product after pressure reduction for the step of cooling the natural gas stream.
4. The method of claim 1 further comprising a step of compressing the absorber overhead product, and using heat content of the compressed absorber overhead for reboiling the fractionator.
5. A natural gas processing plant, comprising:
a heat exchanger configured to cool a natural gas stream, and a phase separator that is configured to receive and separate the cooled natural gas stream into a vapor portion and a liquid portion;
a turboexpander coupled to an absorber and phase separator, and configured to reduce pressure of the vapor portion to thereby generate a two-phase stream having a liquid phase and a vapor phase;
wherein the absorber is configured to receive the two phase stream in a position such as to allow use of the liquid phase as a reflux, and wherein the absorber is further configured to produce an absorber overhead product and an absorber bottom product;
a pressure reduction device that is fluidly coupled to the absorber and configured to reduce the bottom product in pressure;
a fractionator that is configured to receive the bottom product after pressure reduction and that is further configured to produce a fractionator bottom product and a fractionator overhead product;
a compressor fluidly coupled between the fractionator and the absorber, wherein the compressor is configured to receive and compress the fractionator overhead product and to provide the compressed fractionator overhead product as a stripping gas in the absorber.
6. The plant of claim 5 , wherein the heat exchanger is configured such as to allow use of refrigeration content of the absorber overhead product to cool the natural gas stream.
7. The plant of claim 6 or claim 7 , wherein the heat exchanger is further configured such as to allow use of refrigeration content of the liquid portion and the bottom product after pressure reduction to cool the natural gas stream.
8. The plant of claim 5 further comprising a residue gas compressor that is configured to compress the absorber overhead product, and wherein the fractionator uses a reboiler that is configured to use heat content of the compressed absorber overhead for reboiling the fractionator.
9. A method of operating an absorber in a natural gas processing plant, comprising a step of feeding a two-phase stream having a liquid phase and a vapor phase into a top portion of the absorber such that the liquid phase operates as a reflux stream, wherein the two-phase stream is produced by expansion of a vapor portion of a natural gas stream.
10. The method of claim 9 wherein the expansion of the vapor portion of the feed gas is performed using a turboexpander.
11. The method of claim 9 wherein the natural gas stream is a rich natural gas stream with at least 3% C3+ and wherein the natural gas stream has a pressure of at least 1000 psig.
12. A method of operating a fractionator reboiler of a natural gas processing plant having an absorber, and a fractionator, comprising:
using the absorber to produce an absorber overhead product, and compressing the absorber overhead product to a delivery pressure;
using heat content from the compressed absorber overhead product in the fractionator reboiler.
13. The method of claim 12 , further comprising a step of heating the absorber overhead product in a heat exchanger using heat from a natural gas feed stream prior to the step of compressing the absorber overhead product.
14. A natural gas processing plant, comprising:
turboexpander configured to reduce pressure of a vapor stream to generate a two-phase stream having a liquid phase and a vapor phase, wherein the two-phase stream is produced by expansion of a vapor portion of a natural gas stream; and
an absorber coupled to the turboexpander, and configured to receive the two phase stream in a position such as to allow use of the liquid phase as a reflux, and wherein the absorber is further configured to produce an absorber overhead product and an absorber bottom product.
15. The natural gas processing plant of claim 14 , further comprising:
a heat exchanger configured to use the absorber overhead product to cool the natural gas stream, and a phase separator that is configured to receive and separate the cooled natural gas stream into the vapor portion and a liquid portion.
16. The natural gas processing plant of claim 14 , wherein the natural gas stream is a rich natural gas stream with at least 3% C3+ and wherein the natural gas stream has a pressure of at least 1000 psig.
17. The natural gas processing plant of claim 14 , wherein the absorber overhead product is compressed and the compressed overhead product is used for reboiling a fractionator.
18. The natural gas processing plant of claim 17 , wherein a fractionator overhead product from the fractionators is compressed, and the compressed fractionators overhead product is fed into the absorber as a stripping gas.
19. A natural gas processing plant, comprising:
an absorber configured to produce an absorber overhead product and compress the absorber overhead product to a delivery pressure; and
fractionator configured to use heat content from the compressed absorber overhead product to reboil content within the fractionator.
20. The natural gas processing plant of claim 19 , wherein the absorber overhead product is heated in a heat exchanger using heat front a natural gas feed stream prior to entering into the absorber.
21. A method of processing a natural gas stream, comprising:
cooling the natural gas stream and separating the cooled natural gas stream into a vapor portion and a liquid portion; and
feeding the cooled vapor portion to an absorber that produces an absorber overhead product and an absorber bottom product, wherein refrigeration content of the absorber overhead product is used for the step of cooling the natural gas stream.
22. The method of claim 21 , wherein the step of cooling the natural gas stream comprises using a turboexpander to reduce pressure of the vapor portion.
23. A natural gas processing plant, comprising:
a heat exchanger configured to coot a natural gas stream, and a phase separator that is configured to receive and separate the cooled natural gas stream into a vapor portion and a liquid portion;
an absorber configured to receive the vapor portion and produce an absorber overhead product, wherein refrigeration content of the absorber overhead product is used for cooling the natural gas stream in the heat exchanger.
24. The natural gas processing plant of claim 23 , further comprising a turboexpander configured to reduce pressure of the vapor portion before the vapor portion reaching the absorber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/014,226 US20140060114A1 (en) | 2012-08-30 | 2013-08-29 | Configurations and methods for offshore ngl recovery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261694949P | 2012-08-30 | 2012-08-30 | |
US14/014,226 US20140060114A1 (en) | 2012-08-30 | 2013-08-29 | Configurations and methods for offshore ngl recovery |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140060114A1 true US20140060114A1 (en) | 2014-03-06 |
Family
ID=50184383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/014,226 Abandoned US20140060114A1 (en) | 2012-08-30 | 2013-08-29 | Configurations and methods for offshore ngl recovery |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140060114A1 (en) |
JP (1) | JP6289471B2 (en) |
KR (1) | KR20150102931A (en) |
WO (1) | WO2014036322A1 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150308735A1 (en) * | 2014-04-28 | 2015-10-29 | Uop Llc | Methods and systems for separating hydrocarbons |
US20160245584A1 (en) * | 2013-10-18 | 2016-08-25 | L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude | Method for denitrogenation of natural gas with or without helium recovery |
US10704832B2 (en) * | 2016-01-05 | 2020-07-07 | Fluor Technologies Corporation | Ethane recovery or ethane rejection operation |
US10894929B1 (en) | 2019-10-02 | 2021-01-19 | Saudi Arabian Oil Company | Natural gas liquids recovery process |
US20210131728A1 (en) * | 2019-11-05 | 2021-05-06 | Toyo Engineering Corporation | Process and apparatus for separating hydrocarbon |
US11268757B2 (en) * | 2017-09-06 | 2022-03-08 | Linde Engineering North America, Inc. | Methods for providing refrigeration in natural gas liquids recovery plants |
US11365933B2 (en) | 2016-05-18 | 2022-06-21 | Fluor Technologies Corporation | Systems and methods for LNG production with propane and ethane recovery |
US20220252343A1 (en) * | 2014-03-14 | 2022-08-11 | Lummus Technology Inc. | Process and apparatus for heavy hydrocarbon removal from lean natural gas before liquefaction |
US11725879B2 (en) | 2016-09-09 | 2023-08-15 | Fluor Technologies Corporation | Methods and configuration for retrofitting NGL plant for high ethane recovery |
US12098882B2 (en) | 2018-12-13 | 2024-09-24 | Fluor Technologies Corporation | Heavy hydrocarbon and BTEX removal from pipeline gas to LNG liquefaction |
US12215922B2 (en) | 2019-05-23 | 2025-02-04 | Fluor Technologies Corporation | Integrated heavy hydrocarbon and BTEX removal in LNG liquefaction for lean gases |
US12228335B2 (en) | 2012-09-20 | 2025-02-18 | Fluor Technologies Corporation | Configurations and methods for NGL recovery for high nitrogen content feed gases |
WO2025072774A1 (en) * | 2023-09-29 | 2025-04-03 | Enerflex Us Holdings Inc. | Systems and methods for hydrocarbon processing |
US12320587B2 (en) | 2017-10-20 | 2025-06-03 | Fluor Technologies Corporation | Phase implementation of natural gas liquid recovery plants |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11402155B2 (en) * | 2016-09-06 | 2022-08-02 | Lummus Technology Inc. | Pretreatment of natural gas prior to liquefaction |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6401486B1 (en) * | 2000-05-18 | 2002-06-11 | Rong-Jwyn Lee | Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants |
US20020157538A1 (en) * | 2001-03-01 | 2002-10-31 | Foglietta Jorge H. | Cryogenic process utilizing high pressure absorber column |
US20070240450A1 (en) * | 2003-10-30 | 2007-10-18 | John Mak | Flexible Ngl Process and Methods |
US20100011809A1 (en) * | 2006-06-27 | 2010-01-21 | Fluor Technologies Corporation | Ethane Recovery Methods And Configurations |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1021254A (en) * | 1974-10-22 | 1977-11-22 | Ortloff Corporation (The) | Natural gas processing |
US4617039A (en) * | 1984-11-19 | 1986-10-14 | Pro-Quip Corporation | Separating hydrocarbon gases |
US6182469B1 (en) * | 1998-12-01 | 2001-02-06 | Elcor Corporation | Hydrocarbon gas processing |
MXPA04004256A (en) * | 2001-11-09 | 2004-07-08 | Fluor Corp | Configurations and methods for improved ngl recovery. |
EA006872B1 (en) * | 2002-05-08 | 2006-04-28 | Флуор Корпорейшн | An ngl recovery plant and process using a subcooled absorption reflux process |
US7069744B2 (en) * | 2002-12-19 | 2006-07-04 | Abb Lummus Global Inc. | Lean reflux-high hydrocarbon recovery process |
-
2013
- 2013-08-29 KR KR1020157007364A patent/KR20150102931A/en not_active Abandoned
- 2013-08-29 JP JP2015530063A patent/JP6289471B2/en not_active Expired - Fee Related
- 2013-08-29 US US14/014,226 patent/US20140060114A1/en not_active Abandoned
- 2013-08-29 WO PCT/US2013/057395 patent/WO2014036322A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6401486B1 (en) * | 2000-05-18 | 2002-06-11 | Rong-Jwyn Lee | Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants |
US20020157538A1 (en) * | 2001-03-01 | 2002-10-31 | Foglietta Jorge H. | Cryogenic process utilizing high pressure absorber column |
US20070240450A1 (en) * | 2003-10-30 | 2007-10-18 | John Mak | Flexible Ngl Process and Methods |
US20100011809A1 (en) * | 2006-06-27 | 2010-01-21 | Fluor Technologies Corporation | Ethane Recovery Methods And Configurations |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12228335B2 (en) | 2012-09-20 | 2025-02-18 | Fluor Technologies Corporation | Configurations and methods for NGL recovery for high nitrogen content feed gases |
US20160245584A1 (en) * | 2013-10-18 | 2016-08-25 | L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude | Method for denitrogenation of natural gas with or without helium recovery |
US10006699B2 (en) * | 2013-10-18 | 2018-06-26 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Method for denitrogenation of natural gas with or without helium recovery |
US20220252343A1 (en) * | 2014-03-14 | 2022-08-11 | Lummus Technology Inc. | Process and apparatus for heavy hydrocarbon removal from lean natural gas before liquefaction |
US20150308735A1 (en) * | 2014-04-28 | 2015-10-29 | Uop Llc | Methods and systems for separating hydrocarbons |
US10704832B2 (en) * | 2016-01-05 | 2020-07-07 | Fluor Technologies Corporation | Ethane recovery or ethane rejection operation |
US11365933B2 (en) | 2016-05-18 | 2022-06-21 | Fluor Technologies Corporation | Systems and methods for LNG production with propane and ethane recovery |
US12222158B2 (en) | 2016-09-09 | 2025-02-11 | Fluor Technologies Corporation | Methods and configuration for retrofitting NGL plant for high ethane recovery |
US11725879B2 (en) | 2016-09-09 | 2023-08-15 | Fluor Technologies Corporation | Methods and configuration for retrofitting NGL plant for high ethane recovery |
US11268757B2 (en) * | 2017-09-06 | 2022-03-08 | Linde Engineering North America, Inc. | Methods for providing refrigeration in natural gas liquids recovery plants |
US12320587B2 (en) | 2017-10-20 | 2025-06-03 | Fluor Technologies Corporation | Phase implementation of natural gas liquid recovery plants |
US12098882B2 (en) | 2018-12-13 | 2024-09-24 | Fluor Technologies Corporation | Heavy hydrocarbon and BTEX removal from pipeline gas to LNG liquefaction |
US12215922B2 (en) | 2019-05-23 | 2025-02-04 | Fluor Technologies Corporation | Integrated heavy hydrocarbon and BTEX removal in LNG liquefaction for lean gases |
US10894929B1 (en) | 2019-10-02 | 2021-01-19 | Saudi Arabian Oil Company | Natural gas liquids recovery process |
US11326116B2 (en) | 2019-10-02 | 2022-05-10 | Saudi Arabian Oil Company | Natural gas liquids recovery process |
CN112781320A (en) * | 2019-11-05 | 2021-05-11 | 东洋工程株式会社 | Method and apparatus for separating hydrocarbons |
US20210131728A1 (en) * | 2019-11-05 | 2021-05-06 | Toyo Engineering Corporation | Process and apparatus for separating hydrocarbon |
WO2025072774A1 (en) * | 2023-09-29 | 2025-04-03 | Enerflex Us Holdings Inc. | Systems and methods for hydrocarbon processing |
Also Published As
Publication number | Publication date |
---|---|
KR20150102931A (en) | 2015-09-09 |
JP6289471B2 (en) | 2018-03-07 |
WO2014036322A1 (en) | 2014-03-06 |
JP2015531851A (en) | 2015-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140060114A1 (en) | Configurations and methods for offshore ngl recovery | |
US6837070B2 (en) | High propane recovery process and configurations | |
US6516631B1 (en) | Hydrocarbon gas processing | |
US7051553B2 (en) | Twin reflux process and configurations for improved natural gas liquids recovery | |
US6712880B2 (en) | Cryogenic process utilizing high pressure absorber column | |
US9933207B2 (en) | Hydrocarbon gas processing | |
US9103585B2 (en) | Configurations and methods for improved natural gas liquids recovery | |
US8677780B2 (en) | Configurations and methods for rich gas conditioning for NGL recovery | |
AU2001271587A1 (en) | High propane recovery process and configurations | |
US20140026615A1 (en) | Configurations and methods for deep feed gas hydrocarbon dewpointing | |
US9920986B2 (en) | Configurations and methods for nitrogen rejection, LNG and NGL production from high nitrogen feed gases | |
US8840707B2 (en) | Configurations and methods for gas condensate separation from high-pressure hydrocarbon mixtures | |
AU2002303849B2 (en) | Twin reflux process and configurations for improved natural gas liquids recovery | |
CA2763714A1 (en) | Hydrocarbon gas processing | |
EP2553366A1 (en) | Hydrocarbon gas processing | |
AU2011233590B2 (en) | Hydrocarbon gas processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |