CN110018669A - 五轴数控机床解耦的轮廓误差控制方法 - Google Patents

五轴数控机床解耦的轮廓误差控制方法 Download PDF

Info

Publication number
CN110018669A
CN110018669A CN201910314401.7A CN201910314401A CN110018669A CN 110018669 A CN110018669 A CN 110018669A CN 201910314401 A CN201910314401 A CN 201910314401A CN 110018669 A CN110018669 A CN 110018669A
Authority
CN
China
Prior art keywords
profile errors
control
tracking error
normal direction
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910314401.7A
Other languages
English (en)
Other versions
CN110018669B (zh
Inventor
万敏
肖群宝
张卫红
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201910314401.7A priority Critical patent/CN110018669B/zh
Publication of CN110018669A publication Critical patent/CN110018669A/zh
Application granted granted Critical
Publication of CN110018669B publication Critical patent/CN110018669B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35408Calculate new position data from actual data to compensate for contour error

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种五轴数控机床解耦的轮廓误差控制方法,用于解决现有五轴轮廓误差控制方法通用性差的技术问题。技术方案是首先通过在线五轴轮廓误差估计方法计算轮廓误差矢量和切向追踪误差矢量;然后针对各个驱动轴设计出稳定法向轮廓误差控制器,输入为轮廓误差矢量,输出为各个轴的法向轮廓误差控制分量;接着针对各个驱动轴设计出稳定的切向追踪误差控制器,输入为切向追踪误差矢量,输出为各个轴的切向追踪误差控制分量;最后将各个轴的法向轮廓误差控制分量和切向追踪误差控制分量直接相加,得到总的控制信号来控制各个驱动轴。本发明通过切向追踪误差控制与法向轮廓误差控制的解耦,具有通用性,能够集成滑膜、自适应或迭代学习控制器。

Description

五轴数控机床解耦的轮廓误差控制方法
技术领域
本发明涉及一种五轴轮廓误差控制方法,特别涉及一种五轴数控机床解耦的轮廓误差控制方法。
背景技术
文献1“X.Li,H.Zhao,X.Zhao,H.Ding,Dual sliding mode contouring controlwith high accuracy contour error estimation for five-axis cnc machine tools,International Journal of Machine Tools and Manufacture 108(2016)74–82.”公开了一种使用双滑模控制器来实现五轴轮廓误差控制的方法。该方法通过在在追踪误差滑模面中加入轮廓误差分量来实现轮廓误差控制。但该方法无法实现切向追踪误差控制与法向轮廓误差控制的解耦,不具有通用性,使得该控制方案无法集成其他先进控制器。
文献2“J.Yang,H.-T.Zhang,H.Ding,Contouring error control of the toolcenter point function for five-axis machine tools based on model predictivecontrol,International Journal of Advanced Manufacturing Technology 88(2017)2909–2919.”公开了一种使用模型预测控制来实现五轴刀尖点轮廓控制的方法。该方法通过使用雅克比矩阵来线性近似轮廓误差与追踪误差之间的关系,将预测得到的刀尖轮廓误差加入到追踪误差控制方程中来实现轮廓误差控制。但该方法无法实现切向追踪误差控制与法向轮廓误差控制的解耦,不具有通用性,使得该控制方案无法集成其他先进控制器。
以上文献存在的不足是:均无法实现切向追踪误差控制与法向轮廓误差控制的解耦,从而不具有通用性,使得该控制方案无法集成其他先进控制器。
发明内容
为了克服现有五轴轮廓误差控制方法通用性差的不足,本发明提供一种五轴数控机床解耦的轮廓误差控制方法。该方法首先通过在线五轴轮廓误差估计方法计算轮廓误差矢量和切向追踪误差矢量;然后针对各个驱动轴设计出稳定法向轮廓误差控制器,输入为轮廓误差矢量,输出为各个轴的法向轮廓误差控制分量;接着针对各个驱动轴设计出稳定的切向追踪误差控制器,输入为切向追踪误差矢量,输出为各个轴的切向追踪误差控制分量;最后将各个轴的法向轮廓误差控制分量和切向追踪误差控制分量直接相加,得到总的控制信号来控制各个驱动轴。本发明实现了切向追踪误差控制与法向轮廓误差控制的解耦,从而具有通用性,可以集成各种先进控制器,如滑膜控制器、自适应控制器、迭代学习控制器等。
本发明解决其技术问题所采用的技术方案:一种五轴数控机床解耦的轮廓误差控制方法,其特点是包括以下步骤:
步骤一、计算当前tc时刻的工件坐标系下五轴加工指令轨迹上距离刀轴实际位置最近的点:
q0(tc)=qr(tc0)
q0(tc)为所要求的tc时刻的工件坐标系下五轴加工指令轨迹上距离刀轴实际位置最近的点,q(tc)为tc时刻的刀轴实际位置,qr(t)为t时刻的五轴加工指令轨迹。
步骤二、计算当前tc时刻机床坐标系下的切向追踪误差和法向轮廓误差:
切向追踪误差:eτ(tc)=qr(tc)-q0(tc)
法向轮廓误差:ε(tc)=q0(tc)-q(tc)
步骤三、设计离散FIR滤波器:
z为z变换算子,N为滤波器阶数,hn为离散FIR滤波器序列,采用窗函数法进行设计。
步骤四、计算当前tc时刻五轴加工指令轨迹上距离刀轴实际位置最近的点滤波后的一阶导数和二阶导数:
滤波后的一阶倒数:
滤波后的二阶倒数:
其中
为当前tc时刻五轴加工指令轨迹上距离刀轴实际位置最近的点的一阶导数,Ts为采样时间间隔。
步骤五、计算当前tc时刻五轴加工指令轨迹的一阶导数和二阶导数:
一阶倒数:
二阶导数:
步骤六、计算当前tc时刻刀轴实际位置的一阶倒数:
步骤七、计算当前tc时刻切向追踪误差和法向轮廓误差滤波后的一阶导数:
切向追踪误差滤波后的一阶导数:
法向轮廓误差滤波后的一阶导数:
步骤八、针对各个驱动轴设计法向轮廓误差控制器:
滑模控制器:
其中
M=diag(Mx,My,Mz,Ma,Mc)
C=diag(Cx,Cy,Cz,Ca,Cc)
υε(tc)为当前tc时刻法向轮廓误差控制器的电压控制信号,diag()表示对角矩阵,Mx,My,Mz,Ma,Mc分别为各个驱动轴的等效惯性,Cx,Cy,Cz,Ca,Cc分别为各个驱动轴的粘滞阻尼系数,b、g、η、k为滑膜控制器参数,采用李雅普诺夫定理设计得到,均为对角矩阵,即
b=diag(bx,by,bz,ba,bc)
g=diag(gx,gy,gz,ga,gc)
η=diag(ηxyzac)
k=diag(kx,ky,kz,ka,kc)
sign(S(tc))为S(tc)的符号矩阵,即
步骤九、针对各个驱动轴设计切向追踪误差控制器:
极点配置控制器:
其中
kv=diag(2wτx,2wτy,2wτz,2wτa,2wτc)
式中,wτx、wτy、wτz、wτa、wτc为极点配置控制器参数,采用Ziegler-Nichols整定方法得到。
步骤十、将法向轮廓误差控制分量和切向追踪误差控制分量相加得到总的控制信号来控制各个驱动轴:
υ=υτε
本发明的有益效果是:该方法首先通过在线五轴轮廓误差估计方法计算轮廓误差矢量和切向追踪误差矢量;然后针对各个驱动轴设计出稳定法向轮廓误差控制器,输入为轮廓误差矢量,输出为各个轴的法向轮廓误差控制分量;接着针对各个驱动轴设计出稳定的切向追踪误差控制器,输入为切向追踪误差矢量,输出为各个轴的切向追踪误差控制分量;最后将各个轴的法向轮廓误差控制分量和切向追踪误差控制分量直接相加,得到总的控制信号来控制各个驱动轴。本发明实现了切向追踪误差控制与法向轮廓误差控制的解耦,从而具有通用性,可以集成各种先进控制器,如滑膜控制器、自适应控制器、迭代学习控制器等。
下面结合附图和具体实施方式对本发明作详细说明。
附图说明
图1是本发明方法实施例中五轴加工轨迹刀尖点轨迹图。
图2是本发明方法实施例中五轴加工轨迹刀轴矢量轨迹图。
图3是本发明方法实施例中X、Y、Z轴指令轨迹图。
图4是本发明方法实施例中A、C轴指令轨迹图。
图5是本发明方法实施例中刀尖轮廓误差结果图。
图6是本发明方法实施例中刀轴矢量误差结果图。
具体实施方式
以下实施例参照图1-6。
在开方式五轴数控加工平台上测试本发明提出的方法。控制板的采样时间间隔Ts为0.001s。实验轨迹为一个五轴扇形轨迹,其中刀尖点轨迹如图1所示,刀轴矢量轨迹如图2所示。各个轴的实际位置由增量式编码器反馈得到。本发明中的轮廓误差控制算法在Matlab/Simulink 2015b中编程实现,各个驱动轴的等效质量Mx,My,Mz,Ma,Mc和各个驱动轴的粘滞摩擦系数Cx,Cy,Cz,Ca,Cc通过卡尔曼滤波方法和无偏最小二乘估计方法辨识得到,辨识结果如表1和表2所示。
表1驱动轴等效质量辨识结果
单位 X轴M<sub>x</sub> Y轴M<sub>y</sub> Z轴M<sub>z</sub> A轴M<sub>a</sub> C轴M<sub>c</sub>
M<sub>i</sub>[Vs<sup>2</sup>/mm或Vs<sup>2</sup>/rad] 7.50×10<sup>-4</sup> 8.74×10<sup>-4</sup> 5.62×10<sup>-4</sup> 6.96×10<sup>-2</sup> 1.80×10<sup>-2</sup>
表2粘滞摩擦系数辨识结果
单位 X轴C<sub>x</sub> Y轴C<sub>y</sub> Z轴C<sub>z</sub> A轴C<sub>a</sub> C轴C<sub>c</sub>
C<sub>i</sub>[Vs/mm或Vs/rad] 1.79×10<sup>-3</sup> 2.67×10<sup>-3</sup> 2.60×10<sup>-3</sup> 6.51×10<sup>-2</sup> 4.52×10<sup>-2</sup>
X,Y,Z轴随时间变化的位置指令如图3所示,A,C轴随时间变化的位置指令如图4所示。滑模控制器和极点配置控制器的参数分别如表3和表4所示。
表3滑模控制器参数
参数 X轴 Y轴 Z轴 A轴 C轴
b<sub>i</sub> 400 360 300 200 300
g<sub>i</sub> 20 20 20 20 20
η<sub>i</sub> 1 1 1 1 1
k<sub>i</sub> 20 20 20 20 20
表4极点配置控制器参数
参数 X轴 Y轴 Z轴 A轴 C轴
w<sub>τi</sub> 100 100 100 100 100
本发明五轴数控机床解耦的轮廓误差控制方法具体步骤如下:
步骤1、计算当前tc时刻的工件坐标系下五轴加工指令轨迹上距离刀轴实际位置最近的点:
q0(tc)=qr(tc0)
q0(tc)为所要求的tc时刻的工件坐标系下五轴加工指令轨迹上距离刀轴实际位置最近的点,q(tc)为tc时刻的刀轴实际位置,qr(t)为t时刻的五轴加工指令轨迹。
步骤2、计算当前tc时刻机床坐标系下的切向追踪误差和法向轮廓误差:
切向追踪误差:eτ(tc)=qr(tc)-q0(tc)
法向轮廓误差:ε(tc)=q0(tc)-q(tc)
步骤3、设计离散FIR滤波器:
z为z变换算子,N为滤波器阶数,hn为离散FIR滤波器序列,采用窗函数法进行设计。
步骤4、计算当前tc时刻五轴加工指令轨迹上距离刀轴实际位置最近的点滤波后的一阶导数和二阶导数:
滤波后的一阶倒数:
滤波后的二阶倒数:
其中
为当前tc时刻五轴加工指令轨迹上距离刀轴实际位置最近的点的一阶导数,Ts为采样时间间隔。
步骤5、计算当前tc时刻五轴加工指令轨迹的一阶导数和二阶导数:
一阶倒数:
二阶导数:
步骤6、计算当前tc时刻刀轴实际位置的一阶倒数:
步骤7、计算当前tc时刻切向追踪误差和法向轮廓误差滤波后的一阶导数:
切向追踪误差滤波后的一阶导数:
法向轮廓误差滤波后的一阶导数:
步骤8、针对各个驱动轴设计法向轮廓误差控制器:
滑模控制器:
其中
M=diag(Mx,My,Mz,Ma,Mc)
C=diag(Cx,Cy,Cz,Ca,Cc)
υε(tc)为当前tc时刻法向轮廓误差控制器的电压控制信号,diag()表示对角矩阵,Mx,My,Mz,Ma,Mc分别为各个驱动轴的等效惯性,Cx,Cy,Cz,Ca,Cc分别为各个驱动轴的粘滞阻尼系数,b、g、η、k为滑膜控制器参数,采用李雅普诺夫定理设计得到,均为对角矩阵,即
b=diag(bx,by,bz,ba,bc)
g=diag(gx,gy,gz,ga,gc)
η=diag(ηxyzac)
k=diag(kx,ky,kz,ka,kc)
sign(S(tc))为S(tc)的符号矩阵,即
步骤9、针对各个驱动轴设计切向追踪误差控制器:
极点配置控制器:
其中
kv=diag(2wτx,2wτy,2wτz,2wτa,2wτc)
式中,wτx、wτy、wτz、wτa、wτc为极点配置控制器参数,采用Ziegler-Nichols整定方法得到。
步骤10、将法向轮廓误差控制分量和切向追踪误差控制分量相加得到总的控制信号来控制各个驱动轴:
υ=υτε
可以看出,本实例不需要法向轮廓误差控制器和切向追踪误差控制器相同,因此实现了法向轮廓误差控制和切向追踪误差控制的解耦,因此具有通用性,可以集成各种先进控制器,如滑膜控制器、自适应控制器、迭代学习控制器等。
图5为刀尖轮廓误差控制结果图,图6位刀轴矢量轮廓误差控制结果图。可以看到,相比于分别用滑模控制器和极点配置控制器,本发明方法实现了很好的控制效果。本发明方法的刀尖轮廓误差峰值(97.6μm)相比于滑模控制器(158.6μm)和极点配置控制器(183.7μm)分别减小了38.4%和46.9%,本发明方法的刀轴矢量轮廓误差峰值(0.464mrad)相比于滑模控制器(0.918mrad)和极点配置控制器(1.201mrad)分别减小了49.5%和61.4%.除此之外,刀尖轮廓误差和刀轴矢量轮廓误差的均方根值也有很大程度的减小,如表5所示。
表5轮廓误差控制结果
可以看出本发明方法具有很好的轮廓误差控制效果,并且实现了法向轮廓误差控制和切向追踪误差控制的解耦,具有通用性,能够集成各种先进控制器,如滑膜控制器、自适应控制器、迭代学习控制器等。

Claims (1)

1.一种五轴数控机床解耦的轮廓误差控制方法,其特征在于包括以下步骤:
步骤一、计算当前tc时刻的工件坐标系下五轴加工指令轨迹上距离刀轴实际位置最近的点:
q0(tc)=qr(tc0)
q0(tc)为所要求的tc时刻的工件坐标系下五轴加工指令轨迹上距离刀轴实际位置最近的点,q(tc)为tc时刻的刀轴实际位置,qr(t)为t时刻的五轴加工指令轨迹;
步骤二、计算当前tc时刻机床坐标系下的切向追踪误差和法向轮廓误差:
切向追踪误差:eτ(tc)=qr(tc)-q0(tc)
法向轮廓误差:ε(tc)=q0(tc)-q(tc)
步骤三、设计离散FIR滤波器:
z为z变换算子,N为滤波器阶数,hn为离散FIR滤波器序列,采用窗函数法进行设计;
步骤四、计算当前tc时刻五轴加工指令轨迹上距离刀轴实际位置最近的点滤波后的一阶导数和二阶导数:
滤波后的一阶倒数:
滤波后的二阶倒数:
其中
为当前tc时刻五轴加工指令轨迹上距离刀轴实际位置最近的点的一阶导数,Ts为采样时间间隔;
步骤五、计算当前tc时刻五轴加工指令轨迹的一阶导数和二阶导数:
一阶倒数:
二阶导数:
步骤六、计算当前tc时刻刀轴实际位置的一阶倒数:
步骤七、计算当前tc时刻切向追踪误差和法向轮廓误差滤波后的一阶导数:
切向追踪误差滤波后的一阶导数:
法向轮廓误差滤波后的一阶导数:
步骤八、针对各个驱动轴设计法向轮廓误差控制器:
滑模控制器:
其中
M=diag(Mx,My,Mz,Ma,Mc)
C=diag(Cx,Cy,Cz,Ca,Cc)
υε(tc)为当前tc时刻法向轮廓误差控制器的电压控制信号,diag()表示对角矩阵,Mx,My,Mz,Ma,Mc分别为各个驱动轴的等效惯性,Cx,Cy,Cz,Ca,Cc分别为各个驱动轴的粘滞阻尼系数,b、g、η、k为滑膜控制器参数,采用李雅普诺夫定理设计得到,均为对角矩阵,即
b=diag(bx,by,bz,ba,bc)
g=diag(gx,gy,gz,ga,gc)
η=diag(ηxyzac)
k=diag(kx,ky,kz,ka,kc)
sign(S(tc))为S(tc)的符号矩阵,即
步骤九、针对各个驱动轴设计切向追踪误差控制器:
极点配置控制器:
其中
kv=diag(2wτx,2wτy,2wτz,2wτa,2wτc)
式中,wτx、wτy、wτz、wτa、wτc为极点配置控制器参数,采用Ziegler-Nichols整定方法得到;
步骤十、将法向轮廓误差控制分量和切向追踪误差控制分量相加得到总的控制信号来控制各个驱动轴:
υ=υτε
CN201910314401.7A 2019-04-18 2019-04-18 五轴数控机床解耦的轮廓误差控制方法 Active CN110018669B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910314401.7A CN110018669B (zh) 2019-04-18 2019-04-18 五轴数控机床解耦的轮廓误差控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910314401.7A CN110018669B (zh) 2019-04-18 2019-04-18 五轴数控机床解耦的轮廓误差控制方法

Publications (2)

Publication Number Publication Date
CN110018669A true CN110018669A (zh) 2019-07-16
CN110018669B CN110018669B (zh) 2021-08-17

Family

ID=67191808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910314401.7A Active CN110018669B (zh) 2019-04-18 2019-04-18 五轴数控机床解耦的轮廓误差控制方法

Country Status (1)

Country Link
CN (1) CN110018669B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031518A (zh) * 2021-03-19 2021-06-25 广东海洋大学 基于迭代学习的数控机床快速误差补偿控制系统及方法
US11360455B1 (en) 2021-03-19 2022-06-14 Guangdong Ocean University Error compensation system and method for numerical control (NC) machine tool based on iterative learning control

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114166A (zh) * 2007-09-13 2008-01-30 暨南大学 一种复杂轨迹的轮廓控制方法
CN103414419A (zh) * 2013-08-07 2013-11-27 沈阳工业大学 基于模糊rbf网络滑模的双直线电机轮廓补偿装置与方法
CN103869748A (zh) * 2014-02-27 2014-06-18 北京信息科技大学 非圆曲面xy直驱加工廓形误差交叉耦合控制系统及方法
CN106338970A (zh) * 2016-11-17 2017-01-18 沈阳工业大学 一种五轴联动数控机床伺服系统控制方法
US20170287752A1 (en) * 2016-03-29 2017-10-05 Applied Materials, Inc. Integrated metrology and process tool to enable local stress/overlay correction
CN108363301A (zh) * 2018-02-11 2018-08-03 台州学院 基于干扰观测滑模变结构的轮廓误差交叉耦合控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114166A (zh) * 2007-09-13 2008-01-30 暨南大学 一种复杂轨迹的轮廓控制方法
CN103414419A (zh) * 2013-08-07 2013-11-27 沈阳工业大学 基于模糊rbf网络滑模的双直线电机轮廓补偿装置与方法
CN103869748A (zh) * 2014-02-27 2014-06-18 北京信息科技大学 非圆曲面xy直驱加工廓形误差交叉耦合控制系统及方法
US20170287752A1 (en) * 2016-03-29 2017-10-05 Applied Materials, Inc. Integrated metrology and process tool to enable local stress/overlay correction
CN106338970A (zh) * 2016-11-17 2017-01-18 沈阳工业大学 一种五轴联动数控机床伺服系统控制方法
CN108363301A (zh) * 2018-02-11 2018-08-03 台州学院 基于干扰观测滑模变结构的轮廓误差交叉耦合控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113031518A (zh) * 2021-03-19 2021-06-25 广东海洋大学 基于迭代学习的数控机床快速误差补偿控制系统及方法
CN113031518B (zh) * 2021-03-19 2021-09-17 广东海洋大学 基于迭代学习的数控机床快速误差补偿控制系统及方法
US11360455B1 (en) 2021-03-19 2022-06-14 Guangdong Ocean University Error compensation system and method for numerical control (NC) machine tool based on iterative learning control

Also Published As

Publication number Publication date
CN110018669B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN104625676B (zh) 轴孔装配工业机器人系统及其工作方法
Yeh et al. Analysis and design of integrated control for multi-axis motion systems
CN102591257B (zh) 面向参数曲线刀具轨迹的数控系统轮廓误差控制方法
CN102929207B (zh) 一种数控机床伺服系统控制参数优化方法
CN103135501B (zh) 基于s型曲线的加减速控制方法和装置及数控机床
CN109434843A (zh) 一种基于拖动示教的机器人力控打磨叶片的设备及方法
Xi et al. Improving CNC contouring accuracy by robust digital integral sliding mode control
CN106354092B (zh) 一种随动与轮廓误差自适应实时补偿方法
CN110018669A (zh) 五轴数控机床解耦的轮廓误差控制方法
Kuang et al. Simplified newton-based CEE and discrete-time fractional-order sliding-mode CEC
CN111679629B (zh) 一种多主轴头加工的空行程无干涉轨迹规划方法
CN103984285A (zh) 一种多约束五轴加工进给率定制方法
CN102081376A (zh) 一种基于指令序列优化的加工负荷控制系统
CN115113582B (zh) 一种面向零件轮廓误差的五轴位置环增益离线矫正方法
CN104834219A (zh) 一种基于经验模态分解的pmlsm驱动xy平台控制方法及系统
CN109901518B (zh) 一种恒力约束条件下的数控机床加减速速度规划方法
CN102662351B (zh) 面向圆柱凸轮加工的三轴联动轮廓误差补偿控制方法
CN105320059A (zh) 伺服电动机的控制装置
CN105929791B (zh) 平面直角坐标运动系统的直接轮廓控制方法
Liu et al. Spindle axial thermal growth modeling and compensation on CNC turning machines
CN111427308A (zh) 一种用于数控平台轨迹规划的误差补偿综合控制方法
CN104536385A (zh) 一种数控机床加工程序的修正方法
CN103135497A (zh) 一种锥体机匣外型五轴矢量加工工艺
CN108062071A (zh) 参数曲线轨迹伺服轮廓误差的实时测定方法
CN114019910A (zh) 一种小线段刀具轨迹实时全局光顺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant